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Abstra
t
An instability in 
ight due to the intera
tion of the aerodynami
, elasti
 and inertial for
es
ould prove 
atastrophi
. Hen
e due importan
e is given to the aeroelasti
 analysis of the air
raftin the design stage. Until the advent of modern 
omputers the only tools available to performthis kind of analysis were analyti
al and wind tunnel based. There are only some situationswhere the analyti
al tools are predi
tive and the experimental investigations 
an be expensive.However with the introdu
tion of high speed 
omputers a new tool was made available to theaeroelasti
ian to a

urately predi
t instabilities. Coupled linear stru
tural and aerodynami
models started to be used in industry in the 1960's and are still the norm. Though there existresear
h 
odes based on CFD level aerodynami
s that have ex
ellent aeroelasti
 
apabilitiesthe usage in the industry is limited due to their high 
omputational 
ost and slow turnaroundtimes. In re
ent times the resear
h 
odes have developed ex
iting 
apabilities and 
an a

uratelypredi
t instabilities in the nonlinear transoni
 
ow regimes. However these developments havebeen limited to fairly simple geometries and most of the 
odes still struggle to 
ope with anythingmore 
omplex than a wing. Sour
es of instabilities within the 
ight envelope are usually these
ondary 
omponents like 
ontrol surfa
es and stores. The ability to predi
t instabilities dueto 
ontrol surfa
es using CFD based aeroelasti
ity is a 
hallenge and forms the theme of thisthesis. The buzz phenomena o

urs on spring loaded 
ontrol surfa
es due to the intera
tion ofthe 
ap rotation mode and the sho
k motion. For the simulation of 
ontrol surfa
e buzz a

uratepredi
tion of the sho
k lo
ation and the sho
k strength is essential and this is 
urrently a
hievedusing Euler and RANS based CFD analysis. To 
al
ulate the motion of the 
ontrol surfa
e onlythe 
ap rotation mode needs to be modelled. In the 
urrent work the CFD solver is 
oupled witha modal based FEM solver. The multi-level hierar
hi
al blending transformation methodologyis applied for the aeroelasti
 analysis of 
omplex geometries. The methodology is used forthe treatment of blended 
ontrol surfa
es and the e�e
t of the blending on the aero-stru
turalresponse is measured . For
ed 
ap os
illations of a Supersoni
 Transport (SST) 
on�gurationare simulated and the dynami
 deformation of the wing and the unsteady pressure due to thefor
ed os
illations are validated against experiments. Transoni
 buzz on a trailing edge 
ap isinvestigated on the Supersoni
 Transport 
on�guration using the RANS and the Euler equations.Chara
teristi
s asso
iated with a buzz instability are reprodu
ed 
omputationally and the e�e
tof the 
ap on the wing 
utter is measured. Finally aeroelasti
 simulations are performed on theHawk air
raft. The 
ombat 
ap 
on�guration of the Hawk air
raft is investigated using CFDand the e�e
t of the 
ap on wing 
utter is assessed. The aeroelasti
 response of the the rudderat supersoni
 freestream Ma
h numbers is studied. The importan
e of aerodynami
 interferen
eon the aeroelasti
 behaviour is assessed.
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Chapter 1Introdu
tion
1.1 Air
raft Aeroelasti
 InstabilitiesAerodynami
 for
es a
t on the air
raft stru
ture whi
h, being 
exible, deforms. The intera
tionof the aerodynami
 for
es with the 
exible stru
ture is termed aeroelasti
ity. Figure 1.1 showsthe 
lassi
al Collar's triangle whose three verti
es are aerodynami
, elasti
 and inertial for
es.The intera
tion of the aerodynami
 and elasti
 for
es result in stati
 deformations. The inter-a
tion of all the three for
es give rise to dynami
 instabilities and is shown in the 
entre of thetriangle. The intera
tion of inertial and aerodynami
 for
es are usually asso
iated with 
ightme
hani
s problems, whereas the study of the intera
tion of the elasti
 and the inertial for
esis known as stru
tural dynami
s. The 
lassi
al Collar's triangle has been extended to in
ludeheating e�e
ts at high Ma
h numbers and the e�e
t of 
ontrol systems, termed aeroservoelas-ti
ity.Aeroelasti
 instabilities are 
lassi�ed either as stati
 or dynami
. As mentioned earlier thestati
 instability arises due to the intera
tion of the aerodynami
 for
es and the elasti
 restoringfor
es of the stru
ture. The inertial for
es due to motion of the stru
ture are not involved andhen
e deformation is independent of time. Stati
 deformations are of 
on
ern as these 
hangethe lift distribution over the wing whi
h is important for performan
e and 
ight me
hani
s ofthe air
raft. Usually elasti
 restoring for
es and the aerodynami
 loads a
ting on the stru
tureare in equilibrium. However at 
ertain values of freestream velo
ity the elasti
 restoring for
esof the stru
ture are less than the aerodynami
 loads, leading to a 
atastrophi
 failure known asdivergen
e.Air
raft 
omponents, in
luding the lifting surfa
es, are manufa
tured to have minimal stru
-tural weight, making them light and 
exible. In modern air
raft the need to in
rease the rangeand fuel e
onomy ne
essitates lighter stru
tures. In military air
raft the extreme operational
onditions due to rapid 
ombat manoeuvres make the stati
 deformations large enough to havean impa
t on the aerodynami
s of the air
raft. Apart from the loss of aerodynami
 attributesthere is a risk of 
atastrophi
 failure due to stati
 wing divergen
e. During the design pro
essstati
 
orre
tions are usually added to 
omputed aerodynami
 for
es on the rigid wing to takeinto a

ount the stati
 deformations [1℄.Potential dynami
 instabilities are more numerous than stati
 ones, and they involve 
ouplingof all the three for
es of the Collar's triangle. Wing 
utter is probably the most 
ommonly knownand studied of all the dynami
 aeroelasti
 phenomena. All 
exible wings twist and bend under1



