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Background

• Problems occur when weapon bay 
doors are opened to release store

• Exposure to free-stream produces 
undesirable effects
– Depends on weapon bay geometry 

(modelled using a cavity)

• Reduced aircraft drag
• Enhanced manoeuvrability
• Reduced aerodynamic heating of 

stores
• Reduced radar cross-section

X-45 UCAV

F-102 Delta Dagger
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Background
• Open cavities:

– Shear layer spans cavity
– Acoustic pressure waves propagate 

externally and internally
– Mass ejection/injection
– High noise levels & frequencies

• Closed cavities:
– Separation, re-attachment, separation
– Large pitching moments
– Store separation & release problems

• 3D, L/D = 5, W/D = 1, M=0.85 
- open cavity
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F-111 Flight Test
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Previous Cavity Flow Research
• Researched since 1950s
• Wind tunnel experiments

– Rossiter, Karamcheti, Krishnamurthy – acoustics, buffet
– Tam & Block, Rockwell & Naudascher (1970s) – acoustics & flow physics
– Stallings, Wilcox Jr. (1980s) – store separation and release
– Ross (QinetiQ, 2000) - PIV (L/D=5 cavity)
– Knowles (Cranfield, 2000) – LDA (L/D=10 cavity)

• Computational Fluid Dynamics 
– Orkwis & Disimile, etc. (1990s) – URANS
– Shieh (2003) – DES (L/D=4.4 cavity)
– Rizzetta (2003) – LES (L/D=5 cavity)
– Larchevêque (ONERA, 2003) – LES (L/D=2 cavity)
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Experimental Data: Pressure
• Source: DERA (Bedford, UK) – Ross, Wrisdale, Peto (2000)
• Geometry: Empty cavity, L/D = 5, W/D = 1, doors-off & doors-on
• Pressure transducers (doors-off & doors-on), PIV (doors-on)
• Flow Conditions: M = 0.85, ReL = 6.783 x 106

PIV Set-Up

Pressure Transducers Set-Up
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Flow Solver: Parallel-Multi Block (PMB)
• Control Volume method
• Parallel (distributed memory)
• Multi-Block structured grids, moving grids
• Implicit time marching
• Osher's and Roe's schemes for convective fluxes
• MUSCL scheme, formally 3rd order accurate
• Central differences for viscous fluxes
• Krylov sub-space linear solver with pre-conditioning
• Variety of turbulence models as well as turbulent simulation 

methods
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2D Results: Cavity Floor

SPLs

PSD (x/L = 0.95)
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3D Computational Domain

L L1.5 L

3.
5 

L

L/D = 5 , W/D = 1
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CPU Time on Beowulf and HPCX

27648 4104
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Doors-On Results: Cavity Floor

SPLs

PSD (x/L = 0.95)
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Doors-On Results: Cavity Floor

50 Hz ≤

 

f ≤

 

250 Hz

350 Hz ≤

 

f ≤

 

450 Hz

Band-Limited SPLs



CFD Group - Department of Aerospace Engineering - University of Glasgow

14

Doors-On Results: Cavity Floor

500 Hz ≤

 

f ≤

 

700 Hz

750 Hz ≤

 

f ≤

 

850 Hz

Band-Limited SPLs
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Doors-Off Results: Cavity Floor

SPLs

PSD (x/L=0.95)
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Doors-Off Results: Cavity Floor

50 Hz ≤

 

f ≤

 

250 Hz

350 Hz ≤

 

f ≤

 

450 Hz

Band-Limited SPLs
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Doors-Off Results: Cavity Floor

500 Hz ≤

 

f ≤

 

700 Hz

750 Hz ≤

 

f ≤

 

850 Hz

Band-Limited SPLs
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Doors-Off Results: Flow-Field

t = 0.0816 s (Baseline k-ω)

t = 0.0834 s (Baseline k-ω)

t = 0.0816 s (DES-SA)

t = 0.0834 s (DES-SA)

Instantaneous Mach Contours
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Doors-Off Results: Flow-Field

t = 0.0852 s (Baseline k-ω)

t = 0.0870 s (Baseline k-ω)

t = 0.0852 s (DES-SA)

t = 0.0870 s (DES-SA)

Instantaneous Mach Contours
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Doors-Off Results: Flow-Field

Baseline k-ω

Instantaneous Mach Contours

LES
DES-SA
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Doors-Off Results: Downstream Wall

t = 9000 s (DES-SA)

t = 9100 s (DES-SA)

t = 9020 s (DES-SA)

t = 9040 s (DES-SA)

Instantaneous Mach Contours: Vortical ‘Spillages’
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Doors-Off Results: Downstream Wall

t = 9200 s (DES-SA)

t = 9300 s (DES-SA)

t = 9060 s (DES-SA)

t = 9080 s (DES-SA)

Instantaneous Mach Contours: Vortical ‘Spillages’
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PIV Comparisons: Doors-On

x/L = 0.05

Streamwise (U) Velocity Profiles

x/L = 0.95
x/L = 0.55
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PIV Comparisons: PIV Resolution

Streamwise (U) Velocity

Transverse (V) Velocity
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Conclusions
• Doors-On:

