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Abstract

Flight dynamics analysis using computational models is a key stage in the design of

aircraft. The models used in industry consist of two main parts. The first is a tabular

aerodynamic model which is essentially a large database of aerodynamic data. The tab-

ular aerodynamic model is a highly dimensional database containing aerodynamic loads

and moments for different parameter combinations. In order to reduce the size of the

tables, a number of assumptions are made. These include having sufficient resolution of

the parameter space to capture the variation in the flow dynamics; decoupling certain

parameters to reduce the dimensionality; using a single dynamic derivative, assuming

independence from the flow conditions; and finally neglecting flow history effects which

are dominant during manoeuvres with highly unsteady flow phenomena.

Secondly is the use of dynamic derivatives to simulate unsteady motion effects.

These are calculated using small–amplitude forced oscillatory motions. In order to ac-

celerate their computation, frequency domain methods are used. The Linear Frequency

Domain and Harmonic Balance are two such methods used in this work. As part of

the frequency domain calculations, linear solvers are used to provide solution to the

frequency domain problem. These solvers use preconditioners to accelerate the time

to solution. An alternative method of preconditioning is proposed in this work based

on the first and second order spatial discretisation Jacobian matrices. It is shown that

there is significant speed up achieved by varying the proportions of the first and second

order terms in the preconditioner matrix.

In order to assess the performance of the tabular models, an initial assessment is

carried out using a hierarchy of manoeuvres of increasing complexity. For each test case,

the replay from the tabular model is compared with the fully unsteady time–accurate

CFD solution. This is in line with a framework proposed in the literature. It is shown

that the tabular model performs well through the linear aerodynamic regime, although

breaks down where history effects become significant. The assessment continues with

a study of each of the assumptions used to formulate the tables. Again a hierarchy

of test cases of increasing complexity is used. Also used are both forced and free–

response manoeuvres. It is shown that the resolution and coupling assumptions have

little impact on the performance of the tabular model. The use of a single dynamic

derivative is not shown to have an impact either, although it is suggested that for
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more complicated manoeuvres, this could be important. Finally, the most significant

error is introduced through neglecting history effects. It is shown that for manoeuvres

where history effects dominate, such as those at the extremes of the flight envelope,

the tabular model is not sufficient to effectively model the aerodynamics during these

manoeuvres.
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ẋ Grid point velocities

Greek Symbols

α, β Angle of attack, Sideslip (◦)

α0 Mean incidence

∆α Amplitude of oscillation

δele, δail, δrud Control surface deflections (elevator, aileron, rudder) (◦)

ǫ Amplitude factor for finite difference step

ω Reduced circular frequency

Subscripts

α Weight applied to second order Jacobain terms

f First order spatial accuracy

s Second order spatial accuracy

Acronyms

BCSR Block Compressed Sparse Row

CGS Conjugate Gradients

CSR Compressed Sparse Row

GCR Generalised Conjugate Residual

GMRes Generalised Minimal Residual

HB Harmonic Balance

ILU Incomplete Lower Upper

xx



LFD Linear Frequency Domain

LU Lower Upper

LU-SGS Lower Upper Symmetric Gauss Seidel

NLFD Non-Linear Frequency Domain

PETSc Portable Extensible Toolkit for Scientific Computation

RANS Reynolds Averaged Navier-Stokes

RCM Reverse Cuthill-McKee

SDM Standard Dynamics Model

TFQMR Transpose-Free Quasi-Minimal Residual

xxi



xxii



Chapter 1

Introduction

1.1 Computational Aerodynamic Models

Industrial practice is seeing ever increasing use of computer simulations for flight dy-

namics analysis. The aerodynamic models used in the simulation must be fit for purpose

to ensure reliable results. The tabular aerodynamic model is one such computational

model that is used frequently as part of aircraft loads assessment during the design

phase, as well as in onboard control systems. Despite the frequent and long term use

of this model, it has not been fundamentally assessed for civil domain problems.

Computational models used for flight simulation consist of a number of components.

These typically include an aerodynamic database, a method to account for unsteady

effects and a method to include the flight mechanics, in order to model the aircraft

response for given loads and moments. The aerodynamic database contains the force

and moment coefficients for a given parameter set covering the flight envelope, which

are obtained by empirical or computational methods. For manoeuvres where the rates

become significant, or where the aerodynamics begin to deviate from the linear regime,

unsteady modelling is required. A number of approaches have been proposed for this

which will be discussed shortly. The final part is that of the flight mechanics modelling.

The equations of motion are set up for the given configuration and describe the response

of the loads and moments present at each point within the manoeuvre. The manoeuvre

is then simulated by stepping through time and moving the aircraft to its new position

until a complete trajectory can be traced.

The aerodynamic database is stored as large tables and forms the tabular aerody-

namic model. These tables can be in the order of millions in terms of required data

points. It therefore becomes necessary to have calculation methods which minimise the

time to form the database. One such study is that from Ghoreyshi et al. [3]. In this

paper, a method is presented to accelerate the generation of the aerodynamic model

through the use of a Kriging-based sampling technique. Two scenarios were considered

to test the method. The first was to make use of Kriging interpolation, more specif-
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ically calculating a confidence interval for the predictor, in order to determine where

samples should be taken. This approach enables nonlinearities to be better captured in

the parameter space by locating high-fidelity simulations in these regions. The second

scenario was that of a changing geometry. A data fusion approach was used, whereby

the original geometry aerodynamic model was augmented by a few high-fidelity sam-

ples for the new configuration. The new aerodynamic model was then used for the

new configuration. This approach has the benefit of only requiring a few expensive

simulations to obtain an updated model. It was shown that, for the case presented, the

required number of samples in the first scenario was reduced from 2000 to 35, and for

the second scenario, down to just 10 samples.

Work by Da Ronch et al. [4] used the method described above for further test cases.

The focus of this work was on the applicability of the models for flight dynamics simu-

lation. Again, a number of aerodynamic models were used with a hierarchy of fidelities

as the source of data including high-fidelity CFD. The method was assessed using five

different test cases across a range of regimes. All the models were full aircraft of conven-

tional and unconventional configurations. The performance of the aerodynamic model

was compared with wind tunnel and flight test data and it was shown that the model

was suitable for the cases presented.

A further study by Mackman et al. [5] looked to the use of surrogate models to

reduce the number of samples required to generate an aerodynamic model. In this

work, CFD simulations were used as the source of aerodynamic data. Two interpolation

approaches were used to create the surrogate models. The first was the same Kriging

method used in the previously described studies. The second made use of radial basis

functions (RBF). The sample locations were then chosen based on the mean squared

error of the interpolant. The two approaches were tested on the DLR-F12 aircraft and

an RAE 2822 aerofoil. It was shown that both methods required fewer points to form

the aerodynamic model than space-filling techniques.

Although efforts have been made to reduce the computational effort to generate the

tables, there has been limited work into what the limits of the tabular model are. A

framework to establish the limits was proposed in [6]. In a number of previous studies,

tabular models have been validated against flight test data, however, this work proposed

the use of CFD simulations as the baseline comparator. The idea is to run a manoeuvre

using both the tabular model and the CFD time-accurate solver, any discrepancies

between the two solutions are considered as limitations of the tables. This methodology

was tested using the AGARD standard dynamics model fighter configuration for a

number of manoeuvres. The tabular model performed well for slow motions, but began

to break down for faster motions at high angles of attack. The discrepancies were

ascribed to vortical flow hysteresis. It was also shown in this work that the addition

of the dynamic stability derivatives to modify the static tabulated data, improved the

accuracy of the tabular replay solution.
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This framework was then used by Vallespin et al. in [7]. The assessment was

extended to additional test cases, and for a wider range of manoeuvres, with the main

focus on the use of an unmanned combat air vehicle (UCAV). This case was designed to

cover a large flight envelope, which at high angles of attack, included complex vortical

flow adding to the difficulty in modelling the unsteadiness. Again it was seen that there

was good agreement across most of the manoeuvres, although when very high rates

were present, the tabular model began to breakdown. The fundamental assumptions

in the tabular model are mentioned as possible sources of error, although they are not

individually assessed.

There are a number of examples where the tabular model is no longer adequate

but little work has been carried out to assess the fundamental assumptions in the

formulation of this model, namely resolution of tables, decoupling parameters, quasi-

steady modelling and dynamics modelling. Initial work to assess the assumptions was

presented in [8], where an aerofoil case was taken with no control surface to better

understand the performance of the tables through a number of regimes as shown in

Fig. 1.1.

Figure 1.1: Flow conditions of interest

Manoeuvres in the linear portion of the figure, which was up to around Mach 0.5

and incidence = 10.0◦ for the case used, were well modelled. However, in the shock and

stall region, which was the dynamic stall case in the paper, large discrepancies began

to show displaying the inadequacy of modelling the time history. The tables used were

two–dimensional across a small parameter space, and as a result meant it was not

possible to properly assess the other assumptions. Also assessed was the dependence of

the value of the dynamic stability derivatives on the Mach number, incidence, amplitude

of oscillation and reduced frequency. It was shown that through the linear regime, the

dynamic derivatives remained fairly constant in value, although again when there was

large unsteadiness, the values began to vary.

A number of unsteady aerodynamic models for flight dynamics applications have

been proposed. A review of several methods was carried out in [9] with a companion

paper [10] providing practical examples of the methods using a delta wing at high angles

of attack. The models reviewed consisted of a hierarchy of complexities. The most

3



simple was that of the dynamic stability derivative model. This was shown in previous

work by the author to be inadequate for combat aircraft manoeuvre simulation. It is

however used as the base method to which others are compared. The next approach is

that of a Volterra series [11]. This approach is similar to the dynamic derivative method

in that it expands the coefficients as a series. However, in the Volterra series, there is a

method to account for time history effects in the Volterra kernel. This kernel describes

how the output varies with changes in the inputs through time and must be computed

using training data. The source of this data can be empirical or computational such as

from CFD. A further set of methods come under Indicial approaches [12, 13]. Indicial

approaches can be either linear or nonlinear in nature. The linear methods consider the

response of an aerodynamic load to be linearly varying with the forcing function. For

example, the lift coefficient has a constant variation with the change in incidence. This

is limited in its approach due to the variation changing as the aerodynamics become

more complex, such as at high angles of attack. This can be worked around by using the

nonlinear indicial methods. The difference from the linear method is that the variation

of the output with the input is computed for a number of input values. This provides a

history of responses. It was shown that the traditional stability derivative approach was

not sufficient to capture the unsteady flow phenomena and that the indicial methods

were much more suitable.

A further analysis of unsteady modelling approaches with a focus on flight dynamics

was carried out in [14], which covered some of those previously mentioned, although

extended the work to include the Surrogate-Based Recurrence Framework (SBRF) [15].

The SBRF method requires forming a surrogate model to describe how the outputs,

aerodynamic loads and moment, relate to the inputs. The surrogate is formed using

a number of CFD solves as training data, with a specific number of historical solu-

tions used to describe the variations. Increasing the number of historical data points,

improves the approximation power of the model. Once the surrogate is formed, the

inputs can be prescribed, and the outputs determined easily. The test case was a pitch-

ing NACA 0012 aerofoil in the transonic regime. The performance of each method

was compared to a time–accurate CFD solution. It was shown that the SBRF model

was best able to model the flow phenomena, and at a similar cost to the conventional

stability derivative approach.

Although each of the above have their benefits, the most widely used in practice

remains the stability derivative model originally proposed by Bryan [16]. This model is

based upon the assumption that the load and moment coefficients can be broken down

into a steady state component and an unsteady component (i.e. changes in the values

are relative to the rate of the motion). The application of this method is discussed

later.

A number of other papers have explored the variation of the dynamic derivative

with the flight parameters at which it is calculated. Work by Bratt and Wight [17] in
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the 1940s used oscillatory wind tunnel tests with various aerofoil cross sections to view

the effect of the flight conditions on the dynamic derivatives. It was shown that there

can be significant variation with the oscillatory frequency, oscillatory amplitude, mean

incidence, location of the axis of oscillation, Reynolds number and the aerofoil profile.

It was particularly noted that the pitch damping derivative can vary between negative

and positive values with changes in the mean incidence. This is of importance around

the stall, where the difference between a damped (negative derivative) and under–

damped (positive derivative) system can be significant. Further work was carried out

by Greenwell in [18]. In this work, there was a focus on the effect of the oscillatory

frequency on the values of the static and dynamic stability derivatives. Again this was

done using wind tunnel tests. A delta wing test case was used, where it was shown

that the frequency of oscillation can have a significant effect on the dynamic derivative

values, particularly at high angles of attack. When a manoeuvre simulation is carried

out, a single value for the dynamic derivative is usually taken, which is assumed to be

independent of the flight parameters. This is however not the case.

1.2 Frequency Domain Methods

Running full-order time-accurate unsteady CFD calculations to obtain all the dynamic

derivative values required for a complete aircraft flight envelope assessment, can be

very computationally expensive. The periodicity in the simulations used to compute

the derivative values allow the use of frequency domain methods to accelerate the

computation time. These were initially developed for turbomachinery flows [19, 20].

The methods have been adapted for use in many areas of aerospace including the

prediction of unsteady air loads [21], flutter analyses [22] and on the application of

predicting dynamic derivatives for flight dynamics [23]. These methods make use of

the periodic nature of certain simulations, to allow a frequency domain representation

of the solution. This has the benefit of being able to compute the periodic state

directly, without the need to resolve an initial transient. Two methods are used in

this work. The first is the Linear Frequency Domain (LFD) method. LFD assumes

periodic, small amplitude variations about a steady state, which allows linearisation

of the time-accurate flow equations and subsequent solution in the frequency domain.

This is described further in Section 2.4.1. The second is the Harmonic Balance (HB)

approach which models the flow equations as a Fourier series, and truncates this to a

specified number of harmonics. This is described in Section 2.4.2.

The implicit solvers used to solve the frequency domain problems in this work, make

use of linear solution methods. A Krylov subspace method is used with a preconditioner

to accelerate the convergence of the system. The preconditioner is widely accepted as

the most significant part in the acceleration of linear solvers. Available methods can be

unstable for certain problems, particularly when indefinite matrices occur. Stabilisation
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of the incomplete factorisation preconditioner has received attention with many papers

being published, although the outcomes are usually only focused on stabilising for a

particular type of matrix. In this thesis, a method of stabilisation is explored for general

cases arising from CFD problems.

The Linear Frequency Domain method was originally developed for use in turbo-

machinery flows by Hall and Crawley [24] as a small disturbance Euler method. This

paper set out to address the limitations of linearisation of the unsteady problem, namely

the assumptions of isentropy and irrotationality of the flow, to allow shock waves to

be accurately predicted. The method was demonstrated using a hyperbolic channel,

and a cascade. The results from the cascade are of most interest here, featuring a

pitching aerofoil section. The method was compared against incompressible analytical

solutions. The method showed very good agreement in the pressure plots with just a

little over-estimation in the real and imaginary components of pressure.

The linearized Euler equations have been used for CFD solution. A small distur-

bance Euler equations solver which was developed by Kreiselmaier and Laschka in [25],

and which was then developed for use with the Navier-Stokes equations by Pechloff

and Laschka in [21]. The underlying flow solver was Technische Universität München’s

FLM Navier-Stokes solver. The method was demonstrated on sinusoidally pitching

NACA 64A010 and NLR 7301 aerofoils at AGARD CT8 and CT5 [26] viscous condi-

tions respectively. The results from the FLM.SD.NS method were compared against

the FLM.NS and FLOWer codes showing good agreement even for the stronger shock

dynamics in the CT5 case.

The LFD formulation is derived from the same principles as the small disturbance

Navier-Stokes method however, the perturbations are transformed into the frequency

domain to allow subsequent solution of a linear system in the form Ax = b. This has

been implemented within the DLR TAU-code. It was first presented by Widhalm et

al. [22] being demonstrated on both 2D and 3D cases including the full DLR-F12 aircraft

model. The method is run on an inviscid subsonic heaving NACA 0012 case, a viscous

transonic pitching NACA 64A010 case, the viscous transonic pitching LANN wing and

a viscous transonic DLR-F12 full aircraft case. The paper shows very good perfor-

mance of the LFD method in terms of predicting the pressure distributions against the

RANS calculations for all cases. There are only small discrepancies at large gradients,

particularly at the peaks for the LANN wing. A limitation of this method is in the

formulation of the right-hand side of the linear system using finite differences which

introduces problems when choosing a general finite difference step size. This method

is the basis for the work presented in this thesis.

In [23], Da Ronch et al. carried out a study of the LFD (and Harmonic Balance)

methods for their ability to predict the values of dynamic derivatives in place of un-

steady time-accurate calculations. Both 2D and 3D test cases are used, from aerofoils

up to the DLR-F12 model. The paper found that an order of magnitude improve-
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ment in CPU time is achieved using the LFD method, whilst retaining the main flow

features to provide a good estimate of the dynamic derivatives. This paper offers a

comprehensive study of the methods for several test cases.

The Harmonic Balance was originally proposed for modelling unsteady nonlinear

flows by Hall et al [27]. The purpose of this paper was to solve the Navier-Stokes

and Euler equations in Harmonic Balance form to then be able to solve these as a

steady state problem when applied to turbomachinery cascade flows. The method

involves expanding the flow unknowns in a Fourier series and then retaining a limited

number of harmonics. The method is validated on a front stage compressor rotor in

viscous transonic conditions with an inflow Mach number of 1.27 and Reynold’s number

of 1.35x106. The rotor blades undergo a harmonic pitching motion with a reduced

frequency of 1.0 and pitch amplitudes of 0.01◦ and 1.0◦. For the smaller amplitude

case, it is shown that even using one harmonic is sufficient to represent the flow due

to nonlinear effects being very small for this case. The larger amplitude pitch however

requires at least three harmonics to represent the flow to within engineering accuracy.

The method was found to be between one and two orders of magnitude quicker in terms

of CPU time than the equivalent unsteady time-accurate computation.

In [28], an implicit version of the Harmonic Balance technique was described for use

in flight dynamics analysis. The purpose of implementing the implicit solver was to

speed up the solution time by removing the reliance on explicit convergence acceleration

methods such as Multigrid. The new solver is tested using a pitching NACA 0012

aerofoil under AGARD CT1 conditions and a pitching F-5 wing with a wing tip launcher

and missile at Mach 0.896, α=0.004◦, ∆α=0.117◦ and k = 0.275. It was shown that for

both cases, one harmonic was sufficient to obtain accurate solutions at certain points

in the pressure plots and moment loops, but that accurate reconstruction through the

whole cycle required higher numbers of harmonics. The Harmonic Balance technique

was shown to be an order of magnitude quicker in terms of CPU time than the equivalent

unsteady time-accurate calculation. The paper sets out to use the method to generate

the dynamic terms for flight simulation and the use for calculating dynamic derivatives

is listed as future work.

In [29], He develops a version of the Harmonic Balance technique which takes the

unsteady perturbations with first order accuracy and retains only the first harmonic.

The purpose of this paper was to develop a nonlinear harmonic methodology to calculate

unsteady viscous flows applied to turbomachinery. The method was validated using

three different test cases. The first was a flat plate with both laminar and turbulent

boundary layers. The second was a transonic diffuser with oscillating back pressure

and the final case was an oscillating transonic compressor cascade. For all cases, the

new method showed very good agreement with the experimental results and a greatly

improved accuracy compared to the fully linear methods, which this was designed to

replace. A speed up of around 5 was demonstrated compared to the equivalent unsteady
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time-accurate calculation.