Figure 1.1: The Collar's Aeroelasti
ity Triangleapplied aerodynami
 for
es. The aerodynami
 loads deform the stru
ture whi
h in turn 
hangesthe aerodynami
 loads due to the 
hange in the wing geometry. This feedba
k pro
ess betweenthe 
ow and the stru
ture 
an result in a self ex
ited system. If the wing twists and bends ina 
ertain manner the unsteady aerodynami
 loads start feeding the elasti
 motion of the wing
ausing the amplitudes to grow, eventually leading to stru
tural failure or LCO. The 
lassi
alwing bending-torsion 
utter involves the 
oupling of the bending and the torsional modes drivenby the unsteady aerodynami
s.Bu�et and 
ontrol surfa
e buzz are a 
lass of aeroelasti
 instabilities that are driven bynonlinearities in the aerodynami
s. Modern �ghter air
raft 
arry out high angle of atta
k ma-noeuvres extending the 
ight envelope to stall and post stall regimes [2℄. At high angles ofatta
k slender wing geometries like strakes, leading edge extensions and the wing leading edgegenerate strong vorti
es whi
h in
rease the performan
e of the wing. However these vorti
esburst over the wing surfa
e resulting in a wake with high turbulent intensities. Bu�eting involvesos
illations of the air
raft 
omponent lying in the turbulent wake of an upstream 
omponent ora broken vortex.Though not 
atastrophi
 these in
rease the stru
tural fatigue and maintenan
e
osts. Some of the examples of bu�eting are �n bu�et for �ghter air
raft, and tailplane bu�et.Control surfa
e buzz is a Limit Cy
le Os
illation (LCO) type of aeroelasti
 instability ob-served on trailing edge 
ontrol surfa
es. The os
illations are brought about by the intera
tion ofthe sho
k, the boundary layer and the 
ontrol surfa
e rotation mode. Buzz is usually observedbetween Ma
h numbers 0.9 to 1.4 depending on wing pro�le, angle of atta
k and the 
hord-wiselo
ation of the 
ontrol surfa
e hinge. There are two main types of buzz me
hanism. The �rst isa bu�eting type where the sho
k intera
ts with the boundary layer 
ausing the 
ow to separateahead of the hinge. The separated 
ow intera
ts with the 
ontrol surfa
e resulting in LCO. Thistype of buzz was termed as 
lassi
al buzz by Bendiksen [3℄. The se
ond type of buzz is purelydue to the os
illation of the sho
k over the 
ontrol surfa
e and does not involve separation. This2



is termed as non
lassi
al buzz in [3℄. An earlier 
lassi�
ation of buzz by Lambourne [4℄ wasbased on the lo
ation of the sho
k with regards to the 
ontrol surfa
e. Buzz due to a sho
klo
ated upstream of the hinge was termed as Type A buzz. Type A buzz inevitably involvesseparation as sour
e of unsteadiness on the 
ontrol surfa
e and hen
e is the same as Bendiksen's
lassi
al buzz. Type B buzz is when the sho
k moves over the 
ontrol surfa
e. Type C buzz as
lassi�ed by Lambourne is when the sho
k rea
hes the the trailing edge of the 
ontrol surfa
e.The exa
t me
hanism of this type of buzz is not explained in the literature. Buzz is a singledegree of freedom instability.There are instabilities 
aused by the nonlinearities in the air
raft stru
ture. The stru
turalnonlinearities are 
lassi�ed either as lo
al or distributed. The distributed stru
tural nonlineari-ties are governed by the elastodynami
 deformations that e�e
t the 
omplete air
raft. Lo
al or
on
entrated nonlinearities are found at hinges and 
onne
ting parts of the 
omponent interfa
eslike wings and pylons et
. A 
ommon example of 
on
entrated stru
tural nonlinearity is freeplayon air
raft 
omponents like 
ontrol surfa
es and all moving tail planes. These 
an arise fromworn hinges of 
ontrol surfa
es and loose 
ontrol linkages [5℄. Freeplay of 
ontrol surfa
es 
an
ause a low amplitude LCO to ensue in 
ight. LCO due to freeplay o

urs at 
ight speeds lowerthan the 
utter velo
ity however it has been shown that 
ontrol surfa
e freeplay 
an signi�
antly
hange the 
utter 
hara
teristi
s of the wing [6℄.The �rst instan
e of a 
atastrophi
 aeroelasti
 instability is older than the �rst powered
ight itself. The Langley Monoplane was suspe
ted to have been the �rst vi
tim. In De
ember1903, a few days before the famous 
ight of the Wright brothers, Langley attempted his se
ond
atapulted 
ight of his tandem monoplane. The attempt was unsu

essful due to the 
ollapse ofthe rear wing and tail [7℄. It was 
onje
tured in a paper by Hill [8℄ that a torsional divergen
ewas probably the 
ause of the failure as a la
k of torsional rigidity was observed in the prototype.It has been a
knowledged that if it was not for aeroelasti
ity Langley might have been the �rstto have a powered 
ight. Over the years there have been numerous aeroelasti
 in
idents andresulting fatalities. Many of the in
idents arose during the 
ight testing of the prototypes andare not ne
essarily reported in the publi
 domain. The �rst do
umented 
utter study was byLan
hester and Bairstow [9, 10℄ on the Handley Page 0/400 WW1 bomber. As the understandingof the aeroelasti
s in
reased there were preventive measures taken to avoid 
utter. However withthe rapid in
rease in performan
e and streamlining of stru
tures, there was also an in
rease inthe number of in
idents [11℄. In Germany there was a dramati
 in
rease in the number of air
raftdevelopment proje
ts around 1933, and during the period to 1945 there were 146 
utter in
identsleading to 24 
rashes [12℄. Around that time in Britain a 
omprehensive report on air a

idents[13℄ by the Air
raft Resear
h Coun
il summarised 50 detailed 
utter investigations [7℄. In the1950s after the war there was a range of prototypes under development in Britain but the thenumber of reported in
idents steadily redu
ed [14℄. There were 24 reported in
idents between1952 and 1954 as 
ompared to 15 between 1954 and 1960 [11℄. A

ording to Templeton [15℄the developments that had redu
ed in
idents in Britain were improvements in the 
al
ulation ofaerodynami
 for
es, high speed 
omputational aids, experimental te
hniques for 
utter model,ground resonan
e and 
ight 
utter testing [11℄. The air
raft development program in the U.S.after WW2 a

elerated with the onset of the 
old war and along with the high speed militaryair
raft 
ame the problems related to transoni
 aeroelasti
ity. This is indi
ated in a survey3



of 
utter en
ounters 
ompiled by the NACA sub
ommittee on Vibration and Flutter [16℄ formilitary air
raft between the years 1947 and 1956. Garri
k notes that 21 of the listed in
identsinvolved transoni
 
ontrol surfa
e buzz for whi
h no adequate theory or basi
 understandingwas available for guiding design [7℄. It is also interesting to note that if tabs are 
onsideredas 
ontrol surfa
es then all but 10 in
idents involved 
ontrol surfa
es. He also mentions thatall of the 7 wing 
utter in
idents involved externally mounted stores in
luding pylon mountedpower plants. In Britain the redu
tion in 
utter in
idents 
ontinued and there were only 7 mild
utter 
ases reported between the years 1960 and 1972 [17℄. A

ording to Kaynes [11℄ this trendhas 
ontinued in Britain to the present time with the majority of the 
utter in
idents reportedduring the 
ight testing of prototypes. He however 
autions that this trend should in no waybe taken as a sign that the 
utter problem is \solved". Some of the reasons he 
ites for thisare the la
k of truly a

urate tools available, the redu
ed sti�ness of the air
raft due to theweight optimisation of the stru
tures and the servi
ing of the 
ight 
ontrol system during thelifetime of the air
raft whi
h 
hanges the aeroelasti
 
hara
teristi
s. There have been a numberof 
utter related 
rashes in re
ent times that substantiate these points. To 
ite a few, there wasa fatal a

