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A hierarchy of flow models is exploited for transonic aeroelastic stability analysis us-

ing the kriging interpolation technique applied within the Schur complement eigenvalue

framework. In the Schur framework a modified structural eigenvalue problem describes

the coupled aeroelastic system with a pre–computed interaction term depending on the re-

sponse frequency. The interaction term, representing the influence of the high–dimensional

computational fluid dynamics system, is approximated by reconstruction based on samples

which can be computed using a frequency or time domain solver. The computationally

cheap approximation model is developed and discussed in this paper for two degree–of–

freedom aerofoil cases. Also, the approximation model is used both for blind search of

aeroelastic instability and for updating predictions based on aerodynamic models of differ-

ent fidelity.

I. Introduction

Two capabilities missing from the aerodynamic modelling tools available for aeroelasticity are a general
method to update lower order models with better information as this becomes available, and an approach
to assessing the impact of uncertainties in the prediction of aerodynamic phenomena like shock waves and
regions of separation. Simple parameterised models are used in structural dynamics to facilitate both of
these types of analysis [1] and experiments are exploited to tune the parameters to match observations.
The sensitivity to parameters can be easily assessed. In aerodynamics using linear tools in the frequency
domain (e.g. Doublet Lattice Method), various approaches have been discussed in the literature focusing
on correcting the aerodynamic influence coefficient matrix with nonlinear data [2]. When nonlinear flow
models are concerned, there are neither well established methods for exploiting measured data or higher
order predictions, nor systematic ways to assess the impact of uncertainties on the aeroelastic behaviour.
The current paper describes an investigation into developing a method that will address these shortcomings
for the limited case of transonic aeroelastic predictions for an aerofoil configuration moving in pitch and
plunge.

The understanding of physical mechanisms in aeroelastic simulations would be assisted by the ability to
consider the impact of uncertainty and sensitivity. In structural dynamics methods to assess the impact of
uncertainty in model parameters are well established [1, 3]. For instance a probability distribution in one
(or many) input parameters is propagated through the simulation and the effect on the system dynamics
is investigated. Propagation tools such as interval analysis, perturbation and polynomial chaos methods,
or even brute force Monte Carlo simulations, are routinely used. In recent years these tools have started
to be transferred to computational fluid dynamics (CFD). As an early example, the authors of [3] investi-
gated several propagation methods to address parametric uncertainty for the nonlinear Burgers’ equation.
Approaches considering uncertainties in the physical modelling assumptions rather than the parameters are
rare though. Examples of dealing with uncertainties in the boundary treatment of a physical model include,
for instance, a geometrically uncertain domain boundary for the two–dimensional Laplace equation [4], and
both deterministic and random perturbations on the boundary condition for the viscous Burgers’ equation
subject to sensitivity to the boundary data [5].
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As pointed out in [6], uncertainty associated with the aerodynamic model can be considerably larger
than from the structural model. Also, transonic aerodynamics introduce nonlinearity into the aeroelastic
dynamics. Two aeroelastic phenomena are particularly associated with the nonlinear flowfield. One is
the transonic dip where the presence of shock waves reduces the stability of the aeroelastic system. The
second is limit–cycle oscillation (LCO) where the limiting mechanisms of the amplitude of the dynamic
response are shock motions and separation. In [7] the influence of aerodynamic modelling assumptions on
the amplitude of a store–induced LCO was investigated for the Goland wing. The dependence of LCO
amplitudes on the modelling level, considering both inviscid and viscous flow, was investigated. It was
argued that shock/boundary layer interaction in this case causes trailing edge separation and retards the
shock movement (substantial in the inviscid case otherwise) thus limiting the LCO amplitude. Modelling
both the inviscid/viscous interaction as well as the extent of the shock–induced separated regions is therefore
important.

An important contribution to the understanding of transonic LCO is the experimental studies of the
supercritical NLR 7301 aerofoil [8–10]. The impact of shock/boundary layer interaction on LCO amplitude
and the importance of the correct prediction of the steady state solution are discussed and conclusions drawn
for the required aerodynamic modelling fidelity. A comprehensive review of nonlinear aeroelastic phenomena
including a detailed discussion of possible physical sources for these nonlinearities is given in [11].

The stability of an aeroelastic system can be inferred from time–accurate simulations following an initial
excitation of the system. Calculations of complete aircraft configurations have been made [12, 13]. The
time–accurate approach is very capable due to its generality. However, the significant computational cost, in
particular to solve for the unsteady, nonlinear transonic aerodynamics, is a major drawback of this approach.
A requirement to search a space of system parameters and flight conditions for critical conditions makes this
situation worse. The issue of cost generally limits the analysis to a few carefully chosen cases. Alternative
approaches have been investigated to obviate the computational costs and to permit routine calculations
over larger parameter ranges [14]. One popular method is reduced order modelling (ROM) based on proper
orthogonal decomposition (POD). For a robust and reliable ROM to exist, the parameter space and flow
phenomena of interest have to be covered by the set of system responses used to establish the ROM, and
thus, creating the large number of system responses is the main cost. In addition, the reliability of the
POD/ROM approach under parameter changes is a topic of investigation [15]. A variant of the POD
technique was applied both to deal with incomplete data in the reconstruction of aerodynamic flow fields
and to provide a link in updating numerical predictions with experimental measurements [16].

An alternative approach discussed in the present work uses the theory of dynamical systems to predict
aeroelastic instability of the Hopf type commonly leading to flutter and LCO. Here, a stability problem for
a steady state solution of the aeroelastic system is examined instead of performing unsteady simulations.
Stability is lost by a Hopf bifurcation when a pair of complex conjugate eigenvalues of the system Jacobian
matrix crosses the imaginary axis for some value of a critical system parameter. Following an approach
first published in [17–19], the bifurcation method was successfully tested on a two–dimensional aerofoil
configuration free to move in pitch and plunge. Convergence problems associated with applying a direct
solver to a large linear system were resolved by using an iterative sparse linear solver [20]. The method was
extended to a larger problem investigating a flexible AGARD 445.6 wing using a modal structural model
[21]. Later, the shifted inverse power method was adapted to allow tracing of the critical eigenvalues with
changing values of the system parameter. This provides information about the damping and frequency of
the aeroelastic modes [22]. Also, a model reduction technique based on the centre manifold theory was
investigated to simulate an LCO response in the vicinity of the linear instability point [22].