The Non-Linear Frequency Domain (NLFD) method was first proposed by Mc-

Mullen in [30] and [31]. The NLFD method is very similar to that of LFD but does

not linearise the problem. Instead, a number of harmonics of the flow are retained

thus being able to resolve a greater number of the non-linear flow features at higher

frequencies. The motivation for this research was to improve the solver technologies for

calculating the direct periodic state of a flow. The NLFD formulation is very similar

to that of the Harmonic Balance technique. The method was validated for two cases;

first a cylinder undergoing vortex shedding then a pitching NACA 64A010 aerofoil at

AGARD CT6 conditions [26]. It was shown that for the vortex shedding case, the

NLFD method compares well with experimental results when three or more harmonics

are retained. The same is shown for the aerofoil case. It was stated that the NLFD

method is an order of magnitude more efficient than dual-time stepping methods.

1.3 Preconditioning of Linear Systems

As part of the implicit methods used in solving the LFD and HB problems, linear

solvers are employed with preconditioners. For iterative linear solvers, the rate of

convergence is strongly influenced by the preconditioning strategy employed [32]. There

are many methods of preconditioning of which Incomplete Lower–Upper (ILU) is widely

considered one of the most effective for Krylov type solvers. A review of preconditioning

techniques until 2002 was carried out by Benzi [33]. This review will cover parts of the

pre-2002 literature directly related to this work, and the published research since. A

comprehensive review of ILU preconditioning methods is described in Saad [34].

Nejat [35] assesses the effect of fill-in for an ILU preconditioner when applied to

2nd, 3rd and 4th order accurate spatial discretisations. The preconditioning efficiency

and memory requirement are compared to that of using a direct LU preconditioner. A

NACA 0012 aerofoil and a 15% thick diamond aerofoil were chosen as test cases at high

Mach numbers, in order to generate systems that were difficult to solve. To obtain a

good initial guess, some implicit iterations were run before the linear solve took place

to enhance the stability of the solver, particularly for the higher-order schemes. A

preconditioner based on the first-order discretisation was used for all cases due to the

memory requirement of storing the higher-order matrices. A GMRes Krylov solver was

used. The baseline solution used LU preconditioning, against which the efficiency of the

ILU method was compared. It was found that ILU with four levels of fill-in provided

a rate of convergence very similar to that of the exact LU decomposition, but with

significantly reduced memory requirements. Two levels of fill-in were recommended for

most cases as the most efficient.

Dwight [36] carried out a similar assessment as above with a GMRes-ILU solver,

but using an RAE 2822 aerofoil in the viscous transonic regime. The DLR TAU code
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was used for this. The same conclusion was reached, with ILU(4) being most effective,

but memory intensive. A comparison with the LU-SGS implicit solver was also made,

showing the linear solver to be superior, converging twice as many orders of magnitude

in the L2 norm of the density residual in the same CPU time of 20,000 secs.

Duff and Meurant [37] carried out a study of a number of reordering techniques

for bandwidth optimisation and reduced fill-in. More importantly, they introduced the

use of the Frobenius norm of the residual matrix R = A − LU , to help determine

the convergence of the system through the accuracy of the incomplete factorisation.

This has been used in a number of subsequent papers. Various orderings were used on

four different model problems arising from Laplace’s equation with different boundary

conditions. Results showed that the number of iterations for convergence is directly

related to the norm of the residual matrix.

A key paper was written by Chow [38] in which the author tried to establish condi-

tions for the failure of ILU preconditioners. Test matrices were chosen to be of varying

difficulty to solve due to a mix of zero pivots and unstable triangular solves, along with

matrices of various sizes and sparsity patterns. Three parameters were established to

analyse the effectiveness of the ILU factorisation. The first was the condition number

of (LU)−1, which gives insight into the stability of the triangular solve. The second was

the value of 1/pivot, which finds small or zero pivots. Finally, the size of the largest

element in the L and U factors gives information on inaccuracies due to the dropping

strategy used. It was decided that the condition estimate was the most useful of the

three statistics, although this can be very expensive to compute for large matrices. A

framework was developed to give reasons for the preconditioner break-down based on

the condition estimate, and the value of 1/pivot. An analysis was then carried out us-

ing this framework for a number of different ILU preconditioners, giving the reason for

failure. This paper concluded that there is no generalisable ILU factorisation, but that

there are several methods that can be tried to converge a system. Even though reasons

were given for each failed case, there is no explanation as to why the factorisations

become unstable.

ILU preconditioners have proven to be useful across a wide range of problems.

However, when certain types of matrix, such as indefinite matrices are encountered,

the stability of the preconditioner can become poor and even make the condition num-

ber of the input matrix worse. This leads to the search for methods to stabilise the

preconditioner. Stabilisation methods typically involve some form of permutation of

the diagonal terms.

In [39], a number of stabilisation methods were looked at. The method chosen

was dependent on the properties of the matrix, as per the framework in [40]. The

purpose was to improve the diagonal dominance of the matrices arising from convection

dominated problems. The main idea for the stabilisation involved looking at the values

within the finite difference stencils. Ratios were calculated between stencil points,
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and depending on the value, a quantity would be subtracted from the diagonal term.

This method proved very beneficial for the case used, and performed better than the

standard ILU preconditioner, although it was not as robust.

Chapman [41] looked at scaling of matrix terms to improve the diagonal dominance.

CFD problems were the focus. A number of approaches were studied. One method

took the terms close to the diagonal as a way to reduce bandwidth and improve diag-

onal dominance. Another method involved scaling of the diagonal blocks by adding a

multiple of the identity matrix. Matrices were looked at from the Harwell-Boeing and

FIDAP libraries as well as others from CFD simulations. The stabilisation proved ef-

fective for the more difficult CFD matrices, although across the majority of cases, there

was little difference in the performance compared with standard ILU, when equivalent

levels of fill-in were used.

An approach to stabilisation taken by Duff et al. [42], which has been further anal-

ysed in [43] and [44], looked to improve the diagonal dominance of the matrices, but this

time with both reordering of the values and scaling. Both direct and iterative methods,

along with preconditioning are all described as potential beneficiaries. The method

involves making sweeps across all the matrix terms within each row, and searching for

the largest terms. These are then permuted to the diagonal, with an entry added to

the permutation matrix for later use in the solver. It was shown in [42, 43, 44] that the

stabilisation is effective, being able to converge systems which would not converge with

standard ILU, and in some cases improved the convergence by more than one order of

magnitude.

Finally, a paper by Pueyo and Zingg [45], and used by Wong and Zingg [46], looked

to the use of Newton-Krylov solvers for the calculation of aerodynamic flows. The

preconditioning is done with the use of a level of fill based ILU method, which is

reordered using Reverse Cuthill-McKee. An ILU(0) preconditioner based on a second

order Jacobian matrix, and an approximate Jacobian Matrix were tested. The latter

was shown to have better convergence properties. The approximation used was to take

the first order discretisation, and then add the numerical dissipation terms, where the

dissipation coefficient is a linear combination of the second order coefficient, and the

inverse fourth order coefficient. A weighting is applied to the fourth order term.

1.4 Summary

Based on the current literature, there is a gap in the knowledge about the adequacy

of the tabular aerodynamic model with dynamic derivatives. The work carried out in

this thesis looks to fill this gap. A systematic study of the fundamental behaviour is

carried out with a focus on civil aircraft problems, with recommendations given as to

when the models are useful, as well as when they are no longer fit for purpose.
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Further to this, two frequency domain methods are studied for use in calculating the

dynamic derivatives in the above model. The solution methods however are not optimal.

As part of this work, the Linear Frequency Domain method is implemented with an

implicit solver in order to accelerate time to solution. This implicit approach is assessed

against the previously available for a number of test cases of various complexities. The

preconditioner in the implicit solver is also studied. A preconditioner is then developed

which improves the performance of the implicit solver further by up to a factor of 5.

This thesis begins with a review of the formulation behind the CFD solvers and

modelling approaches used in this work. It will then continue with an assessment of

Frequency Domain methods and the preconditioning of linear systems. A systematic

assessment of the Tabular Aerodynamic Model is carried out, before finishing with a

review of the Dynamic Derivative model and a method for quantifying the uncertainty

introduced.
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Chapter 2

Formulation

2.1 CFD Solvers

The benefits of using CFD over physical experiments are numerous, including cost

savings in time and money, being able to explore the finer details of flows, and enabling

greater control over simulations. With the applications of CFD growing, the models are

becoming of larger dimension, enabled by the rapid growth in computational power.

For the majority of CFD solvers, a finite volume approach is taken. A unit cube

control volume such as that shown in Fig. 2.1, will have a quantity of fluid flowing

in and out, with varying velocity vectors and energy. The conservation laws of mass,

momentum and energy can be applied to the volume in order to obtain the fluxes at

each face. This leads to partial differential equations that describe the fluid flow.

2.1.1 Governing Flow Equations

In this thesis, both the inviscid Euler equations (where viscosity is equal to zero) and

the Reynolds Averaged Navier-Stokes (RANS) equations are used to model the flow.

Figure 2.1: Unit cube control volume [1]
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The more general Navier-Stokes equations in three dimensions, can be written in vector

form as:
∂w

∂t
+∇ · (fc(w)− fv(w)) = 0 (2.1)

where the functions fj(w) for j ∈ [c, v] are:

fc(w) = Ec + Fc +Gc

fv(w) = Ev + Fv +Gv (2.2)

with the subscripts c and v representing the convective and viscous fluxes respectively,

and
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(2.3)

where the velocity vector U = [u, v, w]T , q is the heat flux vector, τ is the viscous shear

stress, ρ is the density and p is the pressure obtained from the ideal gas equation of

state.

In order to solve turbulent flow problems in a computationally efficient manner, time

averaging of the turbulent terms is carried out through Reynolds Averaging. Reynolds

averaging decomposes the instantaneous flow variables into a mean and a varying com-

ponent. Time averaging is then applied to each of these components. The time averaged

mean and varying components are then substituted back into the Navier–Stokes equa-

tions, but are now the Reynolds Averaged Navier–Stokes equations. The turbulence

model used in this thesis is that of Spalart and Allmaras [47].

2.1.2 Unsteady Solution

CFD solvers are particularly useful for the solution of unsteady problems. In order

to model the unsteadiness, a method to capture the flow history is required. In the

solvers used in this work, this is done using the dual–time stepping approach described

in [48]. The dual–time method defines an outer time step, the real time steps within a

manoeuvre, and an inner time step in pseudo time. The dual–time method also requires
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additional terms in the residual to capture the flow history. The semi–implicit form of

the governing flow equations is written for the outer iterations, solved in real time, as:

∂w

∂t
= −Rn+1, (2.4)

where n is the current time step. The residual is then modified to include the flow

variables at the previous two time steps for a second order accurate solution. The

unsteady residual R∗ is written as:

R∗ = Rn+1 +
3wn+1 − 4wn +wn−1

2∆t
(2.5)

This residual term is then used at the inner iterations to solve the following equation,

as a steady–state problem, R∗ = 0, in pseudo time.

∂w

∂τ
= −R∗,m+1, (2.6)

where m is the pseudo time step and τ the pseudo time. During a time–accurate

unsteady simulation, equation (2.6) is converged to a desired level, with the solution

being equal to that at the real time step. In addition to capturing the history effects

in an unsteady simulation, it is also necessary to capture the motion effects. This is

done by applying velocities to the points in the computational domain. For example,

a moving boundary will cause fluid points close to the boundary to move. This is

simulated by applying a velocity to the points in the normal direction to the velocity

vector at the surface.

A modification that can be made to the fully unsteady approach above, is to remove

the dual–time terms so that only the point velocities are retained. This leads to solution

of equation (2.6), but with the following residual.

R∗ = Rn+1 (2.7)

This quasi–steady model will be of particular use for comparisons later in this thesis.

2.1.3 DLR TAU-code

The TAU-code [49, 36, 50], developed by DLR (German Aerospace Centre), is an

unstructured finite volume compressible RANS code, which is widely used in industry

across Europe, in particular by Airbus.

The TAU-code is a software package with stand-alone modules for grid partitioning,

a preprocessor, solver, grid adaptation and grid deformation. The code is capable of

calculating from low subsonic through to hypersonic flows.

The module of interest in this work is the solver. TAU uses an edge-based dual-cell

approach with the inviscid fluxes being calculated to second-order accuracy through a
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central scheme, or a variety of first-order upwind schemes with linear reconstruction to

regain second-order accuracy. The dual-grid approach used in TAU takes the primary

grid, defined by the mesh, and forms a secondary grid on top of this to provide the

faces between the primary grid vertices at which to calculate the fluxes. The dual-cell

faces are formed by taking the centroids of the primary grid cells and then connecting

these, whilst passing through the mid-point of the perpendicular primary grid face as

shown in Fig. 2.2, where the primary grid has the solid lines and the dual-cells have

the dashed lines.

Figure 2.2: Regular grid and associated dual-cells

The solver uses either an explicit Runge-Kutta scheme or a semi–implicit LU-SGS

(Lower-Upper Symmetric Gauss-Seidel) method. The results presented in this thesis

use the implicit solver with a central finite difference for the discretisation of the flow

equations. Each of the methods uses a dual-time stepping [48] approach and a multi-

grid [51] convergence acceleration algorithm. Multigrid accelerates the convergence to

solution using varying levels of grid coarseness. The accelerated convergence occurs

from the use of the fine grids to resolve the high frequency modes, and the coarser

grids to resolve the lower frequency modes. The grid levels are formed by merging the

dual-grid cells. During the solution process, the residuals from the fine grid solution

are interpolated onto the coarser mesh, where only the lower frequency modes can be

resolved on the coarser grid spacing. A refinement of the solution is then done when

the coarse grid residuals are passed back up to the finer grids. This cycle is carried out

at each iteration, with the number of levels, and number of passes made between the

levels specified by the user.

2.1.4 Parallel Meshless (PML)

The Parallel Meshless (PML) solver [52] has been developed at the University of Liver-

pool with particular focus on moving body simulations. The meshless approach offers

an alternative to Chimera methods. The computational domains are point distributions

rather than grids used in finite volume solvers. PML uses an implicit scheme developed

for solving the Euler equations, as well as the laminar Navier Stokes and RANS equa-

tions. Spatial derivatives are approximated using a least squares method on clouds of
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Figure 2.3: Point cloud with ellipse

points. Unlike the finite volume methods which calculate the fluxes at the faces of the

control volume, PML calculates the fluxes halfway between the star point of a stencil

and all other points in the stencil. The system of equations is linearised, and solved

implicitly using approximate, analytical Jacobian matrices where the inviscid flux is

obtained from an approximate Riemann solver, and turbulent terms modelled using

a one-equation Spalart-Allmaras model. A preconditioned Krylov subspace iterative

method is used as the linear solver.

The meshless approach removes the need to generate meshes for complex geometries,

and instead only requires simple point distributions of component parts of a model,

which PML assembles using the point data to create a large cloud to be used by the

solver. The preprocessor to allow this requires a novel stencil selection algorithm which

is described in [53]. The stencil selection process makes use of the connectivity in the

underlying component meshes to guide the orientation of the ellipses used to select the

stencils. For each star point, an ellipse is formed with the semi-major axis as close to

perpendicular to the flow direction as possible. The ellipse is divided into quadrants,

and a minimum number of points is required in each quadrant to form a stencil. An

example is shown in Fig. 2.3, taken from [53].

Increasing the required number of points should increase the stability of the solver,

through greater resolution in each stencil. This is however not always possible.

Several cases have been studied including a cylinder undergoing vortex shedding,

turbulent aerofoil problems, a three-dimensional fighter aircraft configuration and store

release problems with bodies in relative motion. The capability of this solver is par-

ticularly useful for modelling control surfaces. This will be demonstrated later in this

thesis.

2.2 Control Surface Modelling

The modelling of control surfaces can be a problem for CFD solvers. A number of differ-

ent approaches exist in the literature. Two different methods have been implemented

within PML and have been used in this work. The first is a standard deformation

technique. The first step in using this technique is to describe an underlying geometry
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Figure 2.4: NACA 0012 aerofoil point distribution with underlying structural model

that represents the structural elements of a model. In this work, this is a simple beam

stick model as shown in Fig. 2.4.

Deformations are prescribed for the structure, which in turn is used to deform the

fluid domain. In order to communicate the deformation from the structure to the

fluid domain, a mapping is carried out. This mapping describes how much the fluid

domain points should be moved for a deformation in the underlying structural grid. At

each step within a manoeuvre, the relevant deformation can rapidly be established and

applied to the fluid domain points. At the point where the deformed section meets that

of the undeformed, the surface is smoothed in a blending procedure. It is also possible,

for three-dimensional cases, to insert a cut in the geometry, as would be the case in a

physical test. A number of these methods were assessed in [54].

In this work, the deformation technique has been used for the RANS control surface

simulations. For the mapping from structure to surface, an interpolation matrix, H is

formed, which is used to transfer the displacements between the structural and fluid

grids using Eq. (2.8).

(δyf )i =

js
∑

j=1

hij(δys)j , (2.8)

where (δyf )i is the displacement of the fluid mesh at node i, (δys)j is the dis-

placement of the structure at node j, and hij are the coefficients of the displacement

interpolation matrix H. The coefficients are obtained through the use of the Constant

Volume Tetrahedron (CVT) mapping technique. This is described in detail in [55].

The method first overlaps the fluid and structural point distributions. From this over-

lap, tetrahedra are formed where the peak of each tetrahedron is a point in the fluid

domain, and the base vertices are points in the structural domain. The fluid point is

then projected onto the plane formed from the structural vertices. Shape functions are
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calculated, so that when the structural points are deformed, the fluid point deforms in

a manner that maintains the volume of the tetrahedral element. This method is used

due to its simplicity and speed of calculation.

The boundary points are moved in line with the interpolation matrix and is de-

scribed further in [56]. Once the boundary deformations have been determined, the

points in the rest of the computational domain are deformed using an inverse distance

approach, as described in [57].

The second approach is to make use of the capabilities of the meshless PML solver.

Point distributions are defined for the body and control surface, which are then over-

lapped according to the desired deflection. The preprocessor then redefines the bound-

aries, removes any points inside the boundary, then reselects the stencils for computa-

tion. This has been used for all Euler simulations with a control surface in this work.

This approach has the benefit of modelling the control surface in a more realistic man-

ner than that of the deformation. There is no smoothing of the edges, as there wouldn’t

be on a real aircraft, and the flap is treated as a separate entity to the body.

2.3 Tabular Models

Tabular models are used to determine the flight mechanics loads (the loads subse-

quently referred to in this thesis) and moments on manoeuvring aircraft. They are

frequently used in the design phase for flight mechanics loads assessment and control

systems design. For commercial aircraft the flight envelope can be highly dimensional,

with many data points required within the range for each parameter. This can require

data points in the order of millions. The data stored in the aerodynamic tables must

cover the parameter space in order to effectively simulate manoeuvres. In forming the

tables, a number of assumptions are made which give rise to certain limitations. One

initial assumption that is made in forming the tables, is that the resolution (i.e. how

many data points are in the parameter space) is sufficient to represent the aerody-

namic variations of interest. With the tables requiring data to be obtain at millions of

points, if CFD is used as the source of the aerodynamic data, it is clearly not feasible

to have a solution for each parameter combination. To reduce the number of points

required, the parameters can be decoupled. For example, the six dimensional table

in Table 2.1, [M,α,β,δele,δail,δrud] can be reduced to four three dimensional tables of

[M,α,β], [M,α,δele], [M,α,δail] and [M,α,δrud]. The assumption here is that the influ-

ence of each decoupled parameter on another is negligible, through the use of small

perturbations, which may not be the case for certain flow conditions.