ident of the Shorts Tu
ano air
raft during a 
ight test due to the 
utter involving therear fuselage torsional mode and the rudder rotation mode [11℄, a fatal 
rash of the TaiwaneseChiang-kuo �ghter air
raft in 1995 due to transoni
 
utter of the wings, and �nally the Ameri
anF-117A \Stealth" bomber whi
h 
rashed in an airshow in Baltimore in September 1997. The
rash was attributed to the 
utter of the aileron/
aperon 
ausing stru
tural failure [18℄.1.2 Flutter Analysis Te
hniquesThe �rst major development in the understanding of 
utter 
ame in 1916 during the World War1 [7℄. Lan
hester, a British air
raft engineer, investigated violent antisymmetri
 os
illations ofthe fuselage and tail of the Handley Page 0/400 biplane bomber. The portside and starboardside elevators were independently 
onne
ted to the 
ontrol sti
k through 
ables. Lan
hester'ssolution was to 
onne
t the elevators to ea
h other with a torque tube so that they 
ould notos
illate independently [9℄. As the os
illations were antisymmetri
 the torque tube eliminatedthe relative os
illations between the elevators. A paper by Bairstow based on this investigation[10℄ provides the �rst analyti
al treatment of 
utter [7℄.Another important milestone in the analysis of 
utter on air
raft was realised by vonBaumhauer and Koning in the early 1930s. In a systemati
 study of the wing bending 
ombinedwith aileron rotation 
utter they found that by mass balan
ing the 
ontrol surfa
es, 
utter 
ouldbe 
ompletely eliminated [19℄. This was an important realisation as now the basi
 me
hanismof 
utter was just beginning to be understood. From this study it was found that adding andremoving mass 
ould in
rease the speed at whi
h 
ontrol surfa
e 
utter o

urs and hen
e the
on
ept of de
oupling the modes of vibration of air
raft was dis
overed.In 1928 Frazer and Dun
an published a 
omprehensive monograph on the 
utter phenomenon[20℄ whi
h was often referred to in Britain as \The Flutter Bible" [7℄. Simpli�ed wind tunnelmodels were used to study 
utter and detailed re
ommendations were made for air
raft design.The 
on
ept of semi-rigid modes where it is assumed that the deformation at a wing se
tion isindependent of the load distribution on the wing was introdu
ed for the �rst time. This greatly4



simpli�ed the theoreti
al analysis of 
utter.An important report on the theoreti
al treatment of 
utter was published by Theodorsen in1934 [21℄ where he outlined a method for 
al
ulating the 
utter 
hara
teristi
s of an aerofoil with2 or 3 degrees of freedom. Theodorsen's theory represented the simplest exa
t theory for theidealised 
at plate aerofoil and has been used in the development of Strip theory [7℄. Theodorsenand Garri
k [22℄ developed numerous appli
ations and trend studies of exa
t theory yieldinginsights into e�e
ts of individual parameters like 
entre of mass, elasti
 axis, moment of inertia,mass ratio, aileron hinge lo
ation and bending-torsion frequen
y ratio. This method remaineda mainstay for 
utter predi
tion for air
raft in the U.S. until the advan
e of 
omputers in the1970s [23℄. Smilg and Wasserman [24℄ wrote a 
omprehensive do
ument based on Theodorsen'stheory 
ontaining tables for unsteady aerodynami
 
oeÆ
ients and tables on 
ontrol surfa
eaerodynami
 balan
e. This do
ument be
ame a 
utter handbook in the Ameri
an air
raftindustry for several years [7, 23℄.The advent of 
omputers in the 1970s greatly in
uen
ed the analysis and predi
tion ofaeroelasti
 instabilities. Problems involving large matri
es 
ould now be solved in a matterof minutes. A signi�
ant advan
ement in the �eld of 
omputational aeroelasti
 analysis 
amewith the development of the Doublet Latti
e method by Albano and Rodden for subsoni
 
ows[25℄. Sin
e this method was introdu
ed in 1970, it has been 
ontinuously re�ned and enhan
ed[26, 27, 28℄ and has be
ome the mainstay of 
utter 
al
ulation for produ
tion level 
utter
learan
e. Due to its widespread use and understanding of the method it has also be
ome astandard by whi
h other unsteady methods, in
luding CFD based methods, are judged [29℄.For supersoni
 aeroelasti
 analysis there has not been any robust linear method developed
omparable to the Doublet Latti
e Method for subsoni
 
ows until the re
ent development ofthe Harmoni
 Gradient Method by Chen and Liu [30℄ in 1985. This method was motivated bythe aeroelasti
 requirements of �ghter air
raft, and is now widely used in the industry. It hasbeen in
orporated in 
ommer
ial 
odes like Nastran and ZAERO.The linear methods have proved dependable and robust for produ
tion 
utter 
learan
e.However there is still a range of Ma
h numbers where the results from the linear methodsare potentially ina

urate and misleading. Between the Ma
h numbers 0.8 and 1.2 the 
ow isnonlinear and diÆ
ult to analyse. In this region linear methods 
annot be 
onsidered to bevalid due to the presen
e of moving sho
ks on the lifting surfa
es whi
h 
annot be predi
ted bylinear aerodynami
 theory. CFD based time mar
hing aeroelasti
 analysis is 
urrently one ofthe few options available to analyse aeroelasti
s in transoni
 
ow. One of the �rst CFD basedstudies was by Borland and Rizetta on a uniform planform wing of 
onstant paraboli
 
rossse
tion using the transoni
 small disturban
e equations [31℄. Referen
e [32℄ gives an interestinga

ount of the growth of CFD for aeroelasti
 predi
tions at one of the world's leading air
raftmanufa
turers. From 1973 to 1983, panel methods that 
ould model a 
omplex geometry werethe important aeroelasti
 tools. Between 1983 and 1993 the nonlinear potential 
ow/
oupledboundary layer and Euler 
odes found use in industry, and from 1993 onwards RANS based
odes have also started to be used in
reasingly [32℄. Although there has been steady progressin the development of CFD based methods over the years it has not been used as a produ
tiontool mainly be
ause of the problems asso
iated with the 
omputational time, grid generationand validation of the methods. 5