An improved version of the basic method used a Schur complement eigenvalue formulation to enhance
computational performance [23] and was applied to several wing structures and also complete aircraft configu-
rations to study uncertainty in the predicted instability due to structural variability [24]. This approach views
the coupled aeroelastic system as a modified structural eigenvalue problem with the interaction (correction)
term, which depends on the response frequency, pre–computed. In the current paper the approximation of
this interaction term is formulated so that a hierarchy of aerodynamic models can be exploited, with cheaper
models being used to evaluate possible conditions of interest for more expensive models, whose evaluations
are then used to update the approximation.

The paper continues with the formulation and benchmarking of the aerodynamic and aeroelastic tools.
The generation of the interaction term and its approximation using the kriging interpolation technique are
then considered, and an aeroelastic stability analysis for a pitch and plunge aerofoil is presented to illustrate
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the approach. Finally, ideas for coordinated sampling and model updating to assist the construction of the
approximation model applied to the stability analysis are investigated.

II. Models

In [25] four main aerodynamic modelling levels are discussed; linear and nonlinear potential, Euler and
Navier–Stokes. The physics in the simulation can be built up from linear potential flow. The nonlinear
potential model adds nonlinear compressible flow effects. Then, the Euler equations add entropy and vorticity
effects, while the Navier–Stokes equations include viscous and heat–conducting effects. For aerodynamic flows
of practical interest, the Reynolds–averaged form of these equations (RANS) is generally used introducing
the requirement for turbulence models. In the current paper, the RANS equations, the Euler equations as
well as the unsteady nonlinear full potential equations with and without coupling of an integral boundary
layer formulation are considered as aerodynamic models, while an eigenvalue–based module, details of which
are given in the next section, is used to evaluate aeroelastic stability.

The RANS and Euler equations are solved using an established research code [26]. Basic features of the
code include; spatial discretisation done by a block–structured, cell–centred, finite–volume scheme, implicit
time marching applied for steady state solves, second order dual time stepping used for unsteady simulations
[27], convective fluxes evaluated by the approximate Riemann solver of Osher and Chakravarthy [28] with the
MUSCL scheme [29] achieving essentially second order accuracy and van Albada’s limiter preventing spurious
oscillations around steep gradients, and viscous fluxes evaluated by central differences. The resulting linear
systems are solved by a preconditioned Krylov subspace iterative method. Boundary conditions are enforced
using two layers of halo cells. Linear eddy viscosity turbulence models used in this work are solved in a
fashion similar to the RANS equations with source terms being evaluated at cell centres.

The continuity and Bernoulli equations constitute the unsteady full potential model (FP) solved by a
newly developed research code [30]. Basic features of the code include; spatial discretisation done by an
unstructured triangular, vertex–based, finite–volume scheme, Newton’s iterative method applied for steady
state solves, second order dual time stepping used for unsteady simulations [27], and convective fluxes
evaluated by a second order, slope–limited, gradient–based upwind scheme using a linear least squares
reconstruction. Linear systems are solved by a direct solver [31]. The potential jump (i.e. circulation),
based on the Kutta condition, is applied across the wake cut and is convected downstream in the usual
unsteady fashion [32]. Boundary conditions are set using a layer of halo vertices with a transpiration
boundary condition applied at solid walls. Viscous effects (FPv) are added to the basic model using an
integral boundary layer formulation [33–36] derived from the unsteady Prandtl boundary layer equations
[37]. Additional unknowns of the integral system are expressed in terms of the primary unknowns using
closure correlations. The “blowing velocity” concept is applied to model the leading order effect of the
viscous layer, displacing the outer inviscid flow by a distance equal to the displacement thickness [38].

Results for one standard test case are presented to build confidence in the developed FPv flow solver.
Steady measurements of pressure distributions in sub- and transonic flow regimes are given in the experi-
mental data base of [39] for the supercritical RAE 2822 aerofoil. Results are shown in Fig. 1 for cases 2
(subsonic) and 9 (transonic). The simulations were done assuming free flight conditions. Hence, the numer-
ical flow conditions were adjusted to match the experimental data subject to wall interference effects. The
FPv simulations give excellent agreement to the experiments and the RANS results.

The structural part in the aeroelastic problem is described by the dynamics of a two degree–of–freedom
aerofoil [40]. The “typical section” aerofoil with oscillating pitching and plunging motion represents the
torsional and bending behaviour of a wing structure. The linear model is idealized as a point mass located
at the centre of gravity as well as a torsional and a translational spring attached to the elastic centre located
some distance away from the centre of gravity.

III. Generating the Schur Interaction Matrix

A. Schur Complement Eigenvalue Formulation

Write the aeroelastic system in semidiscrete notation as ẇ = R(w, µ), where the vector of unknowns
w = [wf , ws]

T contains fluid and structural contributions, and R is the corresponding residual vector. The
system depends on an independent parameter µ representing, for instance, dynamic pressure or altitude. An
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Figure 1. Pressure distributions of RAE 2822 aerofoil showing comparisons of measurements as presented in
[39] and simulations using RANS and FPv.

equilibrium solution w̄ of the nonlinear system satisfies R(w̄, µ) = 0. The theory of dynamic systems gives
criteria for an equilibrium to be stable. In particular, stability is determined by eigenvalues, λ = σ ± iω, of
the system Jacobian matrix A(w̄, µ) evaluated at the steady state and arbitrary values of µ. A stable system
has all its eigenvalues with a negative real part. In many aeroelastic problems a pair of complex conjugate
eigenvalues with zero real part defines the onset of an instability of the Hopf type leading to flutter and LCO.
Linear stability is predicted by solving the general eigenvalue problem, (A − λI)p = 0, where the Jacobian
matrix is conveniently partitioned in blocks expressing the different dependencies

A =
∂R

∂w
=

(

Aff Afs

Asf Ass

)

. (1)

For convenience, also the eigenvector p is partitioned into unknowns corresponding to fluid and structural
contributions [23]. Then, the Schur complement eigenvalue formulation is given as S(λ)ps = 0, which is a
small nonlinear eigenvalue problem. The Schur complement matrix S(λ) is explicitly written as

S(λ) = (Ass − λI) − Asf (Aff − λI)−1Afs. (2)

The first term on the right–hand side defines the structural eigenvalue problem and is denoted as Ss =
Ass − λI, while the second part constitutes the interaction (coupling) term Sc = −Asf (Aff − λI)−1Afs.
To solve this small complex–valued eigenvalue problem, the system is augmented to scale the structural
eigenvector ps against a real–valued constant vector cs, i.e. augment by the equation cT

s ps − i = 0. Then,
the augmented nonlinear system is solved for the unknowns [ps, λ]T . While the full eigenvalue formulation
solves a problem with nf + 2n + 1 unknowns, the Schur formulation only has 2n + 1 where the number n of
relevant normal modes is generally small. There are several ways to evaluate the roots of the Schur residual
as outlined in the following and with more details given in [23, 24].