An extension to minimising the required number of high fidelity calculations is to use

a hierarchy of methods of different fidelities. For instance, low fidelity semi-empirical

data can be used. A data fusion approach is then applied to maintain sufficient fidelity

of the tables, whilst reducing the number of CFD simulations required as originally
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M α β δele δail δrud CL CD CY Cl Cm Cn

x x x - - - x x x x x x
x x - x - - x x x x x x
x x - - x - x x x x x x
x x - - - x x x x x x x

Table 2.1: Example Aerodynamic Table (x indicates non-zero entry)

proposed in [58], where a 30% reduction in computational time was achieved without

loss of accuracy. In [3] this approach was extended to use the DATCOM [59] database

as the source of the low-fidelity data, which was then assessed using a commercial jet

aircraft case with changing geometry. Kriging interpolation was also applied in this

work to further minimise the number of calculations required to fill the tables. It

was also used to locate points in the parameter space where a high-fidelity solution is

required (i.e. location of high parametric sensitivity).

In this work, only high-fidelity CFD data are used due to the low number of data

points required for the cases presented. Kriging is then used to obtain unknown data

points within the manoeuvre parameter space.

2.3.1 Dynamic Derivatives

Dynamic derivatives describe how the forces and moments vary with rates of motion.

For example, the pitch-damping derivative CMq describes how the pitching moment

coefficient, CM , varies with the pitch rate, q. The derivative values are used to account

for motion effects, by taking the static load or moment coefficient and modifying this

as shown in Eq. (2.9) for a pitching motion.

Cj(t) = Cj0 +Cjα∆α(t) + Cjα̇

c

2U∞

α̇(t) + Cjq

c

2U∞

q(t) + Cjq̇

(

c

2U∞

)2

q̇(t). (2.9)

The j subscript represents the force or moment of interest (i.e. L,D,M), the zero

subscript term is the steady value at time t. The non-dimensionalisation factor is taken

from the reduced frequency k = ωc
2U∞

. The term ω is in radians per second, as are α̇

and q. This factor maintains consistency with the prescribed inputs, usually k, for

describing the oscillatory motion in the calculation of the dynamic derivatives.

For a harmonic pitching motion, the following can be defined

∆α = αA sin(ωt) α̇ = q = ωαA cos(ωt)

α̈ = q̇ =− ω2αA sin(ωt). (2.10)
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This allows Eq. (2.9) to be rewritten as

Cj(t) = Cj0(t) + C̄jαα(t) + C̄jqq(t)
c

2U∞

, (2.11)

where the bar terms are formed as below again with k = ωc
2U∞

.

C̄jα = (Cjα − k2Cjq̇)

C̄jq = (Cjα̇ +Cjq ) (2.12)

The derivative values can be calculated from forced periodic oscillations as described

in [60]. The periodic time-dependent solution can then be written as a Fourier series,

with the first Fourier coefficients corresponding to the values of the stability derivatives.

These can be calculated directly using Eq. (2.13),

C̄jα =
2

αAncT

∫ ncT

0
∆Cj(t) sin(ωt)dt

C̄jq =
2

kαAncT

∫ ncT

0
∆Cj(t) cos(ωt)dt (2.13)

where the terms αA, k, nc, T and ω are the oscillatory amplitude, reduced frequency,

number of cycles, time period and circular frequency respectively.

Given this model consists of a steady and unsteady component dependent on the

instantaneous motion rates, there is no accounting for history effects. As such, this

approach is considered as quasi-steady, as described for the CFD solvers previously.

2.4 Frequency Domain Methods

2.4.1 Linear Frequency Domain

The Linear Frequency Domain method [22] uses the assumptions of periodicity and

small amplitudes to reduce an unsteady nonlinear problem into a steady linear one.

The governing equations of a fluid are first written in the semi-discrete form as

∂w

∂t
+R(w,x, ẋ) = 0, (2.14)

where R is the residual, w is the vector of conservative flow variables, with x and ẋ,

the grid position and grid velocities respectively.

The assumption of small amplitudes allows the variables to be calculated as a steady

state plus a small perturbation about that steady mean state. This gives rise to

w(t) = w̄+ w̃(t), where
∥

∥w̃
∥

∥ ≪
∥

∥w̄
∥

∥

x(t) = x̄+ x̃(t), where
∥

∥x̃
∥

∥ ≪
∥

∥x̄
∥

∥. (2.15)
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Combining equations (2.14) and (2.15), leads to the following.

dw̃

dt
+

∂R

∂w

∣

∣

∣

∣

w̄,x̄

w̃ +
∂R

∂x

∣

∣

∣

∣

w̄,x̄

x̃+
∂R

∂ẋ

∣

∣

∣

∣

w̄,x̄

˙̃x = 0 (2.16)

The small periodic time-dependent perturbation is then written as a Fourier series

in terms of the base frequency ω and the mode k

w̃(t) =

∞
∑

k=1

(ŵke
ikωt), (2.17)

where ŵ is a vector of complex Fourier coefficients corresponding to the flow solu-

tion. This is also applied to x̃. The LFD system can be rewritten by combining

equations (2.16) and (2.17) as,

{

ikωI +
∂R

∂w

}

ŵk = −
∂R

∂x
x̂k − ikω

∂R

∂ẋ
x̂k. (2.18)

Limiting interest to the perturbations which are harmonic in the forced frequency, k is

taken to be 1, and hence the nonlinear Eq. (2.14) has been reduced to a single linear

equation. The linear system is then solved for ŵk.

The real and imaginary parts in Eq. (2.18) are taken to form two coupled real

systems as

−ωℑ(ŵ) +
∂R

∂w
ℜ(ŵ) = −

∂R

∂x
ℜ(x̂) + ω

∂R

∂ẋ
ℑ(x̂)

ωℜ(ŵ) +
∂R

∂w
ℑ(ŵ) = −

∂R

∂x
ℑ(x̂)− ω

∂R

∂ẋ
ℜ(x̂). (2.19)

The above linear system is written in the form

Ax = b, (2.20)

where A is the system matrix written as

A =

[

∂R
∂w

−ωI

ωI ∂R
∂w

]

, (2.21)

where x is the vector of Fourier coefficients to be calculated and b is the right-hand

side obtained through central finite differences from the steady state solution as

∂R

∂x
x̂ ≈

R(w̄, x̄+ ǫx̂, 0)−R(w̄, x̄− ǫx̂, 0)

2ǫ
∂R

∂ẋ
x̂ ≈

R(w̄, x̄, ǫx̂)−R(w̄, x̄,−ǫx̂)

2ǫ
. (2.22)

The value of ǫ has to be chosen to be large enough to reduce errors due to the rounding
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of higher-order terms, but also small enough to reduce the truncation error. Once this

linear system has been obtained and set up, it can be solved using a linear solver as

described in section 3.1.

2.4.2 Harmonic Balance

The Harmonic Balance method was initially proposed for use in turbomachinery flows

for the rapid solution of periodic oscillatory simulations. The benefit is that there is no

linearisation involved in the formulation, and as such, nonlinearities can be captured

to varying degrees of accuracy depending on the number of harmonics retained in the

solution. HB has been extended for use with aircraft aerodynamics and in particular

for flight dynamics and the generation of dynamic derivatives.

The formulation again begins with the semi-discrete form of the governing flow

equations as
∂w(t)

∂t
+R(w) = 0, (2.23)

wherew is the vector of conserved variables, andR is the residual of the flux terms. As-

suming a periodic motion, these terms can be written as a Fourier series with frequency

ω as

w(t) = ŵ0 +
∞
∑

k=1

(ŵke
ikωt)

R(t) = R̂0 +
∞
∑

k=1

(R̂ke
ikωt)). (2.24)

The exponential is broken down into its sine and cosine components, along with the

corresponding Fourier coefficients denoted by the subscripts a and b. The series is then

truncated to a specified number of harmonics NH leading to the following

w(t) ≈ ŵ0 +

NH
∑

k=1

(ŵakcos(ωkt) + ŵbksin(ωkt))

R(t) ≈ R̂0 +

NH
∑

k=1

(R̂akcos(ωkt) + R̂bksin(ωkt)). (2.25)

Combining Eqs. (2.23) and (2.25), then grouping similar harmonic terms yields

R̂0 = 0

ωnŵbn + R̂an = 0

−ωnŵan + R̂bn = 0. (2.26)
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A system of NT = 2NH + 1 equations has now been obtained, which can be written in

matrix form as

ωAŵ+ R̂ = 0, (2.27)

where A is a block matrix of size NT x NT containing blocks with diagonal terms

A(n+1,NH+n+1) = n, and A(NH+n+1,n+1) = -n. The vectors ŵ and R̂ are composed

of

ŵ =





























ŵ0

ŵa1

...

ŵaNH

ŵb1

...

ŵbNH





























R̂ =





























R̂0

R̂a1

...

R̂aNH

R̂b1

...

R̂bNH





























, (2.28)

where the coefficients are those seen in Eq. (2.25). A solver could be written to solve

Eq. (2.27), however this could be complicated due to the complex Fourier terms, par-

ticularly when dealing with viscous flows, as well as finding a relationship between ŵ

and R̂. To overcome this problem, the system is transformed back to the time domain.

The solution is discretised into NT equally spaced intervals over the cycle to obtain

whb =













w(t0 +∆t)

w(t0 + 2∆t)
...

w(t0 + T )













Rhb =













R(t0 +∆t)

R(t0 + 2∆t)
...

R(t0 + T )













, (2.29)

where T is the time for one cycle and ∆t = 2π/(NTω). The vectors in Eq. (2.29) are

initialised from steady state solutions at each of the intervals to provide a good initial

guess. The vectors of Fourier terms are then related to the corresponding HB vectors

via an NTxNT transformation matrix E

ŵ = Ewhb and R̂ = ERhb, (2.30)
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where

E =
2

NT































0.5 0.5 . . . 0.5

cos(2π 1×1
NT

) cos(2π 1×2
NT

) . . . cos(2π 1×NT

NT
)

...

cos(2πNH×1
NT

) cos(2πNH×2
NT

) . . . cos(2πNH×NT

NT
)

sin(2π 1×1
NT

) sin(2π 1×2
NT

) . . . sin(2π 1×NT

NT
)

...

sin(2πNH×1
NT

) sin(2πNH×2
NT

) . . . sin(2πNH×NT

NT
)































. (2.31)

It is possible to compute one large Fourier transform on the full system, however, in

using this matrix with one column per time slice, this has the effect of carrying out lots

of small transforms and reduces the computational cost. Substituting Eq. (2.30) into

Eq. (2.27) and premultiplying by E−1 gives

ωE−1AEwhb + E−1ERhb = 0. (2.32)

This can then be reduced to

ωDwhb +Rhb = 0, (2.33)

where

D = E−1AE =
2

NT

NH
∑

k=1

ksin(2πk(j − i)/NT ). (2.34)

Equation (2.33) is then solved by introducing a pseudo-time term to be able to time-

march the system to achieve a converged solution.

dwhb

dt
+ ωDwhb +Rhb = 0. (2.35)

Equation (2.35) only differs from Eq. (2.23) by the HB source term ωDwhb. This

allows for simple extension of existing CFD solvers for the solution of this system. The

time domain response can be reconstructed from the whb and Rhb vectors through

transformation to the frequency domain, where the Fourier coefficients in Eq. (2.25)

are obtained. Solution approaches to equation (2.35) are described in section 3.2.

2.4.2.1 Implicit Solution

As part of this thesis, an implicit solution approach is taken for solving the Harmonic

Balance problem. The method applied is that of Woodgate et al. [28]. In order to solve

the system implicitly, a global Jacobian matrix needs to be defined containing all the
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time slices. This is defined as follows















∂R
∂w

∣

∣

t0+∆t
ωD1,2 . . . ωD1,NT

ωD2,1
∂R
∂w

∣

∣

t0+2∆t
...

. . .

ωDNT ,1 ωDNT ,2
∂R
∂w

∣

∣

t0+T















(2.36)

The diagonal terms are the Jacobian matrices of the individual time slices, and the

off–diagonal terms are taken from the HB source term in Eq. (2.35). This approach

allows rapid solution of the Harmonic Balance problem with linear solvers and are used

in this thesis with the PML solver.

2.4.3 ILU Preconditioner

The linear system in Eq. (2.20) ideally would be solved by finding the inverse of A

and then multiplying this by the right hand side to obtain x. However, finding the

inverse of the very large sparse matrices encountered in CFD using direct methods

is computationally expensive. The alternative used is to take the linear system and

represent it as an equivalent system, which is better conditioned, and thus quicker to

iteratively solve. This is done with the use of a preconditioning matrix P which is an

approximation of A, and can be inverted easily. This is used as shown in Eq. (2.37) for

left preconditioning:

P−1Ax = P−1b (2.37)

and in Eq. (2.38) for right preconditioning

AP−1Px = AP−1y = b

where x = P−1y. (2.38)

If P−1 is equal to the inverse of A, an identity matrix is obtained on the left hand

side and the system is solved. The most simple preconditioning technique is Jacobi

Preconditioning, where the preconditioner matrix is a diagonal matrix with the inverse

of the diagonal terms of A along it.

The method used here is that of Incomplete Lower Upper (ILU) preconditioning [34].

ILU preconditioning, as with LU decomposition, forms a lower triangular matrix L and

an upper triangular matrix U , where A = LU −R with R termed the Residual matrix,

whereby the norm of the matrix indicates the accuracy of the incomplete factorisation.

The difference between ILU and LU is that there is a limit on the number of new

non-zero terms that are generated when using ILU. The sparsity pattern in the lower

and upper matrices is set with the level of fill-in indicated in brackets. ILU(0) is

zero fill-in which means the sparsity of LU is equal to that of A, i.e. no new non-
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zeros have been added. In this work up to 1 level of fill-in is used, which usually

adds around two further non-zeros for every one in the A matrix, although this varies

slightly depending on the problem. The algorithm for the ILU factorisation is as follows

1. For all non-zero elements aij define lev(aij) = 0

2. For i = 2, . . . , n Do:

3. For k = 1, . . . , i− 1 and for lev(aik) ≤ p Do:

4. Compute aik = aik/akk

5. Compute ai∗ = ai∗ − aikak∗

(where * indicates operation on all non-zero terms in the row)

6. Update the levels of fill of the non-zero aij’s using:

levij = min{levij , levik + levkj + 1}

7. EndDo

8. Replace any element in row i with lev(aij) > p by zero

9. EndDo

This algorithm determines the sparsity pattern of the ILU factorisation for a given

level of fill-in.
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Chapter 3

Performance of Frequency

Domain Methods

Frequency domain methods have proven useful for flight dynamics purposes. They

offer accelerated computation of the aerodynamic response to a periodic oscillation

required to calculate the dynamic derivative terms in the unsteady aerodynamic model.

This chapter looks to accelerate the Linear Frequency Domain and Harmonic Balance

methods, through an approach to preconditioning for linear solvers.

3.1 Linear Frequency Domain

The origins of the Linear Frequency Domain method are in the small disturbance Euler

method developed for use in turbomachinery flows by Hall and Crawley [24]. It has

since been extended for use in external aerodynamic problems. It has been implemented

in the DLR TAU code, as described in [22], and forms the basis of the method described

in this chapter.

3.1.1 Solver Options

There are a number of different solution methods available for solving the linear systems

in the LFD formulation. In order to improve upon them, it is first necessary to assess

how well they perform in their current form. Three approaches are available within

TAU, namely MG LU-SGS, PETSc and a Generalised Conjugate Residual (GCR) linear

solver, the latter of which has been implemented as part of this work.

MG LU-SGS

The MG LU-SGS option is implemented within TAU and drives the solution to con-

vergence by solving

Ãx = Ax− b, (3.1)
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where Ã is an approximation of A, and the matrix-vector product Ãx is driven to an

L2 norm of zero. This is done using the semi-implicit LU-SGS iterative solver [36] with

Multigrid [51] to accelerate the convergence. The MG LU-SGS option can also be used

with a GMRes [61] Krylov solver, in order to further accelerate the convergence, but at

the expense of memory. This method only operates on the matrix-vector product and

never stores the full Jacobian matrix explicitly in memory. This minimises the memory

requirement to enable very large grids to be run on relatively inexpensive machines,

and gives this approach a competitive edge over the other two solver options, in this

sense.

PETSc Linear Solvers

The second option is to use the linear solvers built into the PETSc linear libraries [62,

63]. TAU can be compiled with the PETSc libraries for solution of both the Adjoint

and LFD problems. The implementation requires the storage of the Jacobian matrix

explicitly in memory, and as such requires significantly more memory than MG LU-SGS.

The PETSc libraries include many solvers, from the direct LU and Cholesky methods

through to the approximate Krylov methods, including GCR and GMRes used in this

work. PETSc also has a variety of preconditioners, ranging from the simple Jacobi

preconditioning to the ILU factorisation used here. The solvers also have many options

to monitor convergence properties, along with other options to improve convergence

such as Reverse Cuthill-McKee reordering. This array of solver options makes PETSc

a useful tool for optimising the linear solution.

Generalised Conjugate Residual Linear Solver

The final option is the GCR [64] linear solver. This method has been implemented

in TAU for solution of the LFD problem as part of this work. It uses a block matrix

structure rather than an element-wise structure to minimise the memory required to

store the sparse matrix, and to increase the speed with which the data can be accessed.

This requires a blocked version of the ILU(k) preconditioner mentioned in Section 2.4.3.

As with PETSc, the full Jacobian matrix is stored in memory.

The GCR solver is a Krylov subspace method whereby the system is projected onto

a subspace shown in Eq. (3.2).

Km(A, r0) = span{r0, Ar0, A
2r0, ..., A

m−1r0}, (3.2)

where m is the number of subspace vectors allocated in advance, and the residual r0 is

the term to be minimised. This minimisation is done using the following algorithm
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1. First, set p0 = r0 = b−Ax0

2. Iterate, for i=0,1,. . . until restart or convergence do:

Compute αi =
(ri,Api)
(Api,Api)

,

xi+1 = xi + αipi,

ri+1 = ri − αiApi,

pi+1 = ri+1 +
∑i

j=0 β
(i)
j pj ,

where {β
(i)
j } are chosen so that (Api+1, Apj) = 0, for 0 ≦ j ≦ i.

This is implemented in a restarted format, where the pi and Api terms are discarded

after a number of iterations specified by the user, and the initial guess for the next

loop is restarted from the final value of the previous set of vectors. This is repeated

until convergence. The number of restart iterations is equal to the number of Krylov

vectors, as such, a larger restart will represent the system more accurately, although

this comes at the expense of memory. For convergence, the right preconditioned system

uses the true residual which is obtained directly from the residual vector, however

left preconditioning uses the preconditioned residual. In both cases, the convergence

is determined relative to the initial residual to ensure consistency, regardless of the

preconditioning side chosen.

Being a Krylov subspace method, during the solve, only matrix-vector products are

stored with the size of the subspace defined by the user. In the following calculations

20 subspace vectors were used to allow for good rates of convergence, whilst minimising

the run-time memory requirement.

3.1.2 Implicit LFD

This section shows the speed up and memory requirements of the three methods for

both 2D and 3D test cases. The baseline comparator is the MG LU-SGS solution due to

this being the standard method in TAU. PETSc is also included due to it being one of

the TAU options, although this is not the benchmark method. The rate of convergence

with respect to the number of iterations and the CPU time are compared for each

case to demonstrate the improvement achieved with the various solvers. Finally, a

weighted preconditioner is proposed and analysed, with reasons given for the improved

performance.

Test Cases

In order to assess the different solution methods for the LFD problem, a number of

test cases have been chosen. A hierarchy of complexities, ranging from Euler aerofoil

problems to RANS wing cases, is used. All have been run using the LFD solver within
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the DLR TAU code. All simulations are run solving the Euler equations, unless a

Reynolds number is given.

NACA 0012 Aerofoil

Two grids of different point density were used for this case, a coarse grid Fig. 3.1(a) with

12,672 points (132 points around the aerofoil with 33 points in the normal direction),

and a fine grid Fig. 3.1(b) with 31,416 points (212 around the aerofoil with 51 in the

normal direction).