1.3 CFD Based Analysis of Control Surfa
esThe motivation for the 
urrent work 
omes from a desire to investigate nonlinearities in theaeroelasti
 behaviour of 
omplex 
on�gurations. Just about half of the re
orded 
utter in
identson military air
raft in the de
ade 1947 to 1956 are 
ontrol surfa
e related in
luding 
ontrolsurfa
e buzz. Modern military air
raft are designed to withstand load fa
tors of several gs. Thestrength 
onsiderations for the stru
ture to withstand these kind of loads results in sti� wingstru
tures whi
h will have 
utter velo
ities ex
eeding the required 15 % 
utter speed margin.Hen
e 
utter on a idealised 
lean wing is not usually a 
on
ern for modern military air
raft [29℄.Nevertheless auxiliary 
omponents like stores, pylons and 
ontrol surfa
es whi
h are installedon air
raft are possible sour
es of transoni
 instabilities. Control surfa
es on modern 
on
eptsfor Supersoni
 Transport (SST) air
raft are proposed to have simple me
hani
al spring loaded�xtures instead of the 
omplex irreversible hydrauli
s due to the la
k of spa
e in the trailing edgesof the thin supersoni
 wing pro�les [33℄ making transoni
 buzz a possibility. Another problemasso
iated to trailing edge 
ontrol surfa
es is that of aileron reversal whi
h has impli
ations onthe wing design [34℄. It is stated in referen
e [35℄ that in the 
ase of a SST at Ma
h 1 thee�e
tiveness of the aileron is redu
ed to zero.Before the advent of supersoni
 air
raft, Theodersen's analyti
al 
utter solution for a 2Daerofoil with a trailing edge 
ontrol surfa
e [21℄ was the main analyti
al method used for 
ontrolsurfa
e 
utter. However as the air
raft 
ew faster 
ompressibility e�e
ts 
ame into play. Buzzwas a major 
on
ern before the advent of hydrauli
s in the a
tuators for 
ontrol surfa
es. One ofthe earliest 2D simulations of transoni
 buzz was performed by Steger [36℄ on the NACA 65-213aerofoil. A detailed investigation of \non
lassi
al" Type B buzz was 
arried out by Bendiksen[3℄. The earliest 3D buzz simulations on the National Aerospa
e Plane (NASP) were performedby Pak and Baker [37℄ using a transoni
 small disturban
e 
ode CAPTSDv and the RANS 
odeCFL3D. Re
ently 3D buzz simulation was performed on the SST 
on�guration using an impli
itmultiblo
k 
ode with thin layer Navier-Stokes approximation [38℄.For
ed 
ap os
illations of a trailing edge 
ontrol surfa
e have been investigated in a numberof 
omputational studies. Unsteady pressure has been validated with experimental values inmost of these studies. One of the earliest studies was by Bharadvaj [39℄ on an F5 �ghterair
raft wing and a High Aspe
t Ratio Wing (HARW) using a transoni
 unsteady full potentialaeroelasti
 
ode. The 
ontrol surfa
e treatment in this study was a transpiration type wherethe de
e
tion is brought about by the modi�
ation of the boundary 
onditions. A similar studywas performed on the F5 wing and a 
lipped delta wing by Obayashi and Guruswamy using theRANS equations in the 
ode ENSAERO [40℄. The 
ontrol surfa
e treatment was through theintrodu
tion of gaps between the 
ap 
ap edges and the wing, shearing the grid in these gaps.A further improvement in this 
ode was brought about by introdu
ing virtual zones in the gaps.These virtual zones a
t as an interfa
e between the moving 
ap blo
ks and the stationary wingblo
ks [41℄. S
huster performed validation of the for
ed 
ap os
illations of the Ben
hmark A
tiveControl Te
hnology (BACT) wing using the RANS 
odes ENS3DAE and CFL3DAE [42℄. The
ontrol surfa
e edges in this study were blended with the wing edges. Studies on the for
ed 
apos
illations were also performed by Cole et al. [43℄ using the STARS suite of 
odes developed at6



NASA. The 
ontrol surfa
e is treated using transpiration methods. In all of the above studiesthe wing is assumed to be rigid. A for
ed 
ap os
illation study on a 
exible wing, similar to thestudy in the 
urrent work, was performed by Utaka and Nakami
hi using the Euler equations[44℄. A Chimera grid approa
h is used to model the moving 
ontrol surfa
e in this study.There have been a number of studies performed on the for
ed 
ap os
illations using linearpanel methods. The treatment of 
ontrol surfa
es in panel methods is 
omparatively simpleas the wings and 
ontrol surfa
es are modelled as 2D plates. Liu et al. [45℄ performed for
ed
ap os
illation studies on the F-18 Wing and the British Aerospa
e Corporation �n in thesupersoni
 
ow using the ZONA51C 
ode. Rowe et al. [46℄ developed a 
ode, based on vortex-latti
e te
hnique, spe
i�
ally to predi
t the the aerodynami
 loads due to 
ontrol surfa
e motionsin subsoni
 
ows. Re
ently Roughen et al. [47℄ presented results on the for
ed os
illations of the
ap on the Ben
hmark A
tive Control Te
hnology wing using a Doublet Latti
e Method 
odeNK5.1.4 Thesis OrganisationThe aeroelasti
 methodologies developed in this thesis and its appli
ation on a number of test
ases has shown that CFD 
an be used to predi
t aeroelasti
 response due to 
ontrol surfa
es on
omplex 3D 
on�gurations. The validation of the CFD results against experiments of the wingdeformations due to 
ontrol surfa
e os
illations in Chapter 4 is one of the �rst. The work in thisthesis also aims to investigate the aeroelasti
 instabilities asso
iated with a trailing edge 
ontrolsurfa
e using CFD. Control surfa
e buzz is the main instability of interest and a methodologyis developed to enable a CFD based analysis. The e�e
t of the 
ontrol surfa
e on the 
utterboundary is also assessed. Before investigating these instabilities the feasibility of the proposed
ontrol surfa
e treatment is assessed and is validated on a for
ed 
ap os
illation test 
ase.The thesis is divided into �ve main 
hapters. Chapter 2 des
ribes the basi
 formulation ofthe 
ow solver PMB, whi
h is the CFD tool used for this work. The des
ription of the CFD
ode is provided along with the methodology employed for mesh movement and a des
ription ofthe modal FEM solver. The method of 
oupling the 
ow and stru
tural solver is also des
ribedhere. Chapter 3 examines the issue of transfer of information between the stru
tural and 
uidgrids. A brief introdu
tion of available te
hniques before the detailed des
ription of the te
hniquedeveloped is given. An assessment of the blended 
ap and 
ap with free edges is also presented.Chapter 4 is the validation study of the for
ed 
ap motion on a 
exible SST 
on�guration. Ate
hnique for implementing for
ed motions on a 
omponent, a trailing edge 
ap in this 
ase,is des
ribed here. Chapter 5 
ontains an investigation of 
ontrol surfa
e buzz on the SST
on�guration. Buzz 
hara
teristi
s observed in the experiments are reprodu
ed 
omputationally.Aeroelasti
 analysis of the Hawk air
raft is the topi
 of Chapter 6. A Study of the e�e
ts ofthe 
ontrol surfa
es on the aeroelasti
 behaviour of the wing and a 3D investigation of the �n-rudder buzz observed in 
ight tests are reported in this 
hapter. It is noted here that due tothe proprietary nature of the work the s
ales on all plots and �gures in Chapter 6 have beenblanked. However there is no validation against experiments performed in this 
hapter with mostof the plots being qualitative in nature. The 
omparison of the 
utter boundaries in Chapter6 using linear and CFD methods serve to establish the qualitative di�eren
es in the behaviour7