An efficient way of finding the roots of nonlinear systems are Newton–like methods which require forming
the residual and its Jacobian matrix. The main cost in either method is to evaluate the interaction term Sc

since it includes operations on the high–dimensional fluid system, whereas the costs to form the structural
term Ss are negligible. Using Newton’s method, the interaction term in the Schur residual is conveniently
evaluated by first forming the product Afs ps for the current approximation to the eigenvector, and then
solving one linear system, (Aff − λI)y = Afs ps. The solution is multiplied against matrix Asf . Applying
finite differences gives the Jacobian matrix where multiple evaluations of the residual are required.
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There are n relevant solutions of the nonlinear eigenvalue problem, and so the cost of forming the
interaction term at each Newton iteration for each value of the independent parameter becomes too high. To
overcome this, a series approximation [41] of the Schur complement matrix can be written for λ = λ0 + λε

as
S(λ) ≈ (Ass − λI) − Asf

(

(

Aff − λ0I
)

−1
+ λε

(

Aff − λ0I
)

−1(

Aff − λ0I
)

−1
)

Afs, (3)

where λε is a small variation to the reference value λ0, which is a normal mode frequency or a previous
converged solution. Pre–computing the factors in the series against the matrix Afs (requiring 4n linear
solves per normal mode frequency λ0), allows the application of the expansion in the vicinity of λ0. Two
approaches have been discussed. The quasi–Newton method evaluates the (exact) residual by the nonlinear
approach given in the previous paragraph, while the series is used for the Jacobian matrix. The series

method also applies the series expansion to the residual which is possible for small λε and for an independent
parameter µ not affecting the pre–computed values.

In this work, as discussed in the next section, a new method is introduced. The Schur residual and the
Jacobian matrix are formed by approximating the Schur interaction term Sc by a reconstruction based on
samples, i.e. full order evaluations of this term, covering the parameter space of interest.

For the structural model of the two degree–of–freedom aerofoil, a 4×4 Schur complement matrix is found.
There are six nonzero complex–valued elements in the interaction term. Ordering the structural unknowns
of plunge h and pitch α as ws = [h, ḣ, α, α̇]T , the first and third row (due to the matrix Asf projecting the
fluid response onto the structural states) as well as the first column (due to the independence of the fluid
response on the plunge state h) are zero within the matrix.

B. Extracting Elements based on Fourier Series

The interaction matrix can be formed in both the frequency and time domain. Solving the 2n linear systems
(one for each column of the matrix Afs) against the fluid system directly to form the Schur interaction matrix
is referred to as the linear frequency domain approach. Alternatively, the interaction matrix is evaluated
from a Fourier analysis of unsteady responses forced in the structural states. Therefore, the unknowns are
rearranged as the sum of a steady state solution w̄ and a corresponding unsteady perturbation δw. Writing
the fluid part of the aeroelastic system in its time–linearized form,

ẇf = Aff δwf + Afs δws, (4)

with the Jacobian matrix blocks Aff and Afs evaluated at the steady state, and expressing the unsteady
perturbation of the fluid and structure in a truncated exponential Fourier series [42], a discrete expression
can be given as,

N
∑

n=−N

αn = −
N
∑

n=−N

(Aff − i n ωI)−1 Afs βn. (5)

The complex–valued Fourier coefficients (αn for fluid response and βn for structural forcing) are evaluated
from the time signal over a period T = 2π/ω (with ω as the fundamental frequency). After multiplying with
the Jacobian matrix block Asf (evaluated analytically or by finite differences), the expression in Eq. (5) cor-
responds to the interaction term for an undamped eigenvalue with column and magnitude set by the applied
structural forcing. Evaluating the Fourier coefficients at integer multiples n of the fundamental frequency
(provided the system was excited accordingly) gives the interaction matrix at these discrete frequencies.
Solutions of a fully nonlinear system approach the time–linearized results if the amplitude of the forced
motion is sufficiently small, i.e. the unsteadiness in the flow is linearly dependent on the structural motion.
The step of using the nonlinear system is required if the Jacobian matrices for the fluid contribution are not
available explicitly (otherwise the linear frequency domain approach should be used).

An example to illustrate the different generation methods is presented next. A NACA 0012 aerofoil
configuration defined in [20] as the “heavy case” was excited in all structural states of interest simultaneously
in sinusoidal motions at a fundamental frequency of ω = 0.15 and an amplitude of â = 1.0 × 10−4. Three
simulations were required to obtain the interaction matrices at three frequencies while swapping around the
factors multiplying the fundamental frequency to have distinct excitations in the structural states. Exciting
the plunge coordinate h is irrelevant. Following the transition to stable periodic cycles, one motion cycle
simulated with 128 steps is used for evaluating the Fourier coefficients. Two freestream Mach numbers
are considered representing a sub- and a transonic case with a strong shock wave. Figure 2, showing real
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and imaginary parts individually, gives an excellent agreement in evaluating an element of the interaction
matrix. Summarizing the costs, the linearized time domain approach involves the costs of about 10 steady
state simulations to extract the complete interaction matrix at one individual frequency, while the nonlinear
version is about twice this cost. Using the linear frequency domain approach, on the other hand, evaluating
the interaction matrix at one frequency (requiring 2n linear solves against the fluid system) takes about an
equivalent cost to simulating a steady state.
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Figure 2. Extracted element of Schur interaction matrix for Euler flow model and NACA 0012 configuration
showing real and imaginary parts individually; linearized and nonlinear time–domain compared to linear
frequency domain.