(a) Coarse grid 12672 points (b) Fine grid 31416 points

Figure 3.1: NACA 0012 grids

The two grids were run for AGARD CT2 and CT5 conditions, as shown in Table 3.1.

AGARD CT2 CT5

Mach number, M 0.6 0.755
Mean incidence, α0 3.16◦ 0.016◦

Pitch amplitude, ∆α 4.59◦ 2.51◦

Reduced frequency, k 0.0811 0.0814

Table 3.1: AGARD test case conditions (Euler)

NACA 64A010 Aerofoil

The NACA 64A010 aerofoil grid is shown in Fig. 3.2. A hybrid grid is used with regular

cells in the boundary layer, with a wall spacing of 1× 10−4, and triangular elements in

the farfield. There are 21,454 points. This case is used here as a simple viscous case

with a Spalart-Allmaras one equation turbulence model. The case was run at AGARD

CT8 conditions M = 0.8, α0 = 0.0◦, ∆α = 0.5◦, ω = 0.2 and Re = 12.5x106.
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Figure 3.2: NACA 64A010 grid

SDM Generic Fighter Configuration

The SDM model is a generic fighter aircraft used for CFD studies, ranging from vali-

dation studies to flight dynamics simulation [65]. The grid, shown in Fig. 3.3, is fully

unstructured with 59,542 points. This case was run at M = 0.3, α0 = 0.0◦, ∆α = 2.0◦

and ω = 0.0986.

Figure 3.3: SDM grid

Goland Wing

The Goland wing is an academic test case, often used for aeroelastics analyses, and

is unswept with a circular arc section. Two grids were used here for an inviscid

and a viscous calculation. The inviscid Euler grid, shown in Fig. 3.4(a) is made up

of 201,909 points, and the viscous RANS grid in Fig. 3.4(b) is made up of 991,075

points. The Euler case was run at M = 0.8, α0 = 1.0◦, ∆α = 1.0◦, ω = 0.05, with the

RANS case being run at M = 0.925, α0 = 0.0◦, ∆α = 1.0◦, ω = 0.05 and Re = 15x106.
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(a) Euler Grid (b) RANS Grid

Figure 3.4: Goland wing grids

LANN Wing

The LANN wing grid shown in Fig. 3.5 is a fully unstructured grid, with 267,463 points.

This case was run at M = 0.82, α0 = 0.6◦, ∆α = 1.0◦ and ω = 0.2.

Figure 3.5: LANN wing grid

Solver Parameters

The Linear Frequency Domain method requires calculation of the steady nonlinear

mean state, plus a linear solve for the frequency domain solution. The performance

analysis is solely for the linear solve part of the calculation using a single processor,

with the methods involving ILU shown for 0 or 1 level of fill-in. The steady-state in

each case had previously been converged, with the solution used as a restart for the

frequency domain solve. The parameters used for each test case are shown in Table 3.2.
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NACA0012 NACA64A010 SDM Goland LANN

MG LU-SGS

Min. Residual 1x10−8 1x10−6 1x10−5 1x10−5/1x10−3 1x10−4

Max. Iteration 10000 10000 10000 10000 10000
CFL 500/50 10 20 10/5 10
MG cycle 3w++ 3w++ 3w++ 3w++ 3w++

PETSc

Min. Residual 1x10−8 1x10−6 1x10−5 1x10−5 1x10−4

Max. Iteration 10000 10000 10000 10000 10000
Krylov Vectors 20 20 20 20 20
Level of fill 1 1 0 1 1

GCR

Min. Residual 1x10−8 1x10−6 1x10−5 1x10−5 1x10−4

Max. Iteration 10000 10000 10000 10000 10000
Krylov Vectors 20 20 20 20 20
Level of fill 1 1 0 1 1

Table 3.2: Solver Parameters

In Table 3.2 the CFL numbers for NACA0012 and Goland cases are separated for the

coarse and fine, and Euler and RANS grids respectively. The LANN wing and the

Goland RANS case do not converge to the desired level with no Krylov solver, as such,

a GMRes loop has been used for these cases with 20 Krylov vectors and 5 precon-

ditioning iterations. The PETSc GMRes solver was run with right preconditioning

and had Reverse Cuthill McKee reordering of the matrix, the GCR method used left

preconditioning and used the in-built Bandwidth optimisation option in TAU.

Solution Comparison

In order to determine that the solution method does not change the simulated loads

and moments, it is necessary to compare the solutions from each. Presented in Figs. 3.6

and 3.7 are the LFD solutions for the NACA 0012 CT2 and CT5 cases using the MG

LU-SGS and GCR solvers.

It is seen that the MG LU-SGS and GCR solutions are almost identical in both the

lift and pitching moment loops. This is to be expected, and shows that the change of

solution method does not change the outcome, as required.

Speed Tests

For the speed tests, the time shown is the CPU time for the linear solver to run,

including the setup of the Jacobian matrix and preconditioner. Each test was run

on the same processor for consistency across the solvers. All cases were run with the

options as in Table 3.2, with all other parameters set as default. The MG LU-SGS

(GMRes) option was run with 20 Krylov vectors and 10 preconditioning iterations.

The results of the speed tests for each case are shown in Table 3.3.
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Figure 3.6: NACA0012 fine AGARD CT2 solution comparison
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Figure 3.7: NACA0012 fine AGARD CT5 solution comparison

It can be seen that the GCR solver offers about an order of magnitude improvement

in CPU time over the MG LU-SGS method, although this drops to about a factor of

five for the viscous cases. This could be due to the larger matrix blocks in the Jacobian

matrix causing a lower diagonal dominance, thus making it more difficult to solve. The

MG LU-SGS with GMRes Krylov solver is shown to be quicker than the MG LU-SGS

with no Krylov solver in terms of iterations for convergence. This is expected given

it is a semi-implicit method, however, in terms of CPU time, this option only offers

an improvement for the large cases which are more difficult to solve, particularly the

RANS cases. The improvement seen is between a factor of two to three.

A more important comparison is between the previously implemented PETSc

solvers, and the newly implemented GCR ILU for the solution of the LFD problem. The

PETSc GMRes solver with ILU preconditioning in some cases is a factor of two quicker
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MG LU-SGS GMRes PETSc GCR

NACA 0012 coarse Iterations 3831 / 3158 334 / 340 116 / 170 245 / 207
(CT2/CT5) CPU Time (s) 220 / 179 198 / 201 6 / 8 13 / 12

NACA 0012 fine Iterations 3518 / 3162 322 / 345 244 / - 297 / 283
(CT2/CT5) CPU Time (s) 497 / 446 472 / 506 23 / - 39 / 37

NACA 64A010
Iterations 12782 544 - 292
CPU Time (s) 1883 833 - 43

SDM
Iterations 1176 69 88 73
CPU Time (s) 475 290 96 95

Goland Wing Iterations 13799 630 74 274
(Euler) CPU Time (s) 25773 11256 433 918

Goland Wing Iterations 2272 374 - 250
(RANS) CPU Time (s) 29861 30291 - 6626

LANN Wing
Iterations - 127 - 62
CPU Time (s) - 3269 - 3006

Table 3.3: Solver speed test results

than the GCR ILU solver, however, in other cases it fails to converge or requires too

much memory to run. The differences between the two methods is firstly that PETSc

uses a GMRes solver compared to GCR, and secondly PETSc uses RCM reordering,

which has been shown in the literature to greatly improve convergence versus the un-

ordered matrix. The GMRes solver requires half the number of operations per step

compared to GCR, so it would be expected to see about a factor of two difference in

run time, which is observed. The use of different options in PETSc to accelerate the

convergence is explored in the next section.

The convergence plots for four of the cases are shown in Fig. 3.8. It is clear that, in

terms of iteration count, the implicit GCR formulation converges significantly quicker

than the semi-implicit MG LU-SGS option. The convergence for the methods is com-

parable through the first two orders of magnitude, however, the rate of convergence

slows significantly for the MG LU-SGS solver as the residual level reduces.

Options in PETSc

Given the large number of possible combinations of solver methods using PETSc, it is

useful to view a few key combinations. The performance can be significantly affected

by the options used.

The PETSc library contains options for linear solvers, preconditioning types, re-

ordering strategies and many other linear algebra functions. These options can be

combined in many ways to affect the convergence of a system. For comparison, settings

are tested similar to those of the GCR-ILU solver, along with slight variants. The

combinations are shown in Table 3.4.
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Figure 3.8: Convergence comparison

Test Case Krylov Type Preconditioner Reordering

1 GCR ILU(0) -
2 GCR ILU(0) RCM
3 GCR ILU(1) -
4 GCR ILU(1) RCM
5 GMRes ILU(0) -
6 GMRes ILU(0) RCM
7 GMRes ILU(1) -
8 GMRes ILU(1) RCM

Table 3.4: PETSc option test cases

The NACA 0012 fine grid at AGARD CT2 conditions has been used as a test case

for simplicity. The converged residual has been set to 1 × 10−8, with a maximum

number of iterations at 2000. Results are shown in Table 3.5, with the residual shown
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in brackets if convergence was not achieved.

Test Case Converged Iteration Run time (s) Memory (MB)

1 (2.81x10−2) 140 808
2 (2.75x10−2) 143 816
3 (6.47x10−3) 189 1125
4 207 26 1162
5 1813 88 722
6 (3.05x10−3) 97 722
7 (6.76x10−5) 146 1028
8 244 23 1064

Table 3.5: PETSc option test results NACA 0012 AGARD CT2

As was seen previously, PETSc does not always converge, and in this instance,

converges in only 3 out of the 8 cases. It is also seen that the use of RCM reordering

does have an effect on the convergence and allows the system to converge the residual

8 orders of magnitude for some cases. The reordering does however carry a penalty in

terms of memory to store the permutation matrix for the mapping of the value locations

to their original positions.

Finally, a comparison between GCR and GMRes PETSc solvers shows GMRes to

be more efficient in terms of memory and time. The time per iteration is about 30%

quicker for the GMRes solver than GCR, with half the number of operations required

per iteration. The solution time includes the setup of the preconditioner and carrying

out the reordering.

The key consideration for the PETSc results is that the preconditioner is formed

based on the second-order Jacobian matrix, which is often poorly conditioned. Using

the different options shows that, independent of the Krylov solver type, a preconditioner

formed from the incomplete factorisation of the second-order Jacobian matrix with

either 0 or 1 level of fill-in is not robust, unless reordering is applied. This is also seen

in the other cases during the speed tests.

Memory Tests

An important metric for solver performance is that of memory usage. When these

methods are deployed in an industrial context, efficiency at every level is important.

The memory requirement for each solver and test case is shown in Table 3.6. This is

inclusive of the augmented sytem and preconditioner matrices for the PETSc and GCR

options.

Table 3.6 shows that the PETSc and GCR methods require far more memory than MG

LU-SGS due to the Jacobian and preconditioner matrices being stored explicitly in

memory. The memory requirement is shown to be up to an order of magnitude higher

for the GCR method than for MG LU-SGS, and up to about a factor of five against
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MG LU-SGS GMRes PETSc GCR

NACA0012 (coarse) 130 MB 150 MB 468 MB 329 MB
NACA0012 (fine) 189 MB 241 MB 1064 MB 679 MB
NACA64A010 188 MB 231 MB 1168 MB 791 MB
SDM 382 MB 482 MB 3277 MB 2487 MB
Goland (Euler) 740 MB 1040 MB 9002 MB 6150 MB
Goland (RANS) 6067 MB - >64 GB 41.5 GB
LANN Wing 1853 MB - >64 GB 22.5 GB

Table 3.6: Solver memory requirement

Steady State MG LU-SGS GMRes PETSc GCR

NACA0012 (coarse) 130 MB 1.00 1.15 3.60 2.53
NACA0012 (fine) 148 MB 1.28 1.63 7.19 4.59
NACA64A010 142 MB 1.32 1.63 8.23 5.57
SDM 188 MB 2.03 2.56 17.43 13.23
Goland (Euler) 284 MB 2.61 3.66 31.70 21.65
Goland (RANS) 1033 MB 5.87 - >63.44 41.14
LANN Wing 414 MB 4.48 - >158.30 55.65

Table 3.7: Solver memory requirement relative to steady state

MG LU-SGS with the GMRes option. The memory required for PETSc is greater still,

being higher than that for the GCR solver, despite the GMRes solver requiring about

half the storage of GCR. The main difference between the PETSc and GCR solvers is

the use of floats instead of doubles in the preconditioner. This is described further in

the supplementary information section S.4. A further comparison can be made through

a normalisation by the steady-state memory requirement. This is shown in Table 3.7.

The missing entry values or undefined values in the PETSc column are due to either

the solver not converging for 0 or 1 fill-in, or the memory required is larger than the

amount of memory available for one processor.

Parallel

For large grid sizes, being able to run simulations in parallel, whilst retaining good

performance of the method, is a key consideration. The Goland Euler case has been

used here to demonstrate the scalability of the GCR method, with the results shown

in Fig. 3.9.

It can be seen from Fig. 3.9(a) that with an increase in the number of processors used,

the number of iterations for convergence increases. ILU requires a global factorisation

of the matrix to be fully effective, however, in parallel, this would require significant

communication between processors. An assumption that is made, is to then carry out

a factorisation using the part of the Jacobian matrix stored on the local processor.
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Figure 3.9: Parallel performance (Goland Euler)

The deteriorating performance of the preconditioner as a result of this assumption can

be seen in the required number of iterations to convergence increasing with number

of processors. In Fig. 3.9(b) the solution time for both the MG LU-SGS and GCR

methods is shown for an increasing number of processors. The solution times have

been normalised by the time on one processor, with the reciprocal value calculated to

obtain the parallel efficiency. This allows for direct comparison of the scalability of the

two methods. It is seen that the MG LU-SGS method scales more efficiently than the

GCR method, although the difference is not as large as expected. However, when using

8 processors, the MG LU-SGS method is twice as efficient as the GCR approach. The

ideal linear scaling is also shown for reference. Using any more than eight processors

here causes the problem size to be too small on each processor.

Real vs Complex

There are two ways in which the LFD matrix shown in Eq. (2.21) can be augmented.

The first is with four quadrants in the matrix. The leading diagonal containing the

Jacobian matrices, and the off-diagonal quadrants containing matrices with the fre-

quency along the diagonal. The second approach is to use a complex formulation. This

requires half the memory to store due to taking a single Jacobian matrix and adding

the frequency terms to the diagonal. This would also have the benefit of a reduction

in the number of operations during matrix-vector multiplications.

The two methods of augmentation of the A matrix are compared for iterative con-

vergence rate and run time. The comparison carried out here uses the Goland wing

(Euler) case. The Real and Complex systems are set up, with the solvers being con-

verged 5 orders of magnitude, using one level of fill-in for the preconditioner. The

convergence rates of the two solvers are shown in Fig. 3.10.
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Figure 3.10: Real vs Complex solver convergence (Goland Euler)

Real Complex

Iterations 651 625
CPU Time (s) 2486 2128

Table 3.8: Augmentation comparison (Goland Euler)

The tests have shown that the Complex solver does not offer a significant improvement

over the Real solver, with an improvement of just 4% in the number of iterations, and

14% in the solution time. The implementation of a complex solver could be considered

for future work.

3.1.3 ILUα Preconditioner

The ILU preconditioner was used for both the PETSc and GCR solution methods.

It was apparent that for some cases, at least for PETSc, that the system was too

poorly conditioned to achieve convergence. This problem needs to be understood. The

difference between the two approaches, when GCR was used in PETSc, was that the

preconditioner matrices were based on different Jacobian matrices. With PETSc, the

preconditioner was based on the second order Jacobian matrix, whereas for GCR, it

was based on the first order Jacobian matrix. There is a significant difference between

the two in terms of sparsity and conditioning. A first order preconditioner is typically

used due to the first order Jacobian matrix being better conditioned. This improves

stability during factorisation in forming the preconditioner. This does however remove

the benefit of the second order preconditioner being a better approximation to the

inverse of the Jacobian matrix.

For CFD applications, a Jacobian matrix A2, based on the second-order spatial

discretisation, is often found to lead to a very poor preconditioner P in the sense of

bad convergence of the Krylov method. This was shown in [38] that for non-symmetric,
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non-diagonally dominant matrices, the incomplete factors can be more ill conditioned

than the original matrix. It is possible to view this effect by assessing how well the

preconditioner approximates the matrix A−1 from looking at the solution of Px =

b. If the preconditioner was obtained using a direct method (i.e. P−1 ≡ A−1),

the exact solution would result. However, as an incomplete factorisation is used, the

preconditioner is only an approximation (i.e. P−1 ≈ A−1). The exact solution and

second order preconditioner solution are shown in Fig. 3.11.

(a) Exact solution Ax=b (b) Px=b

Figure 3.11: Second order preconditioner comparison

It can be seen that the preconditioner based on the pure second order spatial dis-

cretisation gives a solution which is highly oscillatory. This is consistent with poor

convergence of the Krylov method. Similar unstable behaviour in the forward and

backward solves were shown in [40] and [66]. A heuristic fix is to base P on the Ja-

cobian matrix A1 of the first-order spatial scheme, which seems to improve on this

situation significantly. This has the benefit of being better conditioned with increased

diagonal dominance, as was shown in [67]. The solution of the first order preconditioner

is shown in Fig. 3.12.

The preconditioner based on the first order Jacobian has little oscillatory behaviour

and is a reasonable approximation to the exact solution. This is due to the better

conditioning of the first order Jacobian not causing any stability problems in the fac-

torisation steps for forming the preconditioner. A variation on this approach is to

calculate P based on the matrix Aα, where

Aα = αA2 + (1− α)A1 (3.3)

The weighted preconditioner matrix Pα is then formed from the ILU factorisation of

the matrix Aα. The solution of the new weighted preconditioner is shown in Fig. 3.13.
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Figure 3.12: First order preconditioner

Figure 3.13: Weighted preconditioner α = 0.90

For α = 0.90, the majority of the high frequency oscillations seen in Fig. 3.11(b)

have been damped by the introduction of a small amount of the first order Jacobian

terms. The improved stability in the factorisation and the better approximation from

the second order terms would be expected to improve the convergence of the linear

solver.

Performance

Seeing that a mixed order preconditioner can aid in the convergence of the LFD prob-

lem, a sweep of α has been carried out for the test cases previously used. The results

are shown for the NACA0012 aerofoil cases in Figs. 3.14(a),3.14(b),3.14(c),3.14(d), the

NACA64A010 viscous case in Fig. 3.14(e) and the Goland wing Euler case Fig. 3.14(f).

Each case was converged to the same level as in Table 3.2, although the maximum

number of iterations was limited to 2000, allowing sufficient interations for convergence

whilst limiting time to solution. Each case is shown for both left and right precondi-

tioning.
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(a) NACA0012 coarse CT2
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(b) NACA0012 coarse CT5
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(c) NACA0012 fine CT2
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(d) NACA0012 fine CT5
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(e) NACA64A010 RANS case
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(f) Goland Euler case

Figure 3.14: Influence of preconditioner weighting on convergence
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It can be seen that having changed the grid, the flow conditions and the side of

preconditioning used, the optimum weight lies between 85% to 90% 2nd order with 15%

to 10% 1st order terms respectively. The lack of grid or condition dependence shows

the possibility of generalising the weight to improve the solver convergence against the

use of a first order preconditioner. The improvement seen is up to about a factor of five

over the first order preconditioner, which given the time per iteration is not affected by

the different weights, this also equates to a factor of five improvement in solution time.