of the instability boundary at transoni
 Ma
h numbers. Finally 
on
lusions regarding the workpresented and re
ommendations for future work are given in Chapter 7.
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Chapter 2Computational Aeroelasti
ity Methodology
2.1 Introdu
tionThe Parallel Multiblo
k 
ode (PMB) is the primary simulation tool used for the nonlineartime-mar
hing simulations in the 
urrent work. The main requirements of the solver for thework 
arried out in this thesis is the ability to a

urately determine the unsteady 
ow in thehighly nonlinear transoni
 regime, a robust and a

urate intergrid transformation s
heme forthe transfer of information between the stru
tural and the 
uid grids and the ability to per-form aeroelasti
 simulations on 
omplex geometries. PMB is a resear
h 
ode developed at theUniversity of Glasgow whi
h has been validated for a range of aerodynami
 and aeroelasti
problems. Some of the 
hallenging validation 
ases in
lude transoni
 bu�et studies, transoni

avity 
ows, vorti
al 
ows, an aerospike in supersoni
 
ow, syntheti
 jets, rotor
raft simulationsand aeroelasti
 instabilities over 
omplex geometries. Most of the validation of PMB has beendo
umented in the literature and a des
ription of the 
ow solver is provided in Bad
o
k et al.[48℄. The transformation s
heme used here is 
alled the Constant Volume Tetrahedron (CVT)developed at the University of Glasgow and has been extensively tested for a number of test
ases [49℄ and 
ompared with other transformation s
hemes [50℄. CVT s
heme 
an be used withstru
tural models 
onsisting 1D elements and for 
omplex geometries like 
omplete air
raft [51℄making it appropriate for use on the test 
ases 
onsidered in this work. The 
urrent 
haptersummarises the aspe
ts of PMB that are relevant to the work undertaken in this thesis. Thisin
ludes a des
ription of the steady and unsteady methodology of the 
ow solver, the meshmovement algorithm and the stru
tural solver. The transformation s
heme that 
ouples the
ow and stru
tural solvers requires a more detailed dis
ussion and forms the topi
 of Chapter3.2.2 Flow SolverThe three-dimensional 
ow model equations are presented here in 
onservative form. A fullderivation from �rst prin
iples 
an be found in numerous 
uid dynami
s text books su
h asAnderson [52℄. The following des
ription is summarised from the theory guide of the 2D versionof PMB [53℄ and subsequently rewritten for 3D [54℄.

9



2.2.1 Non-dimensional formIn a three-dimensional Cartesian 
oordinate system, the non-dimensional form of the equationsmay be written as �W�t + �(Fi � Fv)�x + �(Gi �Gv)�y + �(Hi �Hv)�z = 0 (2.1)Here W is the ve
tor of 
onserved 
ow variables and is sometimes referred to as the solutionve
tor. It 
an be written as W = 0BBBBBB� ��u�v�w�E
1CCCCCCA (2.2)where � is the density, u, v and w are the 
omponents of velo
ity given by the Cartesian velo
ityve
tor U = (u; v; w) and E is the total energy per unit mass.When deriving the Navier-Stokes equations, the 
onservative form is obtained using a 
ontrolvolume that is �xed in spa
e. We 
onsider the 
ux of energy, mass and momentum into andout of the 
ontrol volume. The 
ux ve
tors F, G, and H 
onsist of invis
id (i) and vis
ous (�)di�usive parts. These are written in full asFi = 0BBBBBB� �u�u2 + p�uv�uw�uH
1CCCCCCA

Gi = 0BBBBBB� �v�vu�v2 + p�vw�vH
1CCCCCCA (2.3)

Hi = 0BBBBBB� �w�wu�wv�w2 + p�wH
1CCCCCCA
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F� = 1Re 0BBBBBB� 0�xx�xy�xzu�xx + v�xy + w�xz + qx
1CCCCCCA

G� = 1Re 0BBBBBB� 0�xy�yy�yzu�xy + v�yy +w�yz + qy
1CCCCCCA (2.4)

H� = 1Re 0BBBBBB� 0�xz�yz�zzu�xz + v�yz + w�zz + qz
1CCCCCCAThe stress tensor 
omponents are written as�xx = ���2�u�x � 23 ��u�x + �v�y + �w�z ���yy = ���2�v�y � 23 ��u�x + �v�y + �w�z ���zz = ���2�w�z � 23 ��u�x + �v�y + �w�z �� (2.5)�xy = ����u�y + �v�x��xz = ����u�z + �w�x��yz = ����v�z + �w�y �and the heat 
ux ve
tor 
omponents are written asqx = � 1(
 � 1)M21 �Pr �T�xqy = � 1(
 � 1)M21 �Pr �T�y (2.6)qz = � 1(
 � 1)M21 �Pr �T�zHere 
 is the spe
i�
 heat ratio, Pr is the laminar Prandtl number, T is the stati
 temperatureand M1 and Re are the freestream Ma
h number and Reynolds number, respe
tively. Thevarious 
ow quantities are related to ea
h other by the perfe
t gas relationsH = E + p�E = e+ 12 �u2 + v2� (2.7)p = (
 � 1) �ep� = T
M2111



Finally, the laminar vis
osity � is evaluated using Sutherland's law,��0 = � TT0�3=2 T0 + 110T + 110 (2.8)where �0 is a referen
e vis
osity at a referen
e temperature T0. These 
an be taken as �0 =1.7894x10�5 kg/(m.s) with T0 = 288.16 K. All quantities have been non-dimensionalised asfollows x = x�L� ; y = y�L� ; t = t�L�=V �1 ;u = u�V �1 ; v = v�V �1 ; � = ����1 ;� = ����1 ; p = p���1V �21 ; T = T �T �1 ; e = e�V �21 (2.9)2.2.2 Reynolds-averaged formTurbulen
e 
an be studied by solving the full N-S equations (
alled Dire
t Numeri
al Simula-tion - DNS). However these 
al
ulations are very large and are 
urrently only possible whenexamining Reynolds numbers several orders less than those en
ountered by air
raft [55℄. Ratherthan attempt to solve the time evolution of the 
onserved variables, a somewhat less ambitiousapproa
h is to 
al
ulate the Reynolds averaged form. This form of the Navier-Stokes equationspermits turbulent 
ow to be 
onsidered at high Reynolds' numbers. The derivation of the equa-tions 
an be found in Anderson [52℄. Here it is noted that fundamental to this approa
h is the
onsideration of the 
ow variables as 
onsisting of two 
omponents, a time averaged 
omponentand a turbulent 
u
tuation. For example, the density, pressure and velo
ity 
omponents arede
omposed as� = ��+ �0; P = �P + P 0; u = �u+ u0; v = �v + v0; w = �w + w0:The quantities k (the turbulent kineti
 energy), �T (the eddy vis
osity) and PrT (the turbulentPrandtl number) are introdu
ed via the Boussinesq assumption in an attempt to model theReynolds' stress terms arising from the averaging. The Reynolds-averaged form of the Navier-Stokes equations are identi
al to those presented above di�ering in the stress tensor and heat
ux ve
tor 
omponents shown. The variables should be 
onsidered as mean 
ow quantities(supers
ripts are dropped for 
larity). The turbulent nature of the 
ow is modelled via the eddyvis
osity �T and the turbulent kineti
 energy k and a 
losure hypothesis or turbulen
e model,for example the Spalart-Allmaras model , the k � ! model , or the Shear Stress Tensor model,
12