Figure 2 also includes nonlinear time domain results of a higher excitation amplitude (â = 1.0 × 10−2).
Intuitively, the results at Mach 0.8 suggest that the nonlinear approach loses accuracy compared to the
linear approaches. However, the appearance of shock waves introduces the additional aspect of an oscillatory
behaviour as discussed in [43]. Therein, the critical flutter speed index of an aerofoil configuration showed
an oscillatory trend with changes in freestream Mach number due to the discrete numerical representation of
the shock movement being restricted to the grid resolution. The oscillatory flutter speed was related to an
oscillation in the Jacobian matrix elements. Figure 3 presents such nonlinear time domain results using Euler
and RANS flow models at a range of Mach numbers and different amplitudes â. In Fig. 3(a) the Euler time
domain results are compared to linear frequency domain predictions. As discussed in [43] for the influence of
an initial disturbance on unsteady simulations, a dependence on the amplitude can be found. Results for small
excitation amplitudes resemble the linear frequency analysis including the oscillatory phenomenon, whereas
higher values eliminate these. A weak variation of the pressure distribution is found for small structural
motion amplitudes with a strong influence of the discrete steady state shock resolution throughout the
unsteady forcing. The dynamic effects due to larger amplitudes, on the other hand, dominate the influence
of the steady state. Physically, it seems to be more meaningful to use a higher excitation amplitude since
the nonsmooth behaviour, which cannot be explained with arguments of a continuous change of a system
parameter, disappears.

Comparing steady state lift coefficients for Euler and RANS flow models suggests that the phenomenon
can also be expected for RANS simulations. Figure 3(b) distinguishes three regions. In shock free flow
at sub- and very low transonic Mach numbers, the amplitude (chosen within reason) is irrelevant. Having
a distinct shock wave, the forcing amplitude becomes an important factor as for the Euler simulations.
Results for smaller amplitudes scatter around a mean value, while the results for higher amplitudes, leaving
the constraints of the discrete grid resolution, show a converging trend in the evaluations. A trend for
the region of distinct shock–induced flow separation starting at about Mach 0.82 is less easy to establish.
While the presented matrix element describes significant oscillations, other elements have a far more gentle
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Figure 3. Effect of excitation amplitude on oscillatory behaviour in transonic regime for element real(Sc
22

) of
the interaction matrix showing results for different flow models and a frequency of ω = 0.25.

development. Additionally, the forced excitation with higher amplitude may cause severe flow separation
challenging a linear relationship between the fluid response and structural motion. To understand these
points, the stability at Mach 0.84 has been analysed by means of the kriging–based approach, described in
the following, as well as time–accurate simulations following a disturbance of the steady state. While time–
accurate results agree in the stability prediction with the analysis based on the higher amplitude samples,
the lower amplitude samples give a relative error of about 10 percent.

IV. Approximating the Schur Interaction Matrix

A. Overview of Kriging Interpolation Techniques

For computationally expensive simulations it is useful to generate a cheap approximation based on relatively
few runs of the expensive model to provide information about its response at untried parameter combina-
tions. An approximation model should both predict the calculated responses precisely and adapt to the
functional behaviour of the responses. In the kriging (nonlinear least squares) interpolation technique a
multidimensional deterministic response of a simulation is treated as a realisation of a stochastic process
composed of a low order regression model and a random normally distributed signal with zero mean and
a covariance depending on the variance of the input samples and the correlation between two parameter
locations. Thus, the second term (the error term) is not independent at different locations but is related to
the distance between points in the parameter space. The parameters of the computationally cheap kriging
model are determined for a known set of numerical samples of the full order formulation by an optimisation
process as given, for instance, in [44,45]. The kriging predictor gives the exact system response at a sample
location. Previously, the kriging approximation was used for generating aerodynamic data applied in flight
dynamics studies [46].

Co–kriging techniques use additional information on the functional behaviour of the response, such as
gradients or co–variables. Using a spatially correlated, (usually) cheaper, and hence densely sampled co–
variable to augment the input parameter space of a (usually) more expensive, sparsely sampled primary
variable, allows the prediction of the primary variable accurately with very few samples. The cheaper model
provides a trend of the system response with the higher fidelity data updating the prediction [45]. In this
context the cheaper model is established either by a lower level aerodynamic modelling (which exploits the
aerodynamic hierarchy of flow models) or by a higher level model solved on a coarse grid.
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B. The Kriging Predictor applied to Aeroelastic Stability Analysis

Evaluating the Schur interaction matrix Sc based on the full order formulation accounts for the highest
cost in the stability analysis. Once the approximation model based on full order samples is evaluated, the
stability problem is solved without relying on the exact solver, and thus, becomes very cheap. Then, any
Newton–like method is a convenient choice to solve the nonlinear stability problem with the interaction term
and its Jacobian matrix readily available through the kriging predictor. The critical eigenvalue with zero
damping is detected using the bisection method applied to the independent (bifurcation) parameter at fixed
Mach number.

In the current formulation the approximation of the interaction term is based on a purely imaginary
eigenvalue with zero damping λ = i ω, whereas the structural part uses the complete eigenvalue including
nonzero real part.a In this sense it is an analogy to the classical p− k method [47]. The approximate Schur
complement matrix used for the stability analysis is written as

S = Ss(λ, ū) + Ŝc(ω, M) (6)

where Ŝc is the kriging prediction of Sc and M denotes the Mach number. Interestingly, for the two degree–
of–freedom aerofoil discussed in the present study the correction term Sc is independent of the bifurcation
parameter, given by the reduced velocity ū, thus simplifying the discussion. At the critical eigenvalue
λF = i ωF the approximation is exact within the limits of the interpolation algorithm.