– 2nd Rossiter mode (380 Hz) dominant
– URANS compares well with experiment SPLs but closer inspection reveals 

poor comparison at high frequencies
– LES fares much better: captures higher frequencies & amplitudes

• Doors-Off:
– 3rd Rossiter Mode (600Hz) dominant
– URANS still predicts characteristics of 'doors-on'  results
– LES/DES consistently predict correct SPLs & flow features
– URANS results poor due to failure in predicting shear layer break down

• Good comparison between LES/DES and PIV
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Follow-on Project
• High Performance Computing for High Fidelity, Multi-disciplinary 

Analysis of Flow in Weapon Bays including Flow Control

• Funded by EPSRC - call for High End Computing Studentships

• 4-years of effort

• Student to register for PhD in Engineering and MSc in HPC
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Future Work: Flow Control Devices
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Flow Control Effectiveness –

 

Experiments by QinetiQ

Doors On Doors Off
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Flow Control
• 2D, L/D=5 cavity with SST turbulence model

– Flow less unsteady and turbulent better dealt by turbulence models
– LES/DES not used to reduce calculation run-times

• Passive

 

Control: involves manipulating existing cavity geometry 
by adding external device or changing shape of cavity geometry

• Investigated effects of following devices at different positions:
– Spoiler
– Slanted Cavity Walls
– Steady Jet Blowing

• No experimental data available
– Comparisons made with experiment (without any control device)



CFD Group - Department of Aerospace Engineering - University of Glasgow

36

Flow Control -
 
Spoiler
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Flow Control –
 
Spoiler (Pressure)

SPL

Pressure (x/L = 0.95)
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Flow Control –
 
Spoiler (Flow-Field)

No Spoiler TE Spoiler

LE Spoiler (xsp = -0.2L) LE Spoiler (xsp = -0.1L)
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Flow Control –
 
Slanted Walls
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Flow Control –
 
Slanted Walls (Pressure)

SPL

Pressure (x/L = 0.95)
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Flow Control –
 
Slanted Walls (Flow-Field)

No Slanted Walls

Slanted TE (45o)

Slanted LE & TE (45o)

Slanted LE (45o)
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Flow Control –
 
Steady Jet
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Flow Control –
 
Steady Jet (Pressure)

SPL

Pressure (x/L = 0.95)
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Flow Control –
 
Steady Jet (Flow-Field)

No Slanted Walls

Steady Jet (Front Wall)

Steady Jet (Upstream)

Steady Jet (Rear Wall)
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Flow Control: Spoiler (Flow-Field)

No Spoiler

Height Effects: LE Spoiler (x/L = -0.1)

hsp

 

= 2 δ
hsp

 

= 1 δ
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Flow Control: Spoiler (Flow-Field)

hsp

 

= 1δ: Close-Up

hsp

 

= 2δ: Close-Up

Height Effects: LE Spoiler (x/L = -0.1)
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Flow Control: Slanted Walls (Flow-Field)

30o

Angle Effects: Slanted TE Wall

60o
45o
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Flow Control: Steady Jet (Flow-Field)

No Jet

Exit Jet Velocity Effects: Front Wall Jet

Mj = 0.2 M∞

Mj

 

= 0.1 M∞
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Conclusions –
 
Flow Control

• Passive control effective for reducing cavity SPLs & frequencies
• Spoiler: 

– overall SPL reduced by about 20 dB and all frequencies eliminated
– location important: trailing-edge spoiler noisier

• Slanted cavity walls:
– not as good as spoiler: overall SPL reduced by 1-10 dB but lower 

frequencies still present
– location important: slanted front noisier; slanted rear more effective 

• Steady jet blowing:
– overall SPL reduced by as much as  30-35 dB and all frequencies 

completely eliminated
– location imporant: upstream jet noisier; front wall jet most effective
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Different Cavity Aspect Ratios: SPL

L/D = 10 L/D = 16

L/D = 2 L/D = 5
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Different Cavity Aspect Ratios: Flow-Field

L/D = 10 L/D = 16

L/D = 2 L/D = 5
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Further Work
• Parametric studies:

– L/W, Re, M effects

• Cavity with stores:
– Missile with(out) fins
– Missile in different cavity locations
– Missile inside different cavity geometries/configurations

• Flow Control:
– Pulsating jet
– Closed loop control strategies
– Flow control strategies with missile in cavity

• Acoustics
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Follow-on Project
• High Performance Computing for High Fidelity, Multi-disciplinary 

Analysis of Flow in Weapon Bays including Flow Control

• Funded by EPSRC - call for High End Computing Studentships

• 4-years of effort

• Student to register for PhD in Engineering and MSc in HPC

• £99,999.99 of value
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Objectives
• To simulate the flow in a weapons bay using DES/LES, 

including effects of store carriage and active flow control.
• Exploit HPC  to visualise, analyse, archive and reduce the 

obtained data.
• To identify the forces on the stores inside the cavity and the 

effect of these during the release phase of the weapons.
• To combine CFD with Computational Structural Dynamics 

(CSD) and Computational Aeroacoustics (CAA) in order to 
predict all aspects of cavity flow and their effect on the loads of 
stores inside the cavity

• To examine active and passive flow control strategies for cavity- 
flow aerodynamics and demonstrate their benefit. Open and 
closed-loop control will be used.
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Questions?
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