leading to modi�ed terms�xx = � (�+ �T )�2�u�x � 23 ��u�x + �v�y + �w�z ��+ 23�k�yy = � (�+ �T )�2�v�y � 23 ��u�x + �v�y + �w�z ��+ 23�k�zz = � (�+ �T )�2�w�z � 23 ��u�x + �v�y + �w�z ��+ 23�k�xy = � (�+ �T )��u�y + �v�x��xz = � (�+ �T )��u�z + �w�x��yz = � (�+ �T )��v�z + �w�y � (2.10)qx = � 1(
 � 1)M21 � �Pr + �TPrT � �T�xqy = � 1(
 � 1)M21 � �Pr + �TPrT � �T�yqz = � 1(
 � 1)M21 � �Pr + �TPrT � �T�z (2.11)2.2.3 Curvilinear formThe model equations are written in 
urvilinear form to fa
ilitate use on grids of arbitrary lo
alorientation and density. A transformation from the Cartesian 
o-ordinate system to the lo
al
oordinate system is introdu
ed as � = � (x; y; z)� = � (x; y; z)� = � (x; y; z)t = tThe Ja
obian determinant of the transformation is given byJ = �(�; �; �)�(x; y; z)The Equation 2.1 
an then be written as�Ŵ�t + �(F̂i � F̂v)�� + �(Ĝi � Ĝv)�� + �(Ĥi � Ĥv)�� = 0 (2.12)
13



where Ŵ = WJF̂i = 1J ��xFi + �yGi + �zHi�Ĝi = 1J ��xFi + �yGi + �zHi�Ĥi = 1J ��xFi + �yGi + �zHi� (2.13)F̂v = 1J (�xFv + �yGv + �zHv)Ĝv = 1J (�xFv + �yGv + �zHv)Ĥv = 1J (�xFv + �yGv + �zHv)The expressions for the invis
id 
uxes 
an be simpli�ed by de�ningU = �xu+ �yv + �zwV = �xu+ �yv + �zw (2.14)W = �xu+ �yv + �zwThe invis
id 
uxes 
an then be written asF̂i = 0BBBBBB� �U�uU + �xp�vU + �yp�wU + �zp�UH
1CCCCCCA

Ĝi = 0BBBBBB� �V�uV + �xp�vV + �yp�wV + �zp�V H
1CCCCCCA (2.15)

Ĥi = 0BBBBBB� �W�uW + �xp�vW + �yp�wW + �zp�WH
1CCCCCCAThe derivative terms found in the vis
ous 
uxes are evaluated using the 
hain rule, for example�u�x = �x�u�� + �x�u�� + �x�u��2.2.4 Steady State SolverThe spatial dis
retisation of Equation 2.12 leads to a set of ordinary di�erential equations intime, 14



ddt (Wi;j;kVi;j;k) = �Ri;j;k (W) (2.16)where W and R are the ve
tors of 
ell 
onserved variables and residuals respe
tively. The
onve
tive terms are dis
retised using Osher's approximate Reimann solver (Osher et al. [56℄).MUSCL variable extrapolation is used to provide se
ond-order a

ura
y with the Van Albadalimiter to prevent spurious os
illations around sho
k waves. Boundary 
onditions are set byusing ghost 
ells on the exterior of the 
omputational domain. In the far �eld ghost 
ells are setat the freestream 
onditions. At solid boundaries the no-slip 
ondition is set for vis
ous 
ows, orghost values are extrapolated from the interior (ensuring the normal 
omponent of the velo
ityon the solid wall is zero) for invis
id 
ow.The integration in time of Equation 2.16 to a steady-state solution is performed using an impli
ittime-mar
hing s
heme given byWn+1i;j;k �Wni;j;k�t = � 1Vi;j;kRi;j;k �Wn+1i;j;k� (2.17)where n + 1 denotes the solution values at time (n + 1) � �t. Equation 2.17 represents asystem of non-linear algebrai
 equations and to simplify the solution pro
edure, the 
ux resid-ual Ri;j;k �Wn+1i;j;k� is linearised in timeRi;j;k �Wn+1� = Ri;j;k (Wn) + �Ri;j;k�t �t+O(�t2)� Ri;j;kn (Wn) + �Ri;j;k�W �W�t �t� Ri;j;kn (Wn) + �Ri;j;k�W �W (2.18)where �W =Wn+1 �Wn. Equation 2.17 now be
omes the following linear system�Vi;j;k�t I+ �Ri;j;k�W ��W = �Rni;j;k (Wn) (2.19)The number of operations required in a dire
t method to solve a linear system of N equa-tions is N 3, whi
h be
omes prohibitive when the total number of equations N be
omes large.15



On the other hand, iterative te
hniques su
h as Krylov methods are 
apable of solving large sys-tems of equations more eÆ
iently in terms of time and memory if the system is sparse. Krylovmethods �nd an approximation to the solution of a linear system by minimising a suitable resid-ual error fun
tion in a �nite-dimensional spa
e of potential solution ve
tors. Several algorithms,su
h as BiCG, CGSTAB, CGS and GMRES, have been tested (see Bad
o
k et al. [57℄) and itwas 
on
luded that the 
hoi
e of method is not as 
ru
ial as the pre
onditioning. The 
urrentresults use a Generalised Conjugate Gradient method - see Axelsson [58℄.The pre
onditioning strategy is based on a Blo
k In
omplete Lower-Upper (BILU) fa
tori-sation (Axelsson [58℄). The sparsity pattern of the Lower and Upper matri
es is de�ned tore
e
t the sparsity of the unfa
tored matrix for simpli
ity. Furthermore the BILU fa
torisationis de
oupled between blo
ks to improve parallel eÆ
ien
y and this approa
h does not seem tohave a major impa
t on the e�e
tiveness of the pre
onditioner as the number of blo
ks in
reases.The formulation used has an approximate Ja
obian Matrix with a redu
ed number of non-zero entries per row. This has several advantages. First, the memory requirements are lowered.Se
ondly, the resolution of the linear system by the GCG method is faster in terms of CPU-time sin
e all the matrix-ve
tor multipli
ations involved require lower operation 
ounts. Finally,the linear system is easier to solve sin
e the approximate Ja
obian matrix is more diagonallydominant. A full dis
ussion of the Ja
obian formulation is given in Cantariti et al. [59℄.The steady state solver for the turbulen
e equations is formulated and solved in an identi
almanner to that already des
ribed for the mean 
ow. The eddy-vis
osity is 
al
ulated from thelatest values of k and ! (for example) and is used to advan
e the mean 
ow solution, and thenthis new solution is used to update the turbulen
e solution, freezing the mean 
ow values. Anapproximate Ja
obian is used for the sour
e term by only taking into a