An indicator of the conditioning of a matrix is to look at the distance of the real

eigenvalues from the origin. The largest real positive eigenvalues are plotted against

the value of α in Fig. 3.15.
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Figure 3.15: Convergence and Real Positive eigenvalue (NACA 0012 fine AGARD CT2)

It is seen that as the number of iterations to convergence reduces, the largest real

eigenvalue reduces in magnitude. This indicates that using a mix of the first and second

order Jacobian matrices to form the preconditioner, changes the conditioning, and thus

the performance of the preconditoner matrix that is formed. A final method of analysis

is to take the solution of Ax = b, and subtract the solution of Px = b. The L2 norm

of the difference gives an indication of the approximation of the factorisation. This is

a similar approach to that taken by Duff and Meurant [37] with the Frobenius norm

of the remainder matrix, however this is using the solution vectors. The results of this

are shown in Fig. 3.16.

As with the previous results, it is clear that the approximation to the inverse of A

varies with the proportion of first and second order Jacobian matrices in the precon-

ditioner. Across all analyses, the preconditioner based on the second order Jacobian

matrix is very poorly conditioned, and is a poor approximation. This explains the lack

of convergence in the PETSc test cases.
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Figure 3.16: Error from exact solution (NACA 0012 fine AGARD CT2)

3.2 Harmonic Balance

The Harmonic Balance solver has the advantage of being able to capture nonlinearities.

This proves very useful for calculating dynamic derivatives at the extremes of the flight

envelope, where the values from LFD may no longer be adequate. A Harmonic Balance

solver has been implemented in both the DLR TAU code and PML CFD solvers as

part of this work. The HB implementations do not make use of the aforementioned

preconditioner.

3.2.1 TAU Implementation

The HB solution method typically requires a coupled solution of the time slices, with

the HB source term applied to the residuals. This proves to be a problem in TAU,

where it requires significant memory reallocation, and corresponding code modification

to solve the coupled problem. A work-around for this, is to solve the time slices in a

decoupled manner, with the HB source term being updated at each step to ensure the

solves use the correct whb vector. The benefit of this implementation is that the user

can select any TAU solver option.

The HB method in TAU is demonstrated here for the NACA 0012 aerofoil test case

at CT2 conditions. The pitching moment solution is shown in Fig. 3.17, with increasing

number of harmonics retained in the solution.

This case was chosen for demonstration due to the presence of nonlinearities. The

LFD solution is not able to predict this loop accurately, as was shown in [23]. If

the dynamic derivatives are required at these conditions, it is necessary to use the

HB solver. It is seen here that at least three harmonics are required to reconstruct

the time-domain solution, with increasing numbers of harmonics improving the match

further. Three harmonics are often sufficient to represent the time-domain solution to

within sufficient accuracy, although solutions for this are not shown here.

47



AoA [deg.]

C
M

-2 0 2 4 6 8

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05
Time Domain
HB 1
HB 3
HB 5

Figure 3.17: Pitching moment coefficient (NACA 0012 fine AGARD CT2)

Given the industrial application of the TAU code, it is necessary to consider the

memory requirement for the HB method. This is shown in Table 3.9.

Solver Memory (MB)

Time Domain 39.5
HB-1 75.4
HB-2 84.1
HB-3 90.6
HB-4 98.0
HB-5 102
HB-6 106

Table 3.9: TAU-HB memory requirement (NACA 0012 fine AGARD CT2)

It can be seen that the memory required to solve the HB system increases with the

number of retained harmonics as expected. This is due to the time slice solutions and

residuals being stored at a rate of 2NH + 1. However, the HB solver requires minimal

extra memory than the time-domain solver.

3.2.2 PML Implementation

An alternative approach to the solution of the Harmonic Balance problem is to use an

implicit formulation. This is described in Section 2.4.2.1.To demonstrate the capability

of the implicit HB solver, the NACA 0012 aerofoil is again used. This time two flow

conditions are used. Firstly, an inviscid simulation at AGARD CT2 conditions, and

secondly, a viscous case at AGARD CT1 conditions. The point distributions used are

shown in Figs. 3.18(a) and 3.18(b).

The pitching moment against angle of attack is shown in Fig. 3.19 for an increasing

number of retained harmonics.
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(a) Euler (b) RANS

Figure 3.18: NACA 0012 point distributions
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Figure 3.19: Pitching moment coefficient loops from PML HB

The results here are similar to that shown with TAU. The single harmonic solution

has not matched the time-domain solution, and increasing the number of retained har-

monics leads to better reconstruction of the time-domain signal. It is seen that again,

three harmonics for these extreme motions are sufficient to provide a good approxima-

tion to the time-domain solution.

The purpose of using the frequency domain methods is to accelerate the time to

convergence of a periodic problem. It is therefore useful to compare the solution times.

The speed up is plotted in Figs. 3.20(a) and 3.20(b) where the line indicates the time

for the time-accurate solver (i.e. 1.0). The time-accurate solves have been run for three

cycles with 64 time steps per cycle so that a periodic state is obtained in the solution.
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Figure 3.20: Speed up of PML HB

It is clear that increasing the number of harmonics reduces the speed up which

can be achieved. However, when combined with the previous plot showing that three

harmonics are sufficient for these cases, the HB method is significantly quicker than

the time-domain solver, with a similar solution accuracy.

A final consideration is the memory requirement for the HB method which is shown

in Table 3.10.

Solver CT1 CT2

Time Domain 123 68.3
HB-1 383 214
HB-2 694 350
HB-3 1089 531
HB-4 1395 783
HB-5 1953 988
HB-6 2467 1262

Table 3.10: PML-HB memory requirement (MB)

For the fully-implicit formulation, the Jacobian matrix in Eq. (2.36) needs to be

stored explicitly in memory and as such, for increasing harmonics, requires considerably

more memory than the time-domain solver.

It has been shown that the LFD and HB methods can offer significant benefits

in the reduction of computation time for cases involving periodic motions, such as

for the calculation of dynamic derivatives. The solution of the LFD problem in TAU

has been improved through the use of an implicit method with preconditioner. The

preconditioning has been shown to greatly affect the convergence of the system, with

a preconditioner matrix based on both the first and second order jacobian matrices

offering further benefits in speed up. Although the Harmonic Balance is not as quick

as the LFD method, it has shown to be able to capture nonlinearities, whilst having a

reasonable speed up over the time–accurate solver.
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Chapter 4

Tabular Aerodynamic Model

4.1 Background

During the design phase of an aircraft, a complete flight dynamics assessment of the

configuration must be carried out before the aircraft will be certified. As part of this

assessment, it is necessary to use an aerodynamic model in order to determine the loads

and moments for points through a simulated manoeuvre. The model used is often of

tabular type. This is a large database of aerodynamic coefficients for flight parameter

combinations. The data within these tables can be obtained from wind tunnel tests.

The size of the tables requires tests in the order of millions to cover the flight envelope

of a civil airliner. With the increasing use of CFD, computational simulation offers

an alternative to empirical sources of data. A number of recent studies have looked

into the use of CFD for tabular model generation, and methods to reduce the required

number of simulations to populate the tables, as described in the introduction.

In using the tabular models for flight simulation, there are a number of key steps.

The first requires construction of the static aerodynamic database or table. For exam-

ple, an aerofoil with a flap will have three parameters which can be varied to describe

the motion, Mach number, M, incidence, α, and control surface deflection, δele. Each

of these parameters will have upper and lower limits depending on the flight envelope

and mechanical constraints of the model. Within this range, an interval must be de-

scribed at which to measure the aerodynamic coefficients. The following table 4.1 is

then formed.

M α δele CL CD CY Cl Cm Cn

x x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x

Table 4.1: Example Aerodynamic Table (x indicates non-zero entry)
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Each of the data points in the table is obtained from a static calculation using ei-

ther empirical or computational methods. In forming this table, the first assumption

is made. This assumption is that the resolution defined within the chosen interval is

sufficient to capture the flow dynamics through the parameter space. In this example,

taking a number of intervals of 100, the total number of simulations required to pop-

ulate the table is 100n where n is the number of dimensions in the table. For three

dimensions this is 1,000,000. Should CFD be chosen as the source of the data, this could

prove to be computationally expensive. In order to reduce the number of required sim-

ulations, a further assumption is made. The second assumption is that of decoupling

the parameters. In this example, it is assumed that there is no coupling between the

incidence and control surface deflection. This leads to two tables 4.2 and 4.3.

M α CL CD CY Cl Cm Cn

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

Table 4.2: Reduced table for Mach and incidence

M δele CL CD CY Cl Cm Cn

x x x x x x x x
x x x x x x x x
x x x x x x x x
x x x x x x x x

Table 4.3: Reduced table for Mach and control surface deflection

The contribution from each table is then summed to provide the total coefficient

value at a given point in a manoeuvre. Using two tables, the 1,000,000 initial simula-

tions is reduced to 20,000, a reduction of 50 times.

The second step in using the tabular models for flight simulation requires a method

for accounting for the effect of unsteady motions on the loads and moments. This

is done using dynamic derivatives. These are described in Section 2.3.1. Dynamic

derivatives are a simple way of introducing the unsteady loads to the static values. The

modification of the coefficients is as follows:

Cj = Cj0 +Cjα̇α̇ (4.1)

The j subscript corresponds to the load or moment of interest, the zero subscript

indicates the static term (from the tables), and the coefficient with a dotted subscript is

the dynamic derivative. This equation breaks down the unsteady coefficient into a static
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component and an unsteady component based on the instantaneous rate of change of

incidence. There are no higher order terms. This leads to the third assumption. There

is no accounting for history effects in the flow as a result of rapid motions. Neglecting

these effects could prove to be important for certain manoeuvres.

The dynamic derivatives need to be calculated. This is done using forced periodic

oscillations. In order to speed up this process, frequency domain methods, described

in Section 3.1 and 3.2, are used. Depending on the manoeuvre to be simulated, the

conditions for the calculation of the derivatives are chosen to be as similar as possible.

This matching of conditions tries to ensure that flow features present in the manoeuvre

are captured. As part of the simulation process, a single value for the derivative is

used. This leads to the final assumption in this model. It is assumed that the dynamic

derivative does not change significantly with the parameters to cause discrepancies in

the simulated loads. For small amplitude manoeuvres this may be true, however, for

larger amplitude manoeuvres with shocks and separation present, this will not be the

case.

With assumptions being made in the formation of the model, it is necessary to

determine how good the predictions are. In this chapter, a number of test cases of

increasing complexity are used, through a number of flow regimes. The purpose is to

demonstrate the performance of the tabular model and establish when it breaks down.

In order to assess the tabular model performance, the framework in [6] is used.

This framework requires defining a manoeuvre, running this with a time–accurate CFD

solver, the solution to which is used as the baseline comparator, and running the same

manoeuvre with the tabular model. The simulated loads are then compared. In the

following test cases, the tabular replays have been augmented with the relevant dynamic

derivative values calculated at the conditions of the simulation. This is done due to the

academic context of this work and a different approach is taken for industrial cases.

The derivatives have been calculated using the Harmonic Balance solver, with three

harmonics being retained.

4.2 CFD Validation

Before using CFD as a baseline solution, it is necessary to ensure that the model in

use is sufficient for simulation of high–rate, high–incidence manoeuvres. The CFD

predictions are first validated against experimental data. A motion ranging from the

linear region to stall and back has been chosen for this purpose due to the complex

flow with dynamic stall present. The motion is described in [68] as case 8 (M = 0.3,

Re = 4× 106, α0 = 10,αA = 10◦, k = 0.1). The CFD solution is compared in Fig. 4.1

against the experimental data for both CL and CM .

This manoeuvre is the most extreme of those to be considered in this thesis, and as

such, is a good upper limit with which to establish the ability of the CFD solver. It is
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Figure 4.1: CFD validation (McCroskey case 8)

seen that the CFD solution is in good agreement with the experimental data through the

majority of the motion, which due to the presence of substantial separation and shocks

throughout, is satisfactory. There are discrepancies in the deep stall region, particularly

for the pitching moment, which could be attributed to turbulence modelling. A large

number of the manoeuvres in this thesis are assessed using the Euler equations rather

than RANS to model the flow behaviour and have a corresponding low–rate and low–

incidence in order not to push beyond the limits of the model.

4.3 Dynamic Derivatives

For each of the tabular–based simulations, the loads and moments have been modified

using the dynamic derivative model described in Section 2.3.1. The dynamic derivative

terms have been calculated using the Harmonic Balance solver in the PML code. Three

harmonics have been used to capture the majority of the flow dynamics due to having

proven to be sufficient in the previous chapter. The conditions used to calculate the

dynamic derivatives are those of the manoeuvre. For example, an oscillatory manoeuvre

at Mach 0.3, an amplitude of 5.0◦ and a frequency of 0.01 will have the Harmonic

Balance solver run at the same conditions. The reason for this is to capture the flow

features present during the manoeuvre. This allows the derivative value to best estimate

the unsteady dynamics for the given conditions. The dynamic derivative model is

linear, with the value determined from an averaging of the flow features about the

mean point. Most of the manoeuvres used in this chapter are either low amplitude, or

the flow varies linearly with the change in incidence, thus making the derivative model

a good estimator.
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4.4 2D Aerofoil

The first, and most simple case, is the NACA 0012 aerofoil with no control surface.

This allows an assessment of the tables on a fundamental level, and in a more targeted

manner, through removing the impact of assumptions used in forming the model, such

as decoupling of parameters. The point distribution used is shown in Fig. 4.2, and has

25,509 points with an initial wall spacing of 1× 10−5.

Figure 4.2: NACA 0012 RANS point distribution

4.4.1 Manoeuvres

To assess the tables, manoeuvres must be defined with various levels of complexity. The

tables should work where there is linear behaviour of the flow without the presence of

shocks or separation. The assessment needs to then progress to establish the tabular

capability in the regions where nonlinear behaviour begins to dominate. These, for ex-

ample, would include transonic Mach numbers or high–incidences, and even combining

the two. In order to cover the range of flow regimes, two manoeuvre profiles of varying

difficulty have been chosen. The first manoeuvre is a ramp motion. This consists of a

constant–rate pitch–up, restricted to pitch only for the cases here. In varying the rate

of pitch and beginning or final incidence, different flow phenomena can be present. For

the aerofoil ramp case, rates ranging from 0.3◦/s to 10◦/s have been selected. This

range of rates provides a scale of flow complexities to be studied. The incidence ranges

from 0◦ to 10◦ at Mach 0.4 and Re=4.8 × 106, remaining below stall throughout, to

evaluate the adequacy of the tables where the forces and moments behave in a lin-

ear manner. Comparison between the CFD and Tabular replays at 2◦/s is shown in

Fig. 4.3.

There is good agreement between the replays for the lift coefficient. It is seen

that towards the end of the manoeuvre at the higher–incidence, the two replays begin

to move away from each other. This is due to approaching the stall region where
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Figure 4.3: Ramp manoeuvre replay 2◦/s

separation and shock waves will be starting to form, thus causing differences in the

modelling methods. The differences are easier to view in the pitching moment plot.

The pitching moment is more sensitive to changes across the aerofoil due to the lever

arm amplifying differences at points toward the extremities of the aerofoil body. As

the incidence increases, small shocks begin to form on the upper surface of the aerofoil.

These causes corresponding changes in the pressure and thus the value of the pitching

moment. Differences should be even greater for higher–rates. Comparison is shown in

Fig. 4.4 for the 10◦/s manoeuvre.
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Figure 4.4: Ramp manoeuvre replay 10◦/s

It is again seen that there is good agreement between the CFD and the tabular

replay for the lift coefficient, with the same differences beginning to appear at the up-
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per limits of the incidence. As suspected, the pitching moment coefficient is even more

poorly matched than the lower–rate manoeuvre. With increasing the rate of the mo-

tion, a lag between the motion and fluid updating is introduced. This effect will cause

separation to begin, and combined with the shocks due to the high–incidence, discrep-

ancies between the modelling approaches are seen. These discrepancies are caused by

the lack of accounting for history dependent flow features in the tabular model.

The second manoeuvre profile consists of a sinusoidal motion in the stall region.

The case used for CFD validation, McCroskey case 8, is again chosen due to the high–

incidence and high–rate nature of the motion, along with passing in and out of the stall

region, where both linear and nonlinear effects are present. The replays for this are

shown in Fig. 4.5 for both the lift and pitching moment coefficients.
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Figure 4.5: Oscillatory manoeuvre replays

It is seen that for this case, where there is large nonlinearity due to dynamic stall,

the agreement between the CFD and tabular replays is poor. The lift coefficient has a

similar slope through the lower–incidence part of the manoeuvre, although for the rest

there is a complete mismatch between the model replays. This is particularly prevalent

at the high end of the manoeuvre where the flow is almost completely separated. The

tabular replay has a profile similar to a static stall. This is to be expected due to

the data being obtained from static calculations. The pitching moment coefficient is

suprisingly well matched through more than half of the manoeuvre. However, as with

the lift coefficient, at the high incidence, there is substantial difference between the two

replays. Again this is due to the separation through dynamic stall not being captured

by the static calculations used in the formation of the tabular model. From both

plots, it is clear that even the addition of the dynamic derivatives is not suitable. The

dynamic derivative model has the effect of adding hysteresis to the loops with the mean

being the values taken from the tables. Based on this, there is no possibility that the
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tabular model could replicate the response seen in the CFD replay for this manoeuvre.

Although this type of manoeuvre is outside the flight envelope of a civil airliner, it is

necessary to consider in order to establish the limits of the tabular model. Even for

this simple two–dimensional case, with only two tabular parameters, the model is not

adequate in this regime. This adds to the motivation to better understand why the

model breaks down.

4.5 2D Aerofoil with Control Surface

In order to increase the complexity of the problem, the aerofoil has been modified to

include a control surface. This modification increases the dimensionality of the tables,

as well as introducing the possibility to have more complex flow features as a result

of two moving bodies. Due to the use of two different flap modelling approaches, two

aerofoil bodies have been defined. The first defines the aerofoil and control surface

as two separate bodies as point distributions, to be used with the PML preprocessor

overlap functionality. The two component point distributions have been defined: the

body, which is cut at 0.75c and has 14,088 points with the farfield at 50c; and a flap

section of length 0.25c with 10,339 points and the farfield at 25c, where c is the chord

length. The respective distributions are shown in Figs. 4.6(a) and 4.6(b). All cases

where this method has been used have been solved for the Euler equations.

(a) Body (b) Flap

Figure 4.6: NACA 0012 point distributions

The second approach, using the deformation tool (Section 2.2), requires only a

single body to be defined. This case makes use of a finer point distribution of 33,393,

with a wall spacing of 1 × 10−5c, in order to solve the RANS equations. Although

the deformation approach requires a single body to be defined, in order to model

a control surface deflection, a structure also has to be defined. The points in the
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computational domain are mapped to this structure. The structure is then deformed

as per the deflection specified by the control input. Using the mapping of fluid points

to structural points, the deflected structure causes a deflection in the computational

domain. The structure for this case is dense around the hinge point in order to get

better definition in the deformation, this is particularly important due to the use of

the RANS equations to model the flow. Any sharp changes in the geometry could

artificially induce flow phenomena such as separation which would not otherwise be

present. The point distribution and underlying structure are shown in Fig. 4.7(a).

The structure is deformed with the prescribed deflection as shown in Fig. 4.7(b) for a

deflection of +10◦.

(a) Zero deflection (b) +10◦ deflection

Figure 4.7: NACA 0012 point distributions with underlying structure

4.5.1 Manoeuvres

A number of manoeuvres have been chosen in order to cover the range of flow regimes

presented in the Introduction in Fig. 1.1. The manoeuvres are also representative of

those that are within the flight envelope of a civil airliner. Two types of manoeuvre

have been chosen with increasing complexity to allow for a systematic study of the

tabular model.