Figure 4 shows the tracing of the least stable aeroelastic mode for the “heavy case” NACA 0012 config-
uration using the Euler flow model. The calculation of 60 points on the root locus took less than a second
of CPU time with the approximation model, whereas the full formulation having a grid with 15k control
volumes took more than an hour (about one minute per point) on a modern desktop personal computer using
the quasi–Newton method. Unsteady time marching at an individual reduced velocity using a dimensionless
time step of 0.05 for temporal accuracy takes about 13 minutes per motion cycle (comprising about 500
steps). Two approximation models are shown with the samples extracted using the linear frequency domain
approach. One, denoted as “approx (w/o damping)”, used full order samples with zero damping and varying
frequency, whereas the second one was constructed at fixed Mach numbers for both varying damping and
frequency. Using the approximation model based on nonzero damping, the trace of the relevant eigenvalue
follows the full order prediction precisely. However, the eigenvalue can be traced quite accurately even away
from the imaginary axis without including damping in the kriging predictor. In this case the error introduced
by the approximation Ŝc(ω, M) is very small in the relevant region close to the imaginary axis suggesting
that the variation of the interaction elements with damping (or at least that the influence of this variation
on the eigenvalue problem) is small compared to the structural part Ss(λ, ū).

Figure 5 presents the sub- and transonic instability boundary as critical values of flutter speed index VF =
ūF /

√
µs (where µs is the aerofoil–to–fluid mass ratio) and frequency ωF for the NACA 0012 configuration.

A comparison of results from the full order and the approximation models is given for four aerodynamic
modelling levels. Also, since the eigenvalue–based full order formulation is not available, time–accurate
simulations to confirm the RANS predictions (using a chord Reynolds number of 5 million) are included with
the plus (tilde) sign indicating a stable (unstable) response due to an initial disturbance. The agreement
is excellent as should be expected since the sample resolution is high. The samples for a range of Mach
numbers and frequencies (with zero damping) and the corresponding kriging evaluations are shown in Fig. 6
for one element of the interaction matrix. The trace of the instability is included as combinations of Mach
number and critical frequency to illustrate the important regions of the response surface. The samples were
extracted using either the linear frequency domain or, for the RANS simulations, the nonlinear time domain
approach with an excitation amplitude of 7.75 × 10−3 applied.

C. Interpreting the Results for Different Flow Models

In Fig. 5 there is a constant offset between Euler and RANS results as well as (at least for lower Mach
numbers) between FP and FPv results suggesting that the boundary layer as predicted by viscous modelling
levels has a stabilizing effect on the configuration. Furthermore, it seems that the shock dynamics, which

aOne contribution is missing in the reduced formulation compared to the full version. The structural part Ss contains
terms involving ∂Cl/∂α, ∂Cm/∂α, etc., i.e. the dependence of the structural residual on the structural unknowns through
aerodynamic forces. These missing contributions are very small as shown by the comparisons below. The uncertainty due to
the interpolation algorithm is considered to be far more significant.
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Figure 5. Instability boundary for NACA 0012 configuration for four levels of aerodynamic modelling showing
comparison of full order (full) and approximation models (approx).

are correctly predicted by the Euler model, act as the dominant mechanism for the aeroelastic instability
compared to the viscous effects (in this configuration and at the shown range of Mach numbers). Indeed,
comparing flow solutions it can be seen that shallow separation due to shock/boundary layer interaction is
first encountered at about Mach 0.81 to 0.82.

The response surfaces of the interaction matrix element shown in Fig. 6 for the different flow models are
now interpreted. To start with, it is found that the flow models produce similar response features which
should be expected since the shock dominated physics are included in all flow descriptions while separation is
not yet an important factor in the considered Mach number range. In the subsonic range the flow response (as
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Figure 6. Extracted and interpolated element Sc
22

of Schur correction matrix for NACA 0012 configuration
including real and imaginary parts and using four levels of aerodynamic modelling.

expressed by the matrix elements) has small changes with varying system parameters, while in the transonic
range clear variations, in particular with respect to the Mach number, are present. One distinct difference
is found for the FP flow model at the higher Mach numbers and smaller frequencies. Here, the imaginary
part of the shown element takes on values almost double the elements of the other models which is likely due
to the shock dynamics (including location and strengths) being incorrectly predicted. This suggests that,
once the correct response features are simulated reasonably well by models with different fidelity, a hierarchy
of flow models can be exploited in the stability analysis by combining cheaper response evaluations with
available better (more expensive) information.

Differences in the stability prediction using the different flow models require further consideration. Even
for subsonic Mach numbers an offset between both the inviscid (Euler vs FP) and the viscous (RANS vs FPv)
predictions of the critical flutter speed index can be found (even though the approximated error of one percent
should not be of too much concern). The reason for disagreement is not found to be the grid resolution since
the results presented herein are grid–converged meaning that inspected finer grids (results of which are not
shown) did not change the results notably. An important factor distinguishing the solver for Euler/RANS
and FP/FPv flow models are the distinct spatial discretisation schemes including the treatment of boundary
conditions. For instance, the FP baseline solver using a time–invariant computational domain applies a
transpiration boundary condition on solid surfaces, whereas in the multiblock solver for the Euler/RANS
equations the geometry is explicitly deflected. These distinct boundary treatments are considered next.

Since a FP formulation with moving grids is currently not available, a transpiration boundary condition
was implemented in the Euler formulation. The transpiration boundary condition only affects the Jacobian
matrix block Afs in Eq. (1) and implementing this (using finite differences) is easily done. The results shown
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Figure 6. (con’t)

in Fig. 7(a) indicate that the modified boundary condition has a slight influence on the aeroelastic stability.
Compared to the original results the critical flutter speed index approaches the FP prediction.

The critical flutter speed index of the FP formulation is closely followed until about Mach 0.75. Intuitively,
starting from this point one would point at the underlying FP modelling assumptions being violated by the
formation of strong shock waves causing an underprediction of the transonic dip. (The critical Mach number
of the NACA 0012 aerofoil is at about 0.73.) However, the steady pressure distributions at Mach 0.78
shown in Fig. 8 give excellent agreement for both the viscous and the inviscid flow solutions. These results
suggest that merely an accurate simulation of the steady flow field is not sufficient with additional physical
sensitivities such as entropy and vorticity effects due to shock waves becoming more and more important.
Also, starting from about Mach 0.78 a diverging trend between FP and FPv predictions is found. At
this point the predicted inviscid shock waves become too strong (now violating the FP assumptions) while
viscous effects in the FPv formulation reduce their strengths (to keep having accurate steady state solutions)
resulting in a correct prediction of the other side of the transonic dip with the sharp rise in the critical
flutter speed index. In other words, viscous effects (included in the system Jacobian matrix) due to stronger
shock/boundary layer interaction seem to become more significant than entropy and vorticity effects.