ount the 
ontributionof the dissipation terms D̂k and D̂! i.e. no a

ount of the produ
tion terms is taken on the lefthand side of the system. This approa
h has a stability advantage as des
ribed in Wil
ox [55℄.2.2.5 Unsteady SolverThe formulation is des
ribed for the turbulent 
ase. The laminar and invis
id 
ases represent asimpli�
ation of this. The presentation follows that of referen
e [54℄.Following the pseudo-time formulation (Jameson [60℄), the updated mean 
ow solution is
al
ulated by solving the steady state problemsR�i;j;k = 3wn+1i;j;k � 4wni;j;k +wn�1i;j;k2�t +Ri;j;k( ~wkmi;j;k; ~qkti;j;k) = 0 (2.20)Q�i;j;k = 3qn+1i;j;k � 4qni;j;k + qn�1i;j;k2�t +Qi;j( ~wlmi;j;k; ~qlti;j;k) = 0: (2.21)Here km; kt; lm and lt give the time level of the variables used in the spatial dis
retisation. Sin
egrid deformation is required, time varying areas are required in the expression for the real timederivative in equations 2.20 and 2.21. If km = kt = lm = lt = n+1 then the mean and turbulentquantities are advan
ed in real time in a fully 
oupled manner. However, if km = lm = lt = n+116



and kt = n then the equations are advan
ed in sequen
e in real time, i.e. the mean 
ow isupdated using frozen turbulen
e values, and then the turbulent values are updated using thelatest mean 
ow solution. This has the advantage that the only modi�
ation, when 
omparedwith the laminar 
ase, to the dis
retisation of the mean 
ow equations is the addition of theeddy vis
osity from the previous time step. The turbulen
e model only in
uen
es the mean
ow solution through the eddy vis
osity and so any two equation model 
an be used withoutmodifying the mean 
ow solver. Hen
e, the implementation is simpli�ed by using a sequen
edsolution in real time. However, the un
oupling 
ould adversely e�e
t the stability and a

ura
yof the real time stepping, with the likely 
onsequen
e of limiting the size of the real time stepthat 
an be used.Equations (2.20) and (2.21) represent a 
oupled nonlinear system of equations. These 
anbe solved by introdu
ing an iteration through pseudo time � to the steady state, as given bywn+1;m+1i;j �wn+1;mi;j�� + 3wkmi;j � 4wni;j +wn�1i;j2�t +Ri;j( ~wkmi;j ; ~qkti;j) = 0 (2.22)qn+1;m+1i;j � qn+1;mi;j�� + 3qlti;j � 4qni;j + qn�1i;j2�t +Qi;j( ~wlmi;j ; ~qlti;j) = 0 (2.23)where the m � th pseudo-time iterate at the n + 1th real time step are denoted by wn+1;mand qn+1;m respe
tively. The iteration s
heme used only e�e
ts the eÆ
ien
y of the methodand hen
e we 
an sequen
e the solution in pseudo time without 
ompromising a

ura
y. Forexample, using expli
it time stepping we 
an 
al
ulate wn+1;m+1 using km = n + 1;m andkt = n+1;m and qn+1;m+1 using lm = n+1;m+1 and lt = n+1;m. For impli
it time steppingin pseudo time we 
an use km = lm = lt = n+1;m+1 and kt = n+1;m. In both of these 
asesthe solution of the equations is de
oupled by freezing values but at 
onvergen
e the real timestepping pro
eeds with no sequen
ing error. It is easy to re
over a solution whi
h is sequen
edin real time from this formulation by setting kt = n throughout the 
al
ulation of the pseudosteady state. This fa
ilitates a 
omparison of the 
urrent pseudo time sequen
ing with the more
ommon real time sequen
ing. In the 
ode the pseudo steady-state problems are solved usingthe impli
it steady state solver des
ribed in detail in Se
tion 2.2.4.2.3 Mesh Movement2.3.1 Trans�nite InterpolationThe deformation of the volume grid is performed in the PMB 
ode using Trans�nite Interpolation(TFI). TFI is an algebrai
 method of grid deformation that is 
omputationally inexpensive aswell as easy to implement. Currently the grid deformation is performed only in the blo
ks
ontaining moving solid surfa
es and the rest of the blo
ks are held rigid. The TFI of the nodes
ontained in a blo
k is performed in 3 steps. In the �rst step the nodes of the blo
k edges areinterpolated linearly to adjust to the deformation of the blo
k 
orners. In the se
ond step thenodes of the blo
k fa
es are interpolated using TFI to adjust to the deformation of the blo
k17
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Figure 2.1: Displa
ement of a blo
k edgeedges brought about in step 1. Finally the nodes in the interior of the blo
k, the volume nodes,are interpolated using TFI to adjust to the deformation of the blo
k fa
es. The presentationfollows referen
e [61℄.TFI of Blo
k EdgesFigure 2.3.1 shows an edge of a moving blo
k with end points A0 and B0 displa
ed by dA anddB respe
tively. The deformation of the interior nodes of the edge are interpolated using thedeformation of the end points. The position and deformation ve
tors of the nodes of the edgeare denoted by, x = 264 x(�)y(�)z(�) 375 ; dx = 264 dx(�)dy(�)dz(�) 375 (2.24)As the values of the displa
ed blo
k 
orners are known the displa
ements of the end points are
al
ulated by, dA = A�A0; dB = B �B0The linear interpolation on the nodes of the edge is then given by the equation,dx(�) = dA(1 � s(�)) + dBs(�) (2.25)where, s(�) = Length from A0 to x0(�)Length of the 
urve A0 to B0The 
oordinates of the new grid points are obtained asx(�) = x0(�) + dx(�)TFI of Blo
k Fa
esAfter the nodes on the blo
k edges are interpolated following the displa
ed blo
k verti
es, theinterior nodes of the blo
k fa
es are interpolated next. Consider a blo
k fa
e made up of 4 
urvesC1, C2, C3 and C4 as shown in Figure 2.2. The nodes on the edge 
urves have already beeninterpolated in the previous step. The position ve
tor and the deformation ve
tor of the nodeson the fa
e are denoted by, x = 264 x(�; �)y(�; �)z(�; �) 375 ; dx = 264 dx(�; �)dy(�; �)dz(�; �) 375 (2.26)18
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C10Figure 2.2: The edges of a blo
k fa
e.As the values of the displa
ed blo
k edges are known the displa
ements of the nodes of the edgesare 
al
ulated as, dC1 = C1�C10dC2 = C2�C20dC3 = C3�C30dC4 = C4�C40where C0 and C are the old and new positions of the edges. The displa
ements of the interiornodes are then 
al
ulated as, dx(�; �) = f1(�; �) + f2(�; �) (2.27)where, f1(�; �) = (1�  1(�))dC4(�) +  1(�)dC2(�) (2.28)f2(�; �) = �1(�)[dC1(�)� f1(�; 0)℄ + (1� �1(�))[dC3(�)� f1(�; 1)℄ (2.29) and � are known as the blending fun
tions in � and � dire
tions respe
tively. These are
al
ulated as  1(�; �) = �1� �s2(�) + s4(�)2 �� s1(�) + �s2(�) + s4(�)2 � s3(�)�1(�; �) = �1� �s1(�) + s3(�)2 �� s2(�) + �s1(�) + s3(�)2 � s4(�)19



