
 

The Harmonic Balance (HB) technique is a method of calculating 
one period of an oscillatory motion from solutions at just a few 
points around the cycle. 

This approach takes eq.1, models the flow variables and 
residuals as a Fourier series, which is truncated to a specified 
number of harmonics NH.  Balancing the harmonic terms gives a 
system of NT = 2NH+1 equations  expressed in matrix form as: 

 

  (6) 

Discretising the cycle into NT sub-intervals at which the CFD 
solutions are calculated, allows solution in the time-domain.  
The system is then formulated with a pseudo-time term to allow 
calculation with a CFD solver: 
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Once a solution has been obtained for Whb ,  Fourier coefficients 
are obtained and the time domain signal is reconstructed. 

 

A key part of any linear solver is the preconditioning employed.  
Preconditioning should make a system easier to solve, thus 
reducing the number of iterations to solution.  This is done by 
multiplying both sides of Ax = b by a preconditioner matrix to 
form: 
 

  (4) 

The preconditioner matrix is based on matrix A, and ideally the 
matrix P-1 = A-1.  However, the matrices encountered in CFD are 
usually very large and sparse requiring a large amount of time 
and computational resource to invert.  An approximation is then 
obtained using an Incomplete Lower-Upper (ILU) 
decomposition. 

 

  (5) 

For a CFD problem, the preconditioner is usually based on the 
first-order spatial discretisation due to the second-order matrix 
proving unstable for some cases.  In this work, a mix of first and 
second-order discretisations is used (eq.5). 

 

The use of Computational Fluid Dynamics (CFD) for 
obtaining dynamic stability data has become a strong 
topic of research.  There are several advantages over 
the standard approach of using a wind tunnel 
including: 
–  monetary savings 
–  quicker assessment of designs 
–  obtaining more detail about the aircraft response  

 

 

 

 

 

 

 

Fig.1 Unsteady flow field solution for civil transport aircraft 

Industry is starting to see the benefit for design, with 
a focus on developing more efficient aircraft with 
better performance characteristics; this method of 
dynamic analysis is a key enabler. 

 

 

 

 

 

 

 

 

 

Fig. 2 DNW Wind tunnel model of aircraft in fig.1 

In order to obtain the dynamic stability data for a 
model, a forced periodic oscillatory motion is applied.  
In CFD, an unsteady time-accurate simulation is 
usually used moving the computational grid at each 
time step. Due to periodicity, frequency domain 
methods can be used instead. 

 

 

 

 

 

 

 

 

Fig.3 Mean pressure coefficient plot for transport aircraft wing 

The focus of this work is to make use of frequency 
domain methods, namely the Linear Frequency 
Domain (LFD) method and the Harmonic Balance (HB) 
method, for the calculation of dynamic stability data 
for use in the simulation of flight. 

Introduction 

 

The validation of aircraft designs for dynamic stability 
is seeing a shift toward using computational methods 
rather than the traditional wind tunnel tests.  This has 
the benefit of faster turn-around, monetary savings 
and more detail about the design, thus allowing a 
designer to test many more configurations for 
optimisation and finding the efficient aircraft of the 
future.  This work presents methods to allow the 
rapid calculation of dynamic stability data to facilitate 
this vision.  Also presented is a novel approach to 
improving the performance of these methods. 
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The Linear Frequency Domain (LFD) solver was originally 
developed for turbo-machinery flows.  It has been implemented 
in the DLR-TAU code, developed by the German Aerospace 
Centre, for use with external aerodynamic problems. 

The semi-discrete flow equations: 

 

  (1) 

 

are written as a linear system by assuming the terms W (flow 
variables), x (grid point locations) and x (grid point velocities) 
can be modelled as a steady mean value plus a small 
perturbation as: 

 

  (2) 

giving the complex linear system: 

 

 

 

 

  (3) 

This linear system of the form Ax = b can then be solved using 
an efficient iterative linear solver. 

 

Results are shown for a 2D pitching aerofoil where a 
strong shock is present in the motion. 

 

 

 

 

 

 

 

 

 

Fig.4 Pitching moment coefficient response 

In this case, the limit has been reached for the LFD 
and HB with 1 harmonic due to the complex flow 
conditions present. Higher numbers of harmonics  
capture the detail very well. 

Speed up 

Table 1 Speed up with respect to time-accurate solver 

 

 

 

A significant improvement in solution time compared 
to a time-accurate solver is seen.  However, there is a 
trade-off between accuracy and speed. 

Preconditioner speed up 

When only the linear solver part of LFD is considered, 
the preconditioned LFD is around a factor of 10 
quicker than the current solution method.  The new 
approach to preconditioning is also a factor of 5 
quicker than the usual use of a preconditioner based 
on the first-order spatial discretisation. 

Dynamic Derivatives 

Table 2 Value of pitching moment aerodynamic damping 

 

 

 

As with the response reconstruction in fig.4, table 2 
shows the values of the dynamic terms also improve with 
an increased number of retained harmonics. 

 

It is shown that frequency domain methods offer a 
viable alternative to using time-accurate CFD 
methods for obtaining dynamic stability data of 
aircraft models, whilst offering large savings in time to 
improve the throughput in the optimisation process. 

It is also shown that the new approach to 
preconditioning of linear systems has the potential to 
further improve the current methods. 

Further work to be carried out includes making use of 
these  solvers for the generation of data in tabular 
derivative models for flight simulation and the 
possibility of extending the use for aeroelastic 
problems. 

Abstract Linear Frequency Domain Results 

Conclusions 
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Method HB-1 HB-3 LFD 
Implicit-

LFD 

Speed up 16.26 10.37 27.99 124.2 

Method 
Time-

accurate 
HB-1 HB-3 LFD 

-2.59 -3.57 -2.52 -1.88 𝐂𝐌𝛂 
+ 𝐂𝐌𝐪

 

Preconditioning 

Harmonic Balance 

𝐏∝ =∝ 𝐏2nd + (1−∝)𝐏1st  