To support the observations, the inviscid/viscous coupling procedure in the FP formulation is exploited.
Looking at the expression in Eq. (1), all matrix blocks (except Ass) are split for the coupling to accommodate
inviscid and viscous contributions in the fluid unknowns and their corresponding residuals, e.g. matrix block
Aff contains four subblocks. Then, individual subblocks are left out to estimate their importance for the
stability analysis. In Fig. 7(b) three simulations using the FP baseline model are discussed with the first
part of their labels indicating the steady state model and the second part indicating the contribution to
the Jacobian matrix for the stability analysis. The simulation using an inviscid/viscous coupling for the
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Figure 7. Influences of both the transpiration boundary condition (tbc) and the Jacobian blocks for invis-
cid/viscous coupling on the predicted critical flutter speed index for NACA 0012 configuration.
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Figure 8. Pressure distribution for NACA 0012 aerofoil and different flow models (M=0.78, α=0.0◦,
Re=5.0×106).

steady state but only the inviscid fluid subblock for the Schur complement matrix illustrates that, despite
having the correct steady state, the inviscid instability boundary is predicted. Thus, the sensitivities of
the important physics (in this case the viscous effects) need to be included in the matrix. Also, despite
having the correct steady state compared to the Euler/RANS models, the sensitivity due to shock effects
(entropy and vorticity production) is missing in the FP formulation and may cause the underprediction in
the transonic dip minimum.

To summarize, having a correct steady state simulation does not immediately guarantee the correct
prediction of the stability limit. More efforts will be needed for understanding to what extent either the
missing physical content, such as shock effects, or the chosen discretisation of the flow models, such as the
distinct upwind schemes, are the main factor in this discussion.

12 of 21

American Institute of Aeronautics and Astronautics



V. Coordinated Sampling

The cost to create the approximation model, i.e. the required number of samples to adequately represent
the variation of the interaction matrix, is an important factor in the analysis especially for an expensive
high fidelity flow model. The large number of samples as used, for instance, in Fig. 6 does not seem to be
required to accurately predict the response surface near the instability. Sampling techniques can be exploited
instead.b In Fig. 6, rectangular grid sampling has been applied. Latin hypercube (LH) sampling is considered
as an improved version of random (Monte Carlo) sampling [48]. While random sampling creates parameter
combinations independently (and possibly without providing additional information), LH sampling ensures
that all parts of the parameter space are evenly represented. Therefore, each parameter dimension is divided
into a specified number of non–overlapping bins of equal probability. One sample per dimension is randomly
chosen from each bin and then randomly combined with the other parameter dimensions.

This approach, based on 8 and 32 samples, is presented in Fig. 9 for the FP flow model using the same
NACA 0012 aerofoil configuration and a grid with 5k control volumes. Initially, four samples were placed
at the corners of the parameter space in each case to avoid extrapolation while the remaining design points
were generated (a priori) by LH sampling. The dimensions of the parameter space are defined to provide
a good range for an initial blind search with the Mach number covering the region of interest (up to mild
separation) and the frequency based on typical flutter frequencies (chosen from the normal mode frequencies).
Looking at Fig. 9(a), even a few samples can approximate the target reasonably precisely. This observation
is supported in Fig. 9(b) showing the critical flutter speed index as the true measure for the quality of the
approximations while comparing to the full order reference solution. Using 8 samples a good starting point
can be found to base a more detailed stability analysis on. Although one sample set gives results deviating
considerably starting from about Mach 0.8, predictions based on 32 samples usually give better agreement.
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Figure 9. Latin hypercube (LH) sampling technique, using the FP flow model for NACA 0012 configuration,
showing approximated element real(Sc

22
) of Schur correction matrix including trace of instability and critical

flutter speed index compared to a full order reference solution.

Instead of relying on these space–filling algorithms, information on the functional behaviour can be
included to choose new sample locations a posteriori. The located maximum of the standard error for the
current kriging prediction, readily available within the framework, defines a natural choice for a new sample.
Iterating continues until a convergence criterion is satisfied. Results from this technique, referred to as mean
squared error (MSE) sampling, are shown in Fig. 10. Initially, a number of LH samples is created to allow
a first evaluation of the kriging model and to provide a somewhat filled parameter space. In the figure it is

bOne sample here refers to the values of a complete interaction matrix at one combination of Mach number and frequency.
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found that the response surface is well predicted with less irregularities compared to pure LH sampling with
the same number of samples. It is remarked that MSE sampling is an improved (a posteriori) space–filling
since the kriging error depends on the chosen correlation weighted by a function of the distance between
samples. Thus, a new sample location is likely to be found near the point maximizing the distance to all
surrounding samples while also adjusting to the level of correlation between the samples. The predicted
critical flutter speed index, presented in Fig. 10(b), gives very good agreement to the reference solution.
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Figure 10. Mean squared error (MSE) sampling technique, using the FP flow model for NACA 0012 configu-
ration, showing approximated element real(Sc

22
) of Schur correction matrix including trace of instability and

critical flutter speed index compared to a full order reference solution.
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Figure 11. Risk–based MSE sampling technique, using the Euler flow model for NACA 0012 configuration,
showing approximated element imag(Sc
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) of Schur correction matrix including trace of instability and critical

flutter speed index compared to a full order reference solution.
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Latin hypercube sampling tries to fill the complete parameter space evenly, while with MSE sampling it
is attempted to minimize the kriging error globally. Thus, looking at Figs. 9 and 10, it is found that many
samples are redundant for the stability analysis. As the cost of running the Schur Newton solver using the
approximation model is very low, it is useful to perform a complete stability analysis based on the current set
of samples. Such a sampling approach proceeds by first defining the initial search space, in this example, with
the four corner samples, and then evaluating the instability boundary. Locating the maximum of the kriging
error along the current approximation to the instability boundary gives the new sample location. Iterating
converges the solution to satisfy predefined stopping criteria, for instance, on the ℓ2–norm of changes in
successive flutter solutions and on the standard kriging error. This gives some measure of confidence in the
prediction based on a distinct model in combination with the costs. The approach, referred to as risk–based
MSE sampling, is illustrated in Fig. 11 for the Euler flow model using a grid with 15k control volumes for
the NACA 0012 configuration. It can be seen that new samples are closely placed in the region where they
strongly support the prediction. An accurate detection of the instability boundary is quickly obtained. The
ten samples, being sufficient in this example to cover a complete sub- and transonic regime, correspond
to the cost of about 20 steady state solves (including the simulation of steady flow fields) using the linear
frequency domain approach for sample extraction. Here, evaluating the entire response surface within the
initial search space is not attempted. As a consequence, mode tracking becomes inaccurate further away
from the instability which, however, is a fair trade–off compared to the costs.