As for the previous case, the most simple manoeuvre is that of a ramp. This

involves a pitch up of the aerofoil at a constant rate. Depending on the rate chosen,

the aerodynamics for this manoeuvre remain largely in the linear regime. In order

to increase the problem complexity through the presence of shock waves, two Mach

numbers have been used. Computational methods are of particular use in modelling

problems in the transonic regime, where a civil airliner spends most of its time. The

ramp manoeuvre is run for the conditions shown in Table 4.4.
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M α start α end α̇ δele
0.3 -5.0◦ 5.0◦ 10.0◦/s -1.0◦

0.8 -5.0◦ 5.0◦ 10.0◦/s -1.0◦

Table 4.4: Control surface ramp manoeuvre parameters

The control surface is held at a constant deflection. In order to calculate dynamic

derivative values as close to these conditions as possible, the Mach number, amplitude

and mean incidence are the same with a reduced frequency of 0.01. A comparison of

the lift and pitching moment coefficients between the CFD and tabular replays is shown

for Mach 0.3 and Mach 0.8 in Fig. 4.8.
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Figure 4.8: Ramp motion at 10◦/s
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The lift coefficient at Mach 0.3 shows good agreement throughout, with the slope

being very similar. The small difference begins to increase throughout the manoeuvre.

A slope difference is the result of history dependent effects causing a lag between

the motion and flow updating. This causes a lower lift coefficient due to the body

effectively seeing the flow from the previous timestep. The pitching moment coefficient

has a greater discrepancy at the start of the manoeuvre, which reduces as the incidence

increases. The initial disagreement could be due to the high incidence of the flap section

that is deflected upward. This high incidence will cause unsteadiness in this region,

particularly off the trailing edge. The moment arm accentuates the effects, leading to

the larger discrepancy. The tabular model with dynamic derivatives has no accounting

for these effects and as such are based on a slope for the static calculations. The rate of

this manoeuvre is at the upper end of the flight envelope for a civil aircraft, particularly

at this Mach number, and will rarely be required in service. The small discrepancy is

consistent with what was seen in the simpler single body case at Mach 0.3.

For the Mach 0.8 case however, there is considerable disagreement in both the lift

and pitching moment coefficients. For the lift coefficient, the tabular replay shows a

consistent slope due to the source of the data. There is some curvature at the extremes

of the motion as a result of the high Mach flow causing shocks to form. A steady

change in the pitching moment slope is also seen, with a symmetric movement at the

upper and lower ends of the manoeuvre. The CFD replay through the first half of the

manoeuvre is very different. The shallow slope in both the lift and pitching moment

coefficients at the start suggests the presence of stronger shocks than those seen for the

static case. At -2.0◦ there is a sudden change in the gradient of both slopes. Due to

this not appearing in the tabular replay, it suggests that it is a history dependent effect

that causes this change. Further discrepancy is seen after 2.0◦, although it is not as

pronounced as at the start. In order to determine if this is due to history dependent

effects, the pressure distributions at each side of the slope change can be plotted, for

both the steady and unsteady simulations, with a view to determine if it is a result of

shock motion. The pressure plots are taken at α = −2.0◦ and − 1.5◦, and are shown

in Fig 4.9(a) for the steady state cases, and in Fig. 4.9(b) for the unsteady case for the

CFD replay.

In the steady–state case, the pressure distributions remain similar between the two

incidences. The shock moves by around 2% of the chord and remains on the body

of the aerofoil, i.e. upstream of the hinge point. The unsteady pressure plots show

something very different. At an incidence of -2.0◦, the shock is stronger than that of

the steady case, as well as being located on the flap. At this point, the flap has an

increased incidence compared to the body and as such will result in greater differences

in the lift coefficient. The pressure distribution at an incidence of -1.5◦ shows a weaker

shock which has been displaced by around 10% of the chord. In one-twentieth of the

manoeuvre, the shock has moved five times further than for the steady case. This
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Figure 4.9: Pressure coefficient distribution at two locations in the manoeuvre at Mach 0.8

rapid change in shock location is the reason for the slope change in the lift coefficient

plot. The most interesting aspect of these plots is the location of the shock before

the slope change. The shock being on the flap is further downstream than where it is

for the tabular replay. This suggests there is a lag effect in the flow updating. This is

consistent with the other tests at this rate. Again it is shown that the lack of accounting

for history effects in the tabular model has lead to discrepancies in the replays. It is also

possible to view the shocks in the field plots shown for the steady–state and unsteady

simulations in Figs. 4.10(a) and 4.10(b).
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Figure 4.10: Pressure coefficient distribution at an incidence of -2.0◦ in the manoeuvre at
Mach 0.8

62



From the field plots, it is even clearer that there is a substantial difference in the

size and location of the shock. Given that the tabular replay uses the steady–state

values, the effect of the shock movement is not captured as it should be, even after

accounting for unsteady rate effects through the use of dynamic derivatives.

Adding to the discrepancies is the lack of coupling in the stability and control

derivatives. The pitch damping and flap damping derivatives are calculated individ-

ually. This assumes that there is no effect between the flap motion and the effects

over the body of the aerofoil. This will however not be the case, particularly close to

the hinge point where there is a constantly changing surface profile. It may be more

beneficial to calculate a value that accounts for combined body motion and flap motion

effects. This will be looked at in the next chapter. This case certainly illustrates the

limitations of the tabular model for a manoeuvre that is within the flight envelope of

a civil airliner.

The second manoeuvre type is that of an obstacle avoidance. This manoeuvre

introduces a variable rate of pitch, and is set up to have the aerodynamics passing

through the linear and nonlinear regimes. The conditions for this manoeuvre are shown

in Table 4.5.

M α0 αA kα δele0 δeleA kδele
0.3 0.0◦ 10.0◦ 0.01 0.0◦ 5.0◦ 0.01
0.8 0.0◦ 5.0◦ 0.01 0.0◦ 2.0◦ 0.01

Table 4.5: Control surface obstacle manoeuvre parameters

Rather than being a standard forced oscillatory motion, the obstacle avoidance ap-

proach comes from having the flap deflection 90◦ out–of–phase from the body deflection.

This feature has the potential to introduce some interesting flow dynamics, particularly

if the speed of the motion is increased to introduce a lag between the motion of the body

and updating of aerodynamics. Comparisons for lift and pitching moment coefficient

are shown for the two Mach numbers in Fig. 4.11.

The manoeuvre at Mach 0.3 is the simplest of the two, although it does have a

large amplitude in order to introduce some nonlinear behaviour. It is seen that the

tabular replay with the dynamic contribution is able to estimate the time accurate

replay well. There is a small persistent offset throughout the loop particularly around

the +5.0◦ on the upstroke and −5.0◦ on the downstroke in the lift coefficient plot,

although this is not present for the pitching moment. This difference in hysteresis

could be attributed to the dynamic derivative value used. Using a higher value will

lead to a greater width in the tabular replay loop and get better agreement with the

CFD replay. The derivative value may be slightly off due to the averaging process used

in its calculation. The Mach 0.8 manoeuvre is less well predicted. It has been designed

to create complex aerodynamics, such as strong moving shocks, so that differences can
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Figure 4.11: Obstacle avoidance manoeuvre(Euler)

be seen between the CFD and tabular replays. The differences are clear mainly in the

width of the loops. The mean of each is fairly similar suggesting there is again an

issue with the dynamic derivative used. The tabular model is not sufficient to predict

the time-accurate replay for this manoeuvre in either of the lift or pitching moment

coefficients. There are large discrepancies in the loop and changes in the curvature of

the CFD replay, which are not captured. The changes in slope are consistent with that

seen in the ramp manoeuvre. These changes are due to the shock location moving from

the flap to the body. Although this is certainly a history effect due to the time lag in

the flow and motion updating, the individidual calculation of the dynamic derivatives

will again play its part. The rapid movement of the shock across the flap hinge also

introduces large history effects which are not captured in the tabular model. These two

cases show the need to assess the assumptions, in order to determine when it is fit for
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purpose.

The complexity of this problem can be increased further by the inclusion of viscous

effects in the simulation. The use of the RANS equations to model the aerodynamics

allows for separation to increase the number of nonlinearities in the flow, along with

causing complex flow features in the boundary layer around the hinge point. The same

inputs have been used as for the Euler case. For the RANS simulations, a different

point distribution has been used, along with the deformation technique for modelling

the flap deflection. The lift and pitching moment coefficient comparisons are shown in

Fig. 4.12.
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Figure 4.12: Obstacle avoidance manoeuvre (RANS)

As with the Euler simulations, the subsonic case shows excellent agreement between

the CFD and tabular replays. There is very little difference between the mean values

in the replays and the hysteresis in the loops. However, the transonic case shows
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significant discrepancies between the two replays. Unlike the Euler simulations, there

is now disagreement in both the mean values at each incidence and the hysteresis. The

differences in the mean values suggests there is a delayed stall due to history effects

which is not captured in the static–based tabular replay. The lack of matching in the

hysteresis is consistent with the inviscid case, and is indicative of the nonlinearities due

to shock motion not being captured. The shock motion is particularly noticeable in the

pitching moment loop, where at the extremes of the manoeuvre, there is sharp change

in the slope. These sharp changes suggest sudden variations in the flow around the flap

region due to the moment arm effect again accentuating flow changes. This case is a

very good example of when the tables are no longer suitable. The reasons for this will

be studied further in the next chapter.

The aerofoil test case has shown on a very basic level that the tabular model is

suitable for a number of flow regimes within a typical airliner flight envelope, however,

when there are nonlinear flow features present, the model begins to break down. It has

also been shown that the dynamic derivative model may not be suitable for these more

demanding manoeuvres and should be used when there are limited history effects.

4.6 LANN Wing

The final case is the LANN wing. This is a transport aircraft configuration. The

three dimensional nature allows a sideslip parameter to be introduced to increase the

dimensionality of the tables. It further adds the possibility to assess the assumption of

coupling. For this case the TAU code was used. The computational grid is shown in

Fig. 4.13 with 267,463 points. An important note for this case is the use of a symmetry

plane during sideslip simulation. Although this is not true sideslip, it is representative.

This grid has been used for both the CFD and tabular replays, with the consistency

between data sources the most important factor. This treatment is solely a cause of

time contraints during the assessment.

The increase in complexity of the geometry allows further comparison between re-

plays for different types of manoeuvres and testing of the tabular model with three–

dimensional tables ([M,α,β]). An oscillatory manoeuvre has been chosen for simplicity

simulated at Mach 0.3, with sinusoidal variations in incidence and sideslip. The condi-

tions for this manoeuvre are shown in Table 4.6.

M α0 αA kα β0 βA kβ
0.3 0.0◦ 5.0◦ 0.001 0.0◦ 5.0◦ 0.001

Table 4.6: LANN wing manoeuvre parameters

As for the control surface obstacle avoidance, in order to create interesting flow

dynamics, the incidence and sideslip have been set to be 90.0◦ out–of–phase. The
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Figure 4.13: LANN wing grid

resulting path traced is a circular motion. A comparison of the CFD and tabular

replays is shown in Fig. 4.14 for both the lift and pitching moment coefficient.
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Figure 4.14: LANN wing replay comparison

The low amplitude and low rate motion has been chosen to be representative of that

experienced by a transport aircraft wing. As a result, the performance of the model

for this configuration should be closer to that in industrial practice on full aircraft.

It is seen that throughout most of the motion there is good agreement between the

two replays. Yet, despite the low rate and low amplitude, there are still discrepancies

between α = −3.0◦ and α = 0.0◦. This occurs when the wing is on the upstroke for

the incidence and is experiencing an ever increasing sideslip. At this point, crossflow

will be increasing across the wing surface. These effects can start to cause an inter-

action with the oncoming flow and result in nonlinear flow dynamics. Any cross flow
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effects, particularly with any history effects will not be captured during steady–state

simulations. Further, the coupling of the two motions in incidence and sideslip will not

be captured using the dynamic derivative model, again due to individual calculation of

the values. Although there is not a large difference between the two replays, it is clear

that more complex manoeuvres using this model, such as increasing the amplitude and

motions rates, will certainly cause large discrepancies. The flow features present when

using a three–dimensional model lead to difficulties in the simulation of the loads using

the tabular–based model. This example further shows the need to assess the tabular

model in greater detail, particularly with this being a typical civil domain configuration

and manoeuvre.

In each of the three test cases presented here, through all flow regimes of interest

for a civil aircraft, the comparison between the tabular and CFD replays is consistent

with previous studies. For the low rate manoeuvres, where the aerodynamics remains

largely linear, the model is able to predict the loads and moments well. However, when

the manoeuvres are extended to higher rates of incidence or sideslip, the tabular model

breaks down. A number of possible sources of error have been mentioned where this

has been the case. Each of the assumptions in forming the table will play their part

in errors between the modelling approaches, although to varying intensities. The next

chapter will look to assess each assumption in a systematic way, using the examples in

this chapter as a basis for forming the test cases and manoeuvre profiles for the study.
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Chapter 5

Assessment of Assumptions

5.1 Tabular Model Assumptions

Having established in the previous chapter that the tabular model is not adequate for

all manouevres of interest, it is necessary to assess the model in greater depth. In the

formulation of the tabular aerodynamic model, four key assumptions are made.

The first assumption is a decoupling of certain flight parameters. For example,

table 5.1 for [M,α,β,δele] can be broken down into two smaller tables for [M,α,β] and

[M,α,δele] as given in tables 5.2 and 5.3.

M α β δele CL CD CY Cl Cm Cn

x x x x x x x x x x

Table 5.1: Coupled Aerodynamic Table (x indicates non-zero entry)

M α β CL CD CY Cl Cm Cn

x x x x x x x x x

Table 5.2: Decoupled Aerodynamic Table for sideslip (x indicates non-zero entry)

M α δele CL CD CY Cl Cm Cn

x x x x x x x x x

Table 5.3: Decoupled Aerodynamic Table for control surface deflection (x indicates non-zero
entry)

The forces and moments are calculated at each step in the manoeuvre from the

decoupled tables which are then summed to give the global values. Provided this

assumption is valid, the combined loads and moments should be equal to those from

the coupled table. The benefit of the decoupling allows the fully coupled table to be
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broken down into smaller dimensions, thus reducing the required number of solves to

populate the entries.

The second assumption is that of adequate resolution within the parameter space.

Given the infinite number of possible parameter combinations, it is impossible to cal-

culate the loads and moments for each point. In order to get around this problem,

the range of values for each parameter is discretised. At each discrete point, a cal-

culation is made. However, the number of discrete points must be chosen to ensure

that the variation of flow conditions within the parameter space is effectively captured.

In between the discrete points, sampling techniques are used where a calculation does

not exist. This assumption can have implications where there is significant nonlinear

behaviour of the flow dynamics. This can be seen through plotting the lift coefficient

in the parameter space as a surface for the aerofoil with control surface case at Mach

0.8, as in Figs. 5.1(a) and 5.1(b).

For the above figures, two resolutions have been used across the range -10.0◦ <

α <10.0◦ and -5.0◦ < δele <5.0◦. At this Mach number, at the higher incidence

there are significant shocks. This leads to a nonlinear variation of the lift coefficient

with each of the parameters. This is seen in the curved surface, captured by the 33

point resolution. This however causes a problem for the four point resolution, where

the surface is assumed to be bilinear. Using a four point resolution is unrealistic in

practice, but it demonstrates the principle. This is an assumption which could impact

the simulated loads and moments from the tabular model, particularly in the areas of

interest at the extremes of the flight envelope.

The third assumption comes from the dynamics modelling. The dynamic derivatives

have been shown to vary with the conditions for which they are calculated. For example,

there may be a variation with reduced frequency or Mach number. The variation in the

pitch damping derivative for an aerofoil is shown in Figs. 5.2(a) and 5.2(b) respectively.

In practice, the tabular model is used with derivative values held constant through-

out the simulations. This assumes that the value is considered as invariable with flight

conditions, which is not the case. Dynamic derivatives are calculated using small am-

plitude oscillations. This allows the linearisation about the mean point to be considered

valid. However, for a large amplitude manoeuvre, the aerodynamics could no longer

be varying linearly. Further to this, calculating dynamic derivatives for a small ampli-

tude oscillation, then using it for a high amplitude manoeuvre, could introduce errors

through not capturing shocks or separation. This could be overcome through the use

of a number of derivative values through the manoeuvre. This will be looked at later

in this chapter.

Finally, there is the assumption of neglecting history effects. The values in the tables

are obtained from steady–state simulations, these values are then augmented with a

dynamic derivative. The dynamic derivative model, as shown in Eq. (2.9), consists of

a steady component and an unsteady component based on the instantaneous rates of
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Figure 5.1: Effect of resolution on lift coefficient prediction for aerofoil with control surface
at Mach 0.8

the motion. There are no extra terms that account for historical influences as in the

unsteady dual–time CFD model. This therefore renders this model as quasi–steady. It

is the case, for certain manoeuvres, that history effects become significant. A number

of examples were shown in the previous chapter.

There is no previous literature on the impact of each of these assumptions on the

modelling of loads and moments for flight dynamics analysis. In this chapter, an as-

sessment is carried out, building on the work in [8]. This chapter continues with an

assessment based on forced motions, before moving to the applicability to control ap-

plications using free–response manoeuvres. The chapter finishes with an assessment of
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Figure 5.2: Effect of input parameters in pitch damping derivative

the dynamic derivative model and using multiple values versus a single derivative. The

error introduced for a number of manoeuvres is shown.

5.2 Forced

As part of this assessment, two simulation approaches have been taken. The first is

the use of forced motions to isolate the impact of each assumption on the loads and

moment prediction of the tabular model. The test cases used in the previous chapter

are used. The focus is on the aerofoil with trailing edge flap and the LANN wing due

to the increased dimensionality in the tables increasing the problem complexity. The

manoeuvre profiles used are also those from the previous chapter and are described

where relevant.

Coupling

The first assumption to consider is that of the decoupling of parameters to reduce the

size of the tables. This is first tested using the aerofoil with control surface. The table

of variables [M,α,δele] is reduced to [M,α] and [M,δele], in order to decouple the effects

between the incidence of the aerofoil and the flap deflection. The parameters have the

ranges in table 5.4.

Mach α δele
Range 0.3 to 0.8 -10.0◦ to 10.0◦ -10.0◦ to 10.0◦

Interval 0.1 2.0◦ 5.0◦

Table 5.4: Coupled and decoupled table parameter ranges
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The assumption is assessed using replays with the tables, and comparing the decou-

pled solution with that of the coupled solution. Two manoeuvres have been selected.

The first is a ramp profile starting at an incidence α = 0.0◦ and pulling up to 10.0◦

at a rate of 10.0◦/s, with a constant control surface deflection δele = −5.0◦. In order

to assess the coupling, it is necessary to have a varying third dimension. This is done

by varying the Mach number which starts at 0.5 and decreases through to 0.3 as the

incidence increases. The second manouevre is made more complicated by increasing

the starting Mach number. Again, there is a ramp profile from α = 0.0◦ to 10.0◦ at a

rate of 10.0◦/s, but with a constant control surface deflection δele = −2.0◦. The Mach

number is increased to start at 0.8 decreasing to 0.5. This leads to passing through the

transonic regime and thus introduces nonlinear behaviour of the flow. The two manoeu-

vres have been run with a coupled and a decoupled table formulation. A comparison

of the simulated lift and pitching moment coefficients is shown in Fig. 5.3.
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Figure 5.3: Aerofoil with control surface ramp replays with and without coupling
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With regard to the lift coefficient, it is seen for the lower Mach case that there is

little difference throughout much of the manoeuvre up until around α = 9.0◦ where

there are shocks forming on the upper surface of the aerofoil. In the linear region,

the agreement is almost perfect, with the assumption of decoupling having a negligible

effect on the simulated lift for this manoeuvre. For the higher Mach case, a similar

result is seen with good agreement up until α = 7.0◦. At this Mach number the shocks

are much stronger, thus increasing the nonlinearity in the lift. The shocks are present

from around half way through the manoeuvre and become more significant as the angle

increases. This increase in complexity shows where this assumption becomes a problem.

