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Goal of Present Research
To calculate airframe aerodynamic forces 
and moments at most flight conditions

Effects of angle of attack (drag polar)
Effects of side-slip (effect of gusts and flight 
conditions)
Vertical flow (aircraft climb & rotor effects)
Side flow (effects of gusts)

Validation of CFD methods by intelligent 
applications rather than brute force.



5th April 2006 UK Applied Aerodynamics Conference
Loughborough University

4 of 35

Status of the Research
Airframe drag is 40-50% of total drag

Fuselage drag major limit to rotorcraft speed
Bluff body at high incidence

Recent Past: Airframe aerodynamics 
simulated with panel methods
CFD methods made advances
Virtually no validation of CFD methods for 
aerodynamic forces
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Status of the Research /2

No examples of rotorcraft forces in yaw
Few examples of rotorcraft forces in  
vertical flow
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Computational Model
3D multi-block, fully-structured NS code.
SIMPLE algorithm for velocity-pressure 
coupling.
Second-order TVD upwind scheme  the 
convective terms.
Code fully optimised for MPI.
Runs routinely on 100+ Linux processors.
Run on HPCx with up to 200 processors
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Computational Model /2

Basic airframe with engine cowlings
Mesh: 198 blocks x n³ cells
n = 20, 24, 28, 32 …
Ideal for multi-grid
Surface cells = 66 x n³
Calculations Fully Unsteady
Turbulence model K-omega SST
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Mesh Topology
Surface topology generated from ICEM-
CFD and CAD model
Half-plane mesh: Hyperbolic equations

Orthogonality and smoothness guaranteed
Mesh refinement: high-order interpolation, 
block-by block
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Resolution Problems
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Code Performance
MPI for parallelisation on distributed 
memory
Load balance optimal if nblocks = nprocs

No treatment for domain decomposition
HPCx:

Batches of 32 processors
Linux cluster:

When the blocks cannot be distributed evenly, 
redundant processors can be shut down
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Code Performance /cont’d

Problem considered must have certain 
size, else …
Inter-processor communication ``eats up'‘
possible speed gain
Memory required: 0.8 to 1.0 kb/cell
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Speed-up Chart on HPCx
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Calculation of Forces/Moments
Viscous & Pressure Contributions
Forces variable with time/time-step
Forces not always convergent
Forces oscillate around average value
Error bars of CFD can be large
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Calculation of Forces
Depend on iteration count
Residual stagnates after 1,000 iterations or more
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Iteration History



5th April 2006 UK Applied Aerodynamics Conference
Loughborough University

16 of 35

Time History of Drag Coefficient
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Time History of Lift Coefficient
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Test Matrix with experimental data
Re= 30 million (flight condition)
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Surface Pressure Analysis
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Airframe Pressure, CFD Analysis
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Surface Pressure Analysis, α
 

= 5
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Surface Pressure Analysis, α
 

= 5
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Surface Pressure Analysis, α
 

= 5
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Drag Analysis, AoA
 

effects

Re = 30M
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Lift Analysis, A.o.A. Effects

Re = 30M
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Drag Analysis, Yaw Effects

Re = 30M
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Lift Analysis, Yaw Effects

Re = 30M
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Surface Pressure Analysis, β
 

= 6
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Airframe Aerodynamics, α
 

= 20



5th April 2006 UK Applied Aerodynamics Conference
Loughborough University

30 of 35

Airframe Aerodynamics, α
 

= 0
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Large Yaw Angles
30 deg
Re = 30M
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Side Winds Effects
Side gust
Downwind view
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Conclusions: Results Achieved
Large-scale computations of bluff bodies
Computations requiring 100+ CPU hours 
Realistic Helicopter Applications
Prediction of Forces in Yaw
Prediction of Forces at Angle of Attack
Good comparison of Surface Pressure
Good comparison of Surface Streamtraces
Mixed results of aerodynamic coefficients
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Conclusions: Perspectives

More Sophisticated Methods Required
Including Turbulence Models

Errors in Wind Tunnel Results ?
Correct interpretation of WT results ?
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Conclusions: Long-term Goals

To compute drag polar with CFD methods
Angles -10 to +30 degrees

To predict yaw and gust effects accurately
To predict the helicopter download due to 
vertical drag
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