An alternative to the basic risk–based MSE sampling approach is shown in Fig. 12. The Isogai [49]
benchmark case is known to exhibit multiple bifurcations for inviscid flow models in the deep transonic
regime. Instead of using a bisection method on the reduced velocity ū to locate the instability point, the
roots of the Schur residual, obtained at low computational cost, are evaluated at all points on a mesh defined
by Mach number and reduced velocity. Then, a threshold (sampling condition) is defined. In this study all
mesh points at fixed Mach number having a change of sign in the eigenvalue’s real part with varying reduced
velocity are selected, thus, allowing multiple bifurcations. Alternative sampling conditions are possible.
The selected location maximizing the kriging error gives a new parameter combination in Mach number
and frequency as for the basic risk–based MSE sampling. In Fig. 12(b), showing the challenging instability
boundary for the Isogai case, it is found that ten samples provide a good description of the (inviscid)
transonic stability features, while more samples are required to predict the upper part (i.e. the second and
third bifurcations) precisely. Some outliers in Fig. 12(a) are due to an intermediate approximation model
not giving a converged solution at individual combinations of Mach number and flutter speed index placing
the sample at the frequency search limit.
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Figure 12. Alternative risk–based MSE sampling technique, using the Euler flow model for Isogai [49] con-
figuration, showing approximated element imag(Sc

22
) of Schur correction matrix including trace of instability

and critical flutter speed index compared to a full order reference solution.
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There is another interesting aspect to the kriging formulation allowing the balance between local and
global search for functional extrema [45]. The kriging model provides a mean (best) prediction of a response
and a corresponding standard error. Then, a probability distribution can be given for the prediction. In
Eq. (6) expand the interaction term in a first order Taylor series about the mean evaluation of the critical
frequency ω0 at fixed Mach number M ,

S = Ss(λ, ū) + Šc(ω0) +
∂Ŝc(ω0)

∂ω0

(ω − ω0), (7)

with the gradient of the mean prediction Ŝc(ω0) readily available from the kriging model. This is a good
approximation looking at response variations in the frequency dimension. The value of ω0 is found from
a stability analysis based on mean values Ŝc of the kriging prediction for Sc. The elements of the matrix
expression Šc(ω0) = N

(

Ŝc(ω0), ϕ
2(ω0)

)

are assumed to be normally distributed with mean and variance given
by their kriging approximation. Here, the matrix ϕ contains the standard error of the kriging prediction.
Equation (7) models the uncertainty about the kriging approximated response Ŝc at an untried parameter
combination (not the uncertainty due to physical effects). Then, a Monte Carlo simulation for random
realisations of the term Šc is done to propagate the uncertainty from the kriging model to the stability
prediction. Also, an expected improvement function [45] is given for the evaluated critical flutter speed index,
assumed to be normally distributed, to locate the minimum value (often corresponding to the transonic dip).
This function takes the current best approximation of the extreme value and weights a possible improved
minimum value by the corresponding probability density.
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Figure 13. Expected improvement (EI) sampling technique, using the Euler flow model for NACA 0012 config-
uration, showing approximated element imag(Sc

22
) of Schur correction matrix including trace of instability and

critical flutter speed index compared to a full order reference solution including response probability density
functions.

The approach, referred to as expected improvement (EI) sampling, is illustrated in Fig. 13. Using
intermediate stability results in finding new sample points (as done for risk–based MSE sampling), the
samples gather around the converged flutter solution as seen in Fig. 13(a). However, it is obvious that more
samples are placed in the region of the transonic dip since detecting the minimum in the critical flutter
speed index is the objective of the applied EI sampling approach. This is desirable because more emphasis
is consequently put on the nonlinear transonic regime rather than on the subsonic range. In Fig. 13(b) nine
samples are sufficient to detect and predict the transonic dip accurately. The figure also includes (scaled)
probability density functions for the critical flutter speed index at three Mach numbers for calculations
based on 12 samples. Looking at the density function with the highest standard deviation, the idea of
expected improvement is nicely described. Risk–based MSE sampling would place a new sample where the
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standard deviation is highest (around Mach 0.7). Since the tail of the density function does not suggest an
improvement in locating the minimum value of the critical flutter speed index (i.e. the probability to have
a new minimum is very small), EI sampling ignores this location as a possible newly sampled point. Also,
following engineering intuition, one would not expect the transonic dip at the lower Mach numbers. Expected
improvement sampling is more expensive in finding a new sample location since a response distribution in
the critical flutter speed index has to be evaluated for the range of Mach numbers. These costs remain
constant though no matter how big the original problem becomes.

Summarizing, a blind search for aeroelastic instability starts with defining an initial search space in Mach
number and frequency. Optionally, using LH sampling this space can then be filled evenly with more samples.
To search for a complete range of the stability limit the risk–based MSE sampling approach is a convenient
choice, whereas the EI sampling technique is preferred when the most critical region (i.e. the transonic dip) is
the main concern. Having the steady state solutions, the cost for evaluating 12 samples, requiring 2n linear
solves against the fluid system per sample using the linear frequency domain approach, for the approximation
model to cover an entire Mach number range is equivalent to form the terms in the series expansion in Eq. (3)
for the two normal modes of the aerofoil case at three individual Mach numbers, requiring 4n linear solves
per mode and Mach number. This becomes more significant for cases with increasing number of considered
normal modes. Also, the robustness issues of the series method for bigger frequency changes with varying
independent parameter must be mentioned.