The discrepancies are as much as 5% to 10% toward the end of the manoeuvre and

would likely increase as the incidence increases further. For the pitching moment coeffi-

cients, the discrepancy builds as the manoeuvre progresses. For both the low and high

Mach cases, there is good agreement at the start, which is to be expected considering

the benign conditions. However, the discrepancy appears to be compounding as the

incidence increases. This is likely caused by a coupling influence between the reduced

flap incidence due to deflection. The error in the high Mach case is around 25%. In

this instance the assumption is not of great concern, although the errors could become

more significant for some manoeuvres. This is because at higher Mach numbers in the

civil domain, manoeuvres are typically low incidence and very low rate, leading to the

conclusion that the discrepancies shown here will not be relevant.

Although the main focus of this assumption is on the decoupling in the tables, it

is possible to extend this to an assessment of coupling in the dynamic derivative used.

Typically, a stability derivative is calculated for the body motion with δele = 0.0◦, and

a control derivative is calculated with a moving flap and stationary body. The two are

then multiplied by their respective rates in the manoeuvre and summed to obtain the

unsteady contribution. However, for high Mach, high incidence manoeuvres, the cou-

pling between body and flap motion could become significant as was seen in Fig. 4.11.

When the derivatives are calculated individually, the simulations will not capture the

influence of the bodies moving in relative motion and the subsequent impact on the

flow dynamics. For example, the stability derivative is calculated by an oscillation in

the pitch with the control surface at a deflection of 0.0◦. Likewise the control derivative

is calculated by oscillating the flap whilst holding the body at an incidence of 0.0◦. It

is possible to run a simulation with the body and the flap moving, then calculating a

combined derivative. This leads to coupling effects being captured, although linearised

about the mean state. In order to assess this, the obstacle avoidance manoeuvre from

the previous chapter is taken, and is simulated for a subsonic case at Mach 0.3, and a

transonic case at Mach 0.8. The individual dynamic derivative values have been calcu-

lated using the decoupled approach, and then also a coupled approach. The coupled

approach used is a direct simulation of the manoeuvre using CFD, with the derivative

calculated relative to the pitch. The tables can be used with the two types of derivative
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to simulate the obstacle manoeuvre. The simulated lift and pitching moment coefficient

responses are shown in Fig. 5.4.

AoA [deg.]

C
L

-10 -5 0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

Coupled
Decoupled

(a) Lift coefficient at M=0.3

AoA [deg.]
C

M

-10 -5 0 5 10
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Coupled
Decoupled

(b) Pitching moment coefficient at M=0.3

AoA [deg.]

C
L

-4 -2 0 2 4

-1

-0.5

0

0.5

1
Coupled
Decoupled

(c) Lift coefficient at M=0.8

AoA [deg.]

C
M

-4 -2 0 2 4
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Coupled
Decoupled

(d) Pitching moment coefficient at M=0.8

Figure 5.4: Aerofoil with control surface obstacle replays with and without coupling in the
derivative

This case has been chosen due to the presence of discrepancies in the simulation in

the previous chapter. Despite this, it is seen that for both the subsonic and transonic

Mach cases, the difference between the coupled and decoupled approaches is negligible.

The transonic case does contain some significant nonlinear behaviour, but this does

not appear to have affected the replays. For this case it can be concluded that the

assumption of decoupling of the dynamic derivatives is valid.

A coupling assessment can also be carried out for the LANN wing. The coupled

table [M,α,β] can be broken down into two, two dimensional tables in [M,α] and [M,β].

The manoeuvre parameters are shown in table 5.5.
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α0 αA kα β0 βA kβ
0.0◦ 5.0◦ 0.001 0.0◦ 5.0◦ 0.001

Table 5.5: LANN coupling manoeuvre parameters

Again, in order to introduce variation in all three dimensions, two Mach number

regimes have been chosen. Firstly, an initial Mach number of 0.5 decreasing to 0.3,

and an initial Mach number of 0.8 decreasing to 0.5. The simulated lift and pitching

moment coefficients using the coupled and decoupled approaches are shown in Fig. 5.5

for the two Mach regimes.
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Figure 5.5: LANN Wing: coupled and decoupled replays

It is seen that there is a substantial difference between the coupled and decoupled

tabular replays. This is to be expected when considering what happens at each point in
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the manoeuvre. For example, at the start point in the coupled replay, M=0.5, α = 0.0◦

and β = −5.0◦. This is also true of the decoupled contribution from the [M,β] table.

Due to the wing not having a symmetric section, there will be a non-zero contribution

from the [M,α] table. The sum of the decoupled parts will always be offset from the

coupled replay. This is not seen in the control surface comparisons due to the deflections

considered to be zero, therefore no contribution from the [M, δ] table. This could be

improved by calculating the [M,β] table for an α value where the contribution is zero

for all coefficients, if this exists. However, when the dimensions of the tables increase,

it would be increasingly difficult to find a point where the contribution is zero.

Resolution

The resolution of the tables is critical to the efficacy of the model, particularly where the

aerodynamics are rapidly changing. In order to assess this, the obstacle case has been

run at Mach 0.3 and 0.8 with various resolutions in the tables. A number of resolutions

have been chosen. The parameter range and intervals are shown in table 5.6 per Mach

number.

α Range α Interval δele Range δele Interval Number of Points

-10.0◦ to 10.0◦ 2.0◦ -10.0◦ to 10.0◦ 5.0◦ 55
-10.0◦ to 10.0◦ 4.0◦ -10.0◦ to 10.0◦ 10.0◦ 18
-10.0◦ to 10.0◦ 20.0◦ -10.0◦ to 10.0◦ 20.0◦ 4

Table 5.6: Aerofoil with control surface table resolutions per Mach number

The finest resolution has 55 table entries for each Mach number. This is the res-

olution used in the previous chapter and was sufficient to simulate the CFD solution.

The second resolution is reduced to 18 points and the final resolution has just 4 points.

The coarsest is the 4 corners of the parameter space such as that seen in Fig. 5.1(a).

A table can be formed for each of the resolutions, with the replays run for the ob-

stacle manoeuvre at the two Mach numbers. The simulated lift and pitching moment

coefficients are shown in Fig. 5.6.

It is seen that for the subsonic case, there is little difference as a result of the

different resolutions. This is to be expected due to the motion remaining in the linear

regime. There is, however, a small difference using the coarsest table, which could

be attributed to the parameter space no longer being bilinear at the extremes. For

the Mach 0.8 case there is little difference in the two finest resolutions, where there

is significant nonlinearity in the lift against incidence and control surface deflection.

There is, however, a large difference when using the coarsest table, which is to be

expected due to the nonlinearities previously mentioned. It is, however, highly unlikely

that the tables used for a simulation in this regime will be as coarse as used here. As
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Figure 5.6: Aerofoil table resolution comparison

such, the resolution is not a significant factor in the ability to resolve variations in the

parameter space for the case considered here.

The same comparison can be done for the LANN wing. The resolutions used for

this case are shown in table 5.7.

α Range α Interval β Range β Interval Number of Points

-8.0◦ to 8.0◦ 2.0◦ -6.0◦ to 6.0◦ 2.0◦ 63
-8.0◦ to 8.0◦ 4.0◦ -6.0◦ to 6.0◦ 4.0◦ 20
-8.0◦ to 8.0◦ 16.0◦ -6.0◦ to 6.0◦ 12.0◦ 4

Table 5.7: LANN wing table resolutions per Mach number

The finest resolution has 63 data points, which again is that used in the previous

chapter where it was sufficient to capture the necessary flow phenomena. The second
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resolution is reduced to 20 points, and the coarsest table has just 4 points. Again, tables

are generated for each of the resolutions, and the oscillatory manoeuvre used earlier, is

simulated using these tables. The simulated lift and pitching moment coefficients are

shown for two Mach numbers in Fig. 5.7.
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Figure 5.7: LANN table resolution comparison

For the LANN wing case, there is a cross–over point in the lift coefficient which is

only captured by the two finest resolutions. However, as with the aerofoil test case, the

coarsest resolution of just 4 points is unlikely to be used in practice, but is included

here for comparison. The two finest resolutions show good agreement through most

of the manoeuvre, with only small discrepancies at the extremes. Again, the tabular

resolution for this case does not appear to present a problem in capturing the variations

within the parameter space.
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Dynamics

The effect of the unsteady model used on the aerofoil response can be significant. It

has been shown in a number of papers [17, 18, 8] that the use of dynamic derivatives

can be sensitive to the conditions for which they are calculated. This variation must

be considered when running manoeuvres where the positions and rates of the aerofoil

are outside of those for which the derivatives have been calculated.

Taking the obstacle manoeuvre again, three different values have been used for the

pitch damping derivative for both the Mach 0.3 and 0.8 cases. The tabular replays

have been run with each value to determine the loads and moments throughout the

manoeuvre. The variation in lift and pitching moment is shown in Fig. 5.8, where the

tables used are from the finest resolution in the previous section.
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Figure 5.8: Aerofoil: Effect of dynamic derivative value on replay

In both cases there is negligible difference for each of the derivative values used.
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This is expected due to the small variation in the value used and the low rate for the

manoeuvre. This may, however, become significant for certain manoeuvres where there

are high rates, large rate changes, or large variation in the state of the aircraft.

Again, the same comparison can be made for the LANN wing test case. For this

assessment, both the CLα̇
and CL

β̇
and considered to be equal, as well as CMα̇

and

CM
β̇
. This is not likely to be the case, but the purpose is to see any variation with

each of these values being modified. The comparison for two Mach numbers is shown

in Figs. 5.9, with the finest resolution tables being used.
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Figure 5.9: LANN Wing: Effect of dynamic derivative value on replay

It can be seen, as with the aerofoil assessment, that there is no discernable difference

between the replays for the different dynamic derivative values. This is to be expected

due to the small variations in the values. This is however representative of actual flight

for a civil aircraft.
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History

A final assumption is that of the quasi-steady model (i.e. no history effects), which

is used to account for unsteadiness in the tabular replays. This leads to flow history

being neglected, and as such, could impact the solution for certain manoeuvres. The

flow adjusts rapidly with the motion of the body, however in some cases, the lag between

the two can become significant. This history effect is present with highly nonlinear flow,

such as through shocks and stall, particularly for dynamic stall cases. This will account

for a very small part of the testing for commercial aircraft, and may be outside of the

flight envelope, but should still be considered. In order to assess the impact of quasi–

steady modelling, the unsteady CFD solver has been modified to remove history effects.

This is done by modifying the dual–time residual term. The CFD residual:

∂w

∂t
= R(wt+1) +

3wt+1 − 4wt +wt−1

2∆t
, (5.1)

is modified by removing the dual–time terms to form:

∂w

∂t
= R(wt+1). (5.2)

This quasi–steady residual takes account of the instantaneous rates applied as point

velocities in the computational domain, but has nothing to account for history effects.

This modification allows direct comparison between the unsteady CFD replay and the

quasi–steady CFD replay. The differences between the two can only be attributed to

neglecting history effects. For the single–body aerofoil case, the two CFD methods have

been applied to the dynamic stall manoeuvre. A comparison against the fully–unsteady

CFD and tabular replay is shown in Fig. 5.10.
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Figure 5.10: Oscillatory manoeuvre replays with quasi-steady
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In both the lift and pitching moment coefficients there is significant discrepancy

between the unsteady CFD and quasi–steady solutions. Dynamic stall has both strong

shocks and separation, causing significant lag between the flow and motion. The dis-

crepancy is solely caused by neglecting history effects. This insight is useful to deter-

mine the influence of this assumption on the performance of the tabular model. The

best that can be achieved by the tabular model is the quasi–steady CFD replay. There

is reasonable agreement between these in the above plots. There are still discrepancies

at the higher angles of incidence, which is a result of the static calculations not being

in line with the mean solution from the CFD replay. It is clear from this case that the

effect of neglecting history is important and is certainly a shortcoming of the tabular

model.

As an extension to the above plots, it is possible to view how the effect of history

impacts the flow solution at points where there are large differences between the model

and the unsteady CFD. Figs. 5.11 and 5.12 show the turbulent eddy viscosity for the

dynamic stall case at two locations in the oscillation, which has been chosen due to the

sensitivity of this term to the flow conditions.

(a) Full unsteady (b) Quasi-steady

Figure 5.11: Turbulent eddy viscosity at 19.24◦ on the upstroke

There are significant differences in the simulated turbulent eddy viscosity, at both

points in the manoeuvre, between the unsteady and quasi–steady simulations. In the

high incidence case, the unsteady CFD predicts a recirculation bubble sitting on the

upper surface of the aerofoil. In the quasi–steady simulation, this has already moved

downstream. This is indicative of the substantial difference in lift coefficient at this

point. At the lower incidence, the unsteady case shows a recirculation bubble that has

recently detached and moved downstream. The quasi–steady however, shows very little

turbulent eddy viscosity in comparison. Again, this is reflected in the difference in lift

coefficient at this point. From these plots, it is clear that the introduction of viscous
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(a) Full unsteady (b) Quasi-steady

Figure 5.12: Turbulent eddy viscosity at 10.0◦ on the downstroke

effects, causes even greater problems for the quasi–steady tabular model to accurately

predict the unsteady solution.

In order to assess the effect of neglecting history for the aerofoil with the trailing

edge flap, the obstacle manoeuvre is again used. An unsteady CFD replay and quasi-

steady CFD replay are run. Cross–plotting the solutions enables the influence of history

effects to be viewed for the given manoeuvre. A comparison is shown in Fig. 5.13.

For the obstacle at Mach 0.3, there is little difference between the replays. This is

expected due to the amount of unsteadiness for these conditions being low, and as such

allows the flow history to be neglected. For the manoeuvre at Mach 0.8, the amount

of unsteadiness is significant. This means that neglecting flow history has a significant

impact on the solution. The largest differences are seen when the rates are the highest

(i.e. when the flow will be changing most due to rapid displacement of the body).

With the tabular model being quasi-steady, the best it can approximate is that of the

quasi-steady CFD solution. In this instance, given that the quasi-steady replay cannot

match that of the unsteady replay, the tabular model will have significant discrepancies,

as was seen earlier. This comparison shows that the assumption of neglecting history

effects can be valid, although there are certain conditions under which it is no longer

the case.

5.3 Free Response

The second approach to the assessment is the use of free response simulations given a

set of control inputs. The trajectories followed by the aerofoil are then compared. This

method is different to the usual comparison of the loads and moments, and provides a

different perspective on how the aerofoil responds, with a focus on flight control system
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Figure 5.13: Effect of history on the replay

design. The test case used is that of the aerofoil with trailing edge flap. The aerofoil is

free to pitch with flap inputs corresponding to those used for the obstacle case in the

forced motion assessment. The value of Iy in each case is 0.5kg.m2.

5.3.1 Simulation

With the addition of a control surface to the aerofoil and the use of free–response

simulation, as part of this it is necessary to establish the path of the body for a given

control surface deflection. In order to to do this, it is necessary to derive the equations

of motion. To simplify the derivation, the aerofoil and flap are considered as a single

fixed body at each step. This has the benefit of reducing the degrees of freedom of the

system. For the aerofoil, there are only two degrees of freedom (pitch and plunge) as

shown in Fig. 5.14
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Figure 5.14: Two degree of freedom aerofoil [2]

For simplicity, the offset xα is considered to be zero (i.e. the centre of gravity

is coincident with the flexural axis). The equations of motion can be written in the

following form:

Mẍ+ cẋ+ kx = F, (5.3)

where x represents the displacements, c represents the damping and k is the stiffness.

Each of these can be written using aerodynamic coefficients rather than the traditional

structural dynamics counterpart. The damping of the system is described by the aero-

dynamic damping, in this case the dynamic derivatives. The stiffness terms are the

linear variation of the loads with respect to the displacement, in other words the static

aerodynamic coefficients. Using the aerodynamic terms, the equations of motion can

then be written as

[

m 0

0 Iy

][

ḧ

α̈

]

+

[

L
ḣ

Lα̇

M
ḣ

Mα̇

][

ḣ

α̇

]

+

[

Lh Lα

Mh Mα

][

h

α

]

=

[

L

M

]

(5.4)

where M here is the pitching moment and not the mass matrix as in Eq. (5.3). De-

pending on the simulation method, CFD or tabular, the equations of motion are solved

as follows. For the unsteady CFD simulation, the stiffness and aerodynamic damp-

ing terms are included in the force and moment coefficients at each step. This allows

Eq. (5.4) to be reduced to the following

[

m 0

0 Iy

] [

ḧ

α̈

]

=

[

LCFD

MCFD

]

(5.5)

This is then a second order ODE which is solved to obtain the accelerations in pitch

and plunge. When using the tabular model, the method is similar. As only the static

values are known, the dynamic terms have to be added. This leads to solution of the

following equation

[

m 0

0 Iy

][

ḧ

α̈

]

=

[

LTab

MTab

]

+

[

L
ḣ

Lα̇

M
ḣ

Mα̇

][

ḣ

α̇

]

(5.6)

The right hand side values are known at the current time step, t. These are then used
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to form a single right hand side and allow solution in the same manner as in eq. (5.5).

Solution is carried out at each step in the manoeuvre until the entire trajectory can be

traced.

5.3.2 Control Inputs

During the free–response simulations, it is necessary to apply control inputs. These have

been predefined as control surface deflections at each point in time. The equations of

motion are then solved at each step to determine the body location. The control inputs

have been taken from the obstacle manoeuvre carried out in Section 4.5. Plots of the

control surface deflections for the subsonic and transonic Mach number cases are shown

in Figs. 5.15(a) and 5.15(b).
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Figure 5.15: Free–response control inputs

Coupling

The coupling has been assessed again using a coupled table [M,α,δele] which is then split

to form two decoupled tables in [M,α] and [M,δele]. The incidence is plotted against

time for the two methods, with the responses shown in Fig. 5.16 for the subsonic and

transonic Mach numbers.

As with the forced motion assessment for the aerofoil and flap case, there is little

to no difference between the coupled and decoupled solutions. This is true for both the

subsonic and transonic cases. It is however possible that for more extreme manoeuvres,

differences begin to appear. The conditions for this to happen are likely to lie outside

of the flight envelope of a civil airliner.
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Figure 5.16: Tabular replays with and without coupling

Resolution

For the resolution assessment, the same resolutions as for the forced motion case, 55

points, 18 points and 4 points per Mach number, are taken. The resulting trajectories

are then plotted with time. The responses are shown in Fig. 5.17.
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Figure 5.17: Table resolution comparison

The coarsest resolution of 4 points shows results consistent with those from the

forced motion assessment. For the Mach 0.3 case, there is good agreement for the

18 and 55 point resolutions, which again is consistent with the forced motion results.

However, as the Mach number is increased to 0.8, differences begin to appear. There

is initially little difference between the 18 and 55 point resolutions. This small error is

however gradually compounded as the manoeuvre continues. At the end of one cycle
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of the flap, there are noticeable differences between the two trajectories. This was not

something that was seen in the forced motion assessment due to the prescribed motion.

In this instance, the free–response simulation has shown up a problem which needs to

be considered when running manoeuvres within a similar range to that presented here.

Although the 18 and 55 point resolutions remain fairly close, it would be recommended

in this instance to increase the resolution further. This may not however improve the

solution accuracy if the discrepancy is due to an unsteady effect not captured as part

of the dynamic derivative model.

Dynamics

The assessment of the dynamic derivative on the replay is carried out in the same

way as that of the forced motion. Three values are chosen for the pitch damping

derivative. The trajectories for each at subsonic and transonic Mach numbers are

shown in Fig. 5.18.
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Figure 5.18: Effect of pitch damping derivative value on replay

Again, as with the forced motion assessment, there is little to no difference between

the replays with the different values of the pitch damping derivative. It is possible that

for this case, the small variation of the derivative value is not significant. There will

certainly be extreme cases where this will prove to be an issue. Although again, this

case is likely to be outside the flight envelope of interest. It is also possible that the

free-response of a wing with control surfaces would see differences. The coupling of

four parameters as opposed to three could lead to discrepancies.

Having assessed the tabular aerodynamic model on a fundamental level for a number

of cases, and through a range of flow regimes, the assumptions are largely unimportant.

It is however necessary to consider history effects when simulating manoeuvres at the
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extremes of the flight envelope where nonlinear effects are present. Further to this,

for three dimensional cases, decoupling of Mach, incidence and sideslip should not be

done as this is not a suitable assumption to make. With this model being used on a

daily basis for flight dynamics loads prediction, and flight control systems on board

aircraft, there are instances where other models, particularly nonlinear models, should

be considered in their place, in spite of the extra cost.

5.4 Dynamic Derivative Error Quantification

When a manoeuvre simulation is carried out, a single value for the dynamic derivative

is usually taken, which is assumed to be independent of the flight parameters. As was

described above, this is however not the case. If manoeuvres are simulated using a

single value, errors are introduced. A method is proposed to understand the effect of

this error on the simulated loads and moments. Aerodynamic tables of the dynamic

stability derivatives are used.

As in previous studies, it is possible to carry out calculations of the dynamic deriva-

tive values with sweeps in the flight parameters. Some calculations have been run for

the NACA 0012 aerofoil using the Harmonic Balance solver with three harmonics. Re-

sults are shown in Figs. 5.19(a) and 5.19(b) for variation of the lift damping derivative

with reduced frequency and Mach number respectively.
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Figure 5.19: Lift damping derivative variation with flight parameters

As per the literature, there is significant variation with both flight parameters. The

variation with reduced frequency is particularly important for manoeuvre simulation, as

this is likely to vary considerably from one manoeuvre to another. The Mach number

variation, although more extreme, is not as important due to the manoeuvre speed

likely to remain fairly steady throughout. It does however become a problem if the
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designer uses a dynamic derivative value calculated for Mach 0.3, which is used to

assess a manoeuvre at Mach 0.8.

5.4.1 Error Estimation

As part of the flight dynamics assessment, aerodynamic tables of stability and control

derivatives are calculated. These tables are typically less densely populated than the

static aerodynamic tables, however they are particularly useful to quantify the error

from the single derivative value approach in a rapid way.

The tables give information on what the derivative value should be for a par-

ticular flight parameter combination, or for a particular point within a manoeuvre.

This information can be used to determine an error in the loads and moments

compared to the single derivative value that is chosen for the simulation. In or-

der to determine the error, the difference between the derivatives taken from the

tables and the derivative chosen for the simulation is calculated and subsequently

multiplied by the corresponding instantaneous rate. This error is then represented

in the later plots as error bars. This procedure can be broken down as below.

1. Aerodynamic tables of stability and control derivatives are calculated

2. Derivative values are chosen for the simulation and the manoeuvre is defined

3. Manoeuvre data is used with the stability and control derivative tables to

compute the correct derivative values for each step

4. A delta is calculated by subtracting the derivative from step 3 from the single

defined derivative of step 2.

5. The delta is multiplied by the relevant rates to obtain the error in the corre-

sponding loads and moments.

5.4.2 Application

A demonstration of the proposed method is now shown. The test case is a NACA 0012

aerofoil through a range of manoeuvres. The point cloud used is shown in Fig. 4.2.

The CFD solver used is the PML code.

The aerodynamic table of dynamic derivatives has been calculated for a range of

flight parameters as described in Table 5.8. All entries in the tables have been obtained

with the PML implementation of Harmonic Balance with three retained harmonics.

As with the static tabular aerodynamic model, it is possible to use the dynamic

derivative table with a coupled or decoupled approach, i.e. a coupling between differ-

ent flight parameters when calculating the derivatives. In the cases here, a coupled
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Flight Parameter Range Interval Data Points

Mach Number 0.3 to 0.8 0.1 6
Mean Incidence -10◦ to +10◦ 2◦ 11
Amplitude of Oscillation 1◦ to 5◦ 1◦ 5
Reduced Frequency 1x10−4 to 5x10−1 log scale 8

Table 5.8: NACA 0012 dynamic derivative table parameters

approach is taken where the the table is [M, k, α0, αA]. This approach requires many

more calculations, but it ensures that errors are from the derivative modelling approach

and not from the assessment method.

A number of manoeuvres have been simulated, with the error from the dynamic

derivative model expressed with error bars. In each case, an arbitrary value of -1/rad.

has been taken for each of the derivatives. The first manoeuvre is an oscillatory mo-

tion at Mach 0.3, with a mean incidence of 0.0◦, an amplitude of 5.0◦ and a reduced

frequency of 0.001. The lift and moment coefficient response with time step is shown

in Figs. 5.20(a) and 5.20(b).
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Figure 5.20: M = 0.3, α0 = 0.0◦, αA = 5.0◦, k = 0.001

For this first manoeuvre, the behaviour of the aerodynamics remains linear. This

leads to little variation with the flight parameters of the dynamic derivative, and as

such the error bars are near zero, i.e. there is negligible error introduced using the

assumption of a single derivative. In order to increase the complexity of the problem,

the second manoeuvre increases the reduced frequency from 0.001 to 0.1. This should

begin to introduce some history effects through lag in the flow. Results for this are

shown in Figs. 5.21(a) and 5.21(b).

In this second manoeuvre, the error bars are starting to open up, although very

little. This suggests that the assumption of a single derivative is more important for
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Figure 5.21: M = 0.3, α0 = 0.0◦, αA = 5.0◦, k = 0.1

this test case. The pitching moment coefficient is more sensitive to changes in flow

conditions, and as such, the error bars are wider in this plot than for the lift coefficient.

A second way to introduce nonlinearity is through using high incidences. A third

manoeuvre has been simulated where the mean incidence has been increased from 0.0◦

to 8.0◦. The reduced frequency has been reduced back to 0.001. Results for this are

shown in Figs. 5.22(a) and 5.22(b).
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Figure 5.22: M = 0.3, α0 = 8.0◦, αA = 5.0◦, k = 0.001

The effect of increasing the mean incidence has had a similar effect to increasing the

reduced frequency. The error bars are widening, although again very little. As with

the previous manoeuvre, the pitching moment is more sensitive to errors than the lift

coefficient. A final manoeuvre for the aerofoil case is to combine the higher incidence

with the increased reduced frequency. This combined change should lead to greater

nonlinear behaviour, and larger errors. Results are shown in Figs. 5.23(a) and 5.23(b).
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Figure 5.23: M = 0.3, α0 = 8.0◦, αA = 5.0◦, k = 0.1

In this final manoeuvre, it is clear that the error is beginning to build. The lift

coefficient is again largely error free, however, the pitching moment has noticeable gaps

in the error bars. It is clear from this plot that as the edge of the flight envelope

is approached, the nonlinear behaviour of the flow causes the assumption of a single

derivative to break down. The errors introduced become important, and for certain

applications of this model, these errors could certainly start to accumulate, such as in

free–response simulations.

From this assessment, it is seen that, even though the manoeuvre conditions are

pushed toward the upper end of the civil domain flight envelope, the error introduced

by using a single dynamic derivative is not significant. This could be taken further for

more complex manoeuvres and test cases and may form part of future work.
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Chapter 6

Conclusions

Computational models for flight dynamics analysis have been the focus of this work.

The tabular aerodynamic model has been studied in this thesis and assessed for ade-

quacy through a number of manoeuvres. The focus of the assessment has been within

the flight envelope of a an aircraft in the civil domain. The model has been assessed

through a number of key flow regimes using several test cases. The most interesting,

from the point of view of this study, are at the extremes of the flight envelope where

the aerodynamic loads vary nonlinearly with the flight parameters. As part of the as-

sessment, the manoeuvres were simulated using the tabular models, with the solution

compared to the same replay from a time–accurate CFD solver. The CFD solution was

used as the baseline comparator. It was shown that for the low complexity manoeuvres,

i.e. low Mach, low incidence, the tabular model was able to accurately simulate the

loads and moments through all manoeuvres, with respect to the CFD solution. When

the Mach number and/or incidence were increased, shocks and separation began to

cause problems with the accuracy of the tabular replays. During these manoeuvres,

the tabular model was largely unable to accurately match the solution obtained from

the time–accurate CFD solver. This initial assessment provided an idsight as to when

the tabular model was no longer sufficient.

The assessment was extended to explore the model on a more fundamental level.

The assumptions in forming the tabular model were established, and a number of test

cases and manoeuvres were chosen to understand the effect of each on the accuracy

of the simulation. The four assumptions included: removing coupling effects between

some flight parameters; having a resolution in the tables that is sufficient to capture

changes in the parameter space; using a dynamics model that captures all effects of

interest; and finally neglecting history effects. Each assumption was taken individu-

ally and assessed using both forced and free–response manoeuvres. It was first shown

that the effect of decoupling certain flight parameters was negligible, except between

incidence and sideslip for the wing test case. Secondly, the tabular resolution was con-

sidered as not being significant, provided a reasonable number of data points in the
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parameter space, as determined by experience. Thirdly, the use of a single dynamic

derivative value for the dynamics modelling was considered as not significant for the

test cases studied. It was noted that, should the manoeuvres increase in rate or inci-

dence, i.e. outside of the assumptions used to develop the dynamic derivative model,

this assumption may become important. Finally, the most significant assumption was

that of nelecting history effects. The tabular model, inclusive of the dynamic deriva-

tive modelling, is a quasi–steady model i.e. does not include terms that account for

history dependent flow effects. In neglecting history effects, the performance of the tab-

ular model for simulating the loads and moments throughout manoeuvres in this work,

was significantly affected. This was particularly noticeable during high Mach number

manoeuvres with the presence of strong moving shock waves. The largest differences

seen in this work were for a dynamic stall case. Throughout this manoeuvre there was

substantial separation and shock waves which made history effects dominant in the

aerodynamics. From this assessment, it can be concluded that the tabular model is

only suitable for manoeuvre simulation where the aerodynamics remain mostly linear

with respect to the flight parameters. This renders them unsuitable for simulations

where computational simulation is most useful, at the edges of the flight envelope.

The dynamic derivative model has also been studied. This model considers the

forces to consist of a static mean component plus an unsteady component related to the

instantanoeus motion rates. This linearisation introduces its own problems. Further to

this, as mentioned above, the derivative model is typically used in practice with a single

value. However, the derivative varies with the parameters at which it is calculated. A

method has been proposed to determine the effect of this assumption for an arbitrary

manoeuvre. The approach allows direct plotting of error bars with the simulated forces

in order to view the discrepancies. For the cases considered in this work, there was

little error seen due to the low rates and incidence.

The dynamic derivatives can be calculated using forced oscillatory motions. Given

this, frequency domain methods were used in this work. Frequency domain methods

have the benefit of being able to directly compute the periodic state of a periodic

motion. The two methods used were the Linear Frequency Domain and the Harmonic

Balance. The Harmonic Balance technique has a formulation that allows capturing of

nonlinearities. It was implemented, as part of this work, into two different CFD solvers,

each taking different solution approaches. It was shown that the implementations were

able to speed up solution of the fully unsteady CFD calculation by at least a factor of

three, whilst maintaining sufficient accuracy with respect to the CFD solution. The

Linear Frequency Domain was the focus of more in depth work in this thesis. Firstly,

the semi–implicit implementation within the DLR TAU code was extended to make use

of a fully implicit GCR Krylov solution method. This new solution approach led to a

speed up in simulation time of around a factor of 10 across all test cases. A comparison

of the GCR solver with the previously available methods was done. It was shown that
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on top of the speed up, in comparison to the other implicit solver, PETSc, there was a

significant benefit in terms of the memory requirement.

As part of the implicit solution method, a preconditioner was used to improve

the perfomance of the solver. The system matrix is for the Jacobian of second order

discretisation. The preconditioner is usually based on the first order accurate Jacobian

due to stability issues. In this thesis, an alternative preconditioning method has been

proposed based on both the first and second order Jacobian matrices. This approach

requires forming a new matrix with weighting α applied to the second order Jacobian

terms. This weighted matrix was then used to form the ILU preconditioner. It was

shown that the influence of the parameter α was significant and just a small change

can make the difference between a converged solution being achieved or not. It was

also shown that there was an optimum value at which the best convergence rate was

achieved. Interestingly, this value was the same across all test cases in 2D and 3D,

and for all flight conditions studied. This suggests applicability to the general case.

The effect of the weighting was also studied in terms of how well the preconditioner

approximated the exact inverse by viewing variations in the flow field. It was seen that

adding just a small amount of the first order Jacobian improves the approximation of

the preconditioner, which is seen as a smoothing in the flow field values. The presence

of the second order spatial discretisation Jacobian terms improves the accuracy of the

preconditioner matrix, thus leading to best convergence.

6.1 Future Work

Although a fundamental assessment has been carried out, there are other areas that

can be explored. Control systems design is one such area that makes use of tabular

aerodynamic models, particularly for onboard control systems. A method to determine

the feasibility would be using the models for inverse simulation. For example, prescrib-

ing the loads and moments for each step in the manoeuvre, the tables would then be

used to determine the flap deflection and body incidence required. A comparison can

then be made between the tabular and CFD replays. Following on from the aerofoil

case in this thesis with a control surface, a large scale simulation could be carried out

using a wing or aircraft model with control surfaces.

Following on from the above, further work could look at an extension of the assump-

tion assessment for higher dimensional tabular models. Again, these could include wings

and then full aircraft with control surfaces. The same methodology of using forced mo-

tions would allow for individual assessment of the assumptions, with the possibility of

the increased dimensionality leading to noticeable differences in the tabular and CFD

replays. It may prove that the assumptions become significant even for low speed and

low incidence cases.
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Finally, a mathematical analysis of the preconditioner approach proposed in this

work should be carried out. This would provide a much better understanding as to

why the convergence is so greatly improved by making a small change to the values in

the matrix.
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Chapter S

Supplementary Information –

Implicit Implementation of LFD

The implementation of the methods in TAU is vital for the efficient running of the code

and to maximise the performance. Described here is how the GCR solver with ILU

preconditioning has been implemented.

S.1 Matrix Storage

The Jacobian matrices are stored explicitly in memory for both the PETSc and GCR

solvers. This requires an efficient storage scheme to ensure that the memory require-

ment does not become so large as to make the methods unfeasible. The Compressed

Sparse Row (CSR) [34] format is used in this report and is constructed as follows.

Three arrays are stored, row which has one term for each row in the matrix, where the

entries indicate which element starts a new row, column which has one term for each

element in the matrix, where the entries indicate which matrix column the elements

are in, and value which also has one term for each element in the matrix. An example

to illustrate is now shown:












1 0 2 0

3 4 0 5

0 6 0 0

7 8 0 9













row = [1, 3, 6, 7, 10]

column = [1, 3, 1, 2, 4, 2, 1, 2, 4]

value = [1, 2, 3, 4, 5, 6, 7, 8, 9]

This method makes effective use of the sparse nature of the matrices however, when
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these matrices become very large the arrays can require a lot of memory. A blocked

format is therefore used where blocks of elements are stored in the same manner as if

each block was an element as described above. The blocked form is shown below for

the previous matrix with a block size of 2, where the elements inside each block have

column major ordering:

row = [1, 3, 5]

column = [1, 2, 1, 2]

value = [1, 3, 0, 4, 2, 0, 0, 5, 0, 7, 6, 8, 0, 0, 0, 9]

It can be seen that the blocked format has shorter arrays for row and column requiring

less memory to store an equivalent matrix. This becomes significant when the matrices

become very large and for the typical block sizes of 5, 6 and 7 encountered in CFD,

the column array is at least twenty-five times shorter. The shorter arrays have the

added benefit of speeding up the time to access the data as more matrix elements can

be stored in the cache leading to a reduction in the solver CPU time.

S.2 Setting up the System Matrix

A key consideration is how to carry out the augmentation of the system matrix. Two

approaches to augmentation are possible. The first is creating a large real matrix with

four quadrants as shown in Eq.(2.21). This approach is taken with both the PETSc

and GCR solvers. This is implemented by taking the Jacobian matrix from TAU which

is stored in Block Compressed Sparse Row format (BCSR). The off-diagonal frequency

matrices are then inserted into the correct position in the BCSR arrays. The top half

of the matrix is created first followed by the addition of the bottom half to this. The

functions used to carry out this operation have been optimised to be as efficient as

possible and take very little time to run compared to the solution itself.

The second option is to set-up a complex system where the frequency terms are

added to the diagonal of the Jacobian matrix. This is slightly more complicated to

implement as it involves using complex data structures and complex arithmetic. For

the purposes of testing, the complex solver is only implemented as a stand-alone solver

which reads the TAU matrices from a file rather than communicating directly with the

code. The complex approach has the benefit that adding the frequency terms to the

diagonal of the Jacobian matrix does not change the sparsity of the system whereas the

real augmentation expands the matrix bandwidth, leading to possible issues in terms

of the diagonal dominance and as such the convergence of the solver. A further benefit

is the lower memory requirement to run than the real system due to it only having to

store the sparsity pattern once.
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S.3 Parallelisation

The methods already implemented in TAU (MG LU-SGS and PETSc) run in parallel

using MPI commands. For the GCR solver, there are three main considerations. The

first is how to implement the preconditioner. ILU preconditioners are global methods

and require the whole matrix in order to obtain a good approximation, this would

require a lot of parallel communication and for very large systems, this communication

could inhibit the performance of the solver. For the method presented in this report,

the factorisation is carried out locally and asssumes there is no overlap with other

processors. This will cause the approximation of the preconditioner to be less accurate

but it allows for a more straight forward implementation.

The second consideration is how to carry out the matrix vector products in parallel.

When the matrix is decomposed into the required number of domains, some of the

off-diagonal terms will be stored on other processors which are required by the matrix-

vector product. To obtain these terms, the vector for the multiplication has extra

memory assigned to it and a parallel call is made to fill this memory with the correct

values from the other processors. Once all the terms are on the correct processors, the

matrix-vector product is carried out and the solution is returned to the Krylov solver.

The final consideration is the calculation of the residuals in the Krylov subspace.

This is carried out using a global sum function which gathers all the terms in the

relevant residual vector and sums these returning a number to all processors to then

use. Having addressed all three steps, the preconditioned Krylov solver works efficiently

in parallel.

S.4 Memory Reduction

Storing the Jacobian matrix explicitly can require large amounts of memory, especially

when the system is augmented and the preconditioner is formed. The main approach

that has been taken for the GCR method to minimise the memory requirement is to

make use of the preconditioner being an approximation. Initially the preconditioner was

implemented to store the value array as doubles which require 8 bytes of memory per

entry and ensures the values are accurate to 15 decimal places. This precision however is

not needed and instead floats are used which require half the memory and are accurate

to 7 decimal places. This switch from doubles to floats is a further approximation, and

has a large effect on the run-time memory particularly for preconditioners with high

levels of fill-in, without affecting the accuracy of the solution. This approach was first

taken by Goumas et al. [69] who looked to minimise the memory through the use of

float and short int wherever possible.

A further method was used in the implementation of the GCR solver to remove

the need to augment the system matrix. The augmented second order Jacobian is only
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needed for the matrix-vector product within the GCR algorithm. Using this knowledge,

instructions are given to find the correct elements when carrying out the multiplication

so that the Jacobian is only stored once along with one array for all the frequency

terms.
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