VI. Exploiting the Model Hierarchy

Following the preceding discussion, an appropriate sampling technique reduces the involved costs con-
siderably in detecting the stability limit for an unknown configuration. The approach can be taken a step
further. As mentioned before, the flow models of different fidelity, chosen in this study, usually predict
similar features (as described by the Schur interaction term). In this sense, for instance, a response obtained
by a FPv flow model is correlated with a RANS prediction as changes in a system parameter, such as Mach
number, cause similar changes in the outcomes of the different flow models as illustrated in Fig. 6. Of
course, the fundamental assumptions of both the FP formulation and the integral boundary layer formu-
lation would hamper an accurate prediction compared to RANS. However, this predictive relationship can
still be exploited.

To start with, a blind search using the expensive high fidelity model is avoided. The initial analysis
using a cheaper model delimits the search space for aeroelastic instability and creates a general picture
for a configuration. In addition, a relationship for the critical frequency of the form ωF = ωF (M) can be
given (for the analysis as described in this paper). This allows placing a few carefully selected high fidelity
samples in presumed critical regions as predicted by the cheaper model. Figures 14 and 15 present an
analysis exploiting the aerodynamic modelling hierarchy. The lower fidelity model is established by the FPv
flow model whereas the RANS equations are used for the higher fidelity model. In Fig. 14 the instability
boundary is shown as critical values of flutter speed index and frequency. Correspondingly in Fig. 15, one
element of the interaction matrix is given for two different approaches to the kriging approximation based
on an augmented set of samples details of which are discussed shortly. In addition, in Fig. 14 the predictions
based on three different kriging approaches are included. A set of four RANS samples (i.e. four complete
interaction matrices), selected according to the FPv prediction, is used with the sample distribution given
in Figs. 14(b) and 15. Extracting all FPv samples in Fig. 6 using the linear frequency domain approach is
less expensive than evaluating the few RANS samples using the nonlinear time domain approach. The FPv
simulations were run on a grid with 5k control volumes, while the applied RANS grid has 20k volumes.

First, a kriging model based on these four samples was used and, as the results in Fig. 14 demonstrate,
the small number of samples is inadequate for an accurate prediction. The distribution of samples in the
M −ω parameter space along the instability boundary almost shows one–dimensional dependency on the
Mach number with little change in the direction of frequency. This complicates significantly the creation of
a kriging model with two input dimensions required for the stability analysis as discussed herein. Thus, it
was found to be useful to augment the set of high fidelity samples by the lower fidelity corner points. This
assumes that the initial search space is big enough to support the kriging model in the frequency dimension
but not to adversely affect the approximation close to the instability. Then, a second kriging model, labelled
“Kriging – aug.”, based on the augmented data is formed. The resulting prediction shows a far better
agreement compared to the reference solution based on the kriging model shown in Figs. 6(g) and 6(h).
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Figure 14. Direct kriging and co–kriging techniques applied to aeroelastic stability analysis of NACA 0012
configuration showing critical values of flutter speed index and frequency.
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Figure 15. Direct kriging and co–kriging techniques applied to aeroelastic stability analysis of NACA 0012
configuration, using augmented sample set, showing approximated element imag(Sc
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) of Schur correction

matrix.

Thirdly, the co–kriging approach to the approximation treats the lower fidelity response as a (correlated)
co–variable to the higher fidelity prediction. Then, the input parameter space of the RANS samples (already
augmented by the FPv corner samples) is extended by the FPv response given in Fig 6. This means,
beside the dependence on Mach number and frequency, the approximation of the RANS–based response
surface also depends on the FPv response which provides the trend information. Comparing Fig. 6(h) with
Fig. 15(b) it is found that the response surface of the presented interaction element is reproduced well.
Correspondingly, an accurate prediction of the instability boundary is found in Fig. 14. However, as seen
in the previous paragraph, even a direct kriging model based on the augmented data set gives good results
which corresponds to the earlier observation that the response surface close to the instability (as fairly given
by the RANS samples) is essential for the stability prediction.
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There is another interesting point which, however, is not presented in this paper. For systems with
many relevant structural modes, the kriging approximation model of the cheaper flow representation can
be exploited to perform a detailed sensitivity study of the configuration. This would provide information
about both the dominant matrix elements and the dominant coupling mechanisms in the modes of the
configuration. Consequently, high fidelity evaluations can be focused on these dominant interacting terms,
i.e. elements of the Schur interaction matrix, rather than on the entire matrix.

Instead of estimating the stability limit over a range of Mach numbers, the most critical condition as
found from a cheaper model can be chosen to place one expensive sample. In the vicinity of this critical
location, the stability prediction continues as described using the kriging approximation based on a cheaper
flow model, while the difference between the responses of higher and lower fidelity is used as constant shift
added to the kriging predicted (lower fidelity) response of the interaction term.

VII. Conclusions and Outlook

The approach presented in this paper exploits the formulation of the Schur complement eigenvalue frame-
work and builds an approximation model, using the kriging interpolation technique, for the interaction term
of the Schur complement matrix based on samples of the full order model. A hierarchy of flow models is
presented along with benchmark results. Ways to extract the samples are discussed and related issues such
as shock–induced oscillations in the system response are considered. The approximation model applied to
the structural model of a pitch and plunge aerofoil is analysed. Also, ideas to reduce the costs in constructing
the approximation model are discussed. Here, a posteriori risk–based sampling approaches are tested, and
the aerodynamic modelling hierarchy is exploited for model updating and data fusion.

While the basic Schur formulation, relying on steady flow simulations, is faster than common time–
accurate approaches, the approximation model proves to be computationally more efficient than the basic
formulation, despite the costs spent in the construction of the kriging model itself. Evaluating the Schur
interaction matrix at discrete Mach numbers and frequencies is less expensive than directly using the full
formulation since iterating on the full order system to converge the solution at a parameter combination is
avoided, while iterating on the approximation model is very cheap. Also, competitive results are obtained
with the model reduction. Another convenient aspect of the proposed method is the access to higher fidelity
flow models in the aeroelastic stability analysis, such as Reynolds–averaged Navier–Stokes modelling, which
has not been done before within the Schur framework. The method can be applied over a large range of
Mach numbers avoiding pointwise time–accurate simulations to bracket the instability.

In future studies, the approach is being extended to accommodate more realistic three–dimensional cases.
The dimension of the independent input variables in the kriging prediction can be increased to include
different effects, such as aerostatic effects and possibly even structural parameters. Using the approach of
artificial neural networks for the interpolation, instead of the kriging technique, to build the response surfaces
of the interaction matrix is another interesting possibility.
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