where s1(�); s2(�); s3(�) and s4(�) are the length ratios along 
urves C1; C2; C3; and C4.These are 
al
ulated as s1(�) = Length to x(�; 0)Length of the 
urve C1s2(�) = Length to x(1; �)Length of the 
urve C2s3(�) = Length to x(�; 1)Length of the 
urve C3s2(�) = Length to x(0; �)Length of the 
urve C4 (2.30)The new lo
ations of the interior nodes on the blo
k fa
e are given by,x(�; �) = x0(�; �) + dx(�; �)TFI of Blo
k VolumesInterpolation of the interior nodes of the blo
k forms the �nal step of the TFI methodology.The interpolated nodes on the blo
k fa
es now a
t as the endpoints for the nodes lying in theinterior of the blo
k. The position ve
tor and the deformation ve
tor of the nodes on the fa
eare denoted by, x = 264 x(�; �; �)y(�; �; �)z(�; �; �) 375 ; dx = 264 dx(�; �; �)dy(�; �; �)dz(�; �; �) 375 (2.31)The volume blo
k is bounded by 6 re
tangular fa
es F1; F2; F3; F4; F5 and F6 shown inFigure 2.3. Ea
h fa
e is made up of 4 edges, whi
h are shown in Figure 2.4.F1 ! (C1; C5; C4; C8)F2 ! (C5; C10; C6; C11)F3 ! (C2; C6; C3; C7)F4 ! (C9; C7; C12; C8)F5 ! (C1; C10; C2; C9)F6 ! (C4; C11; C3; C12)The �nal deformation of the interior nodes is given by,dx(�; �; �) = f1(�; �; �) + f2(�; �; �) + f3(�; �; �) (2.32)and the fun
tions f1; f2 and f3 are given by,f1(�; �; �) = [1�  ℄dF4+  dF2 (2.33)f2(�; �; �) = [1� �℄[dF5� f1(�; 0; �)℄ + �[dF6� f1(�; 1; �)℄ (2.34)f3(�; �; �) = [1� !℄[dF1� f2(�; �; 0)℄ + ![dF3� f2(�; �; 1)℄ (2.35)20
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es of the volume blo
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The fun
tions  ; � and ! are the blending fun
tions in the �; � and � dire
tions respe
tivelyand are 
al
ulated from = [1� s�℄[1� s� ℄s1 + [1� s�℄[s� ℄s2 + [s�℄[1� s� ℄s3 + [s�℄[s� ℄s4� = [1� s� ℄[1 � s�℄s5 + [1� s� ℄[s�℄s6 + [s� ℄[1 � s�℄s7 + [s� ℄[s�℄s8! = [1� s�℄[1� s�℄s9 + [1� s�℄[s�℄s10 + [s�℄[1� s�℄s11 + [s�℄[s�℄s12where, s� = s1 + s2 + s3 + s44s� = s5 + s6 + s7 + s84s� = s9 + s10 + s11 + s124with si 
al
ulated from Equation 2.30.2.3.2 Geometri
 Conservation LawIn an unsteady simulation that involves the lo
al deformation of the CFD grid the 
ell volumesof the grid vary with time. For the s
heme to be 
onservative it is important that the timevariation of the volumes is 
onsistent with the mesh speeds. The Geometri
al Conservation Law(GCL) is derived from a volume 
ontinuity equation and is stated as��t Z
 dV � I�P v:ndP = 0 (2.36)where V is the 
ell area, v is the grid speed, n is the normal area ve
tor and �P is the boundarysurfa
e of the 
ontrol volume 
. The se
ond order time dis
retisation used for the 
ow equationsis used to dis
retise equation 2.36,3V n+1i;j � 4V ni;j + V n�1i;j2�t � I�P v:ndP = 0 (2.37)The 
ontrol volume at the next time level is then given byV n+1i;j = 4V ni;j � V n�1i;j3 + 2�tI�P v:ndP (2.38)The rate of the area traversed by the 
ell boundaries is given byI�P v:ndP = (�t)i+ 12 ;j;k� (�t)i� 12 ;j;k+(�t)i;j+ 12 ;k� (�t)i;j� 12 ;k+(�t)i;j;k+ 12 � (�t)i;j;k� 12 (2.39)and �t = �(�xxt + �yyt) (2.40)�t = �(�xxt + �yyt) (2.41)Here xt and yt are the grid velo
ities. It 
an be seen that as V n+1 is numeri
ally obtainedfrom �t and �t rather than analyti
ally from the updated nodal positions. The importan
eof maintaining the 
onsisten
y between the integrated 
ell volumes and the 
ow equations isdis
ussed in [62℄. 22



2.4 Stru
tural SolverFinite Element Method (FEM) solvers enable the stati
 and dynami
 modelling of air
raftstru
tures. For the predi
tion of aeroelasti
 instabilities the stru
ture is here assumed to belinear. Stru
tural nonlinearities like stru
tural freeplay, 
hange of sti�ness due to stati
 loadingof the stru
ture and internal damping are negle
ted. This approximation of linear stru
turalbehaviour allows the N degree of freedom elasti
 equilibrium equation to be written as a se
ondorder linear ordinary di�erential equationM�x+C_x+Kx = f (2.42)where M is the mass, C the vis
ous damping and K the sti�ness matri
es of size N � N.Here x and f are the time dependent displa
ements and the external for
e ve
tors of size N.As the stru
ture is linear the deformation 
an be 
al
ulated as a summation of pre 
al
ulatednatural modes. In PMB a modal FEM solver is in
orporated into the 
ode and the modeshapes and natural frequen
ies are pre 
al
ulated using a 
ommer
ial FEM pa
kage, and givenas input. For problems where aeroelasti
 instabilities are not due to stru
tural nonlinearitiesa modal model of the stru
ture 
an be used to 
al
ulate the stru
tural response. The basi
assumption is that the stru
ture os
illates in distin
t natural modes of vibration. As the modesare 
al
ulated only on
e before starting the 
oupled aeroelasti
 
al
ulations the a
tual 
ost ofobtaining the stru
tural response (Equation 2.51) is small as 
ompared to the 
ost of solvingthe CFD equations. The undamped modes are a useful basis set for even the damped systsem.Moreover, at the buzz/
utter 
ondition, aerodynami
 damping is zero and stru
tural (hystereti
)damping is very small for modern air
raft. The e�e
t of adding damping is investigated inChapter 5. The mode shapes of a linear stru
tural system 
an 
al
ulated by determining theundamped free vibration 
hara
teristi
s of the Equation 2.42 whi
h is rewritten asM�x+Kx = 0 (2.43)Assuming that the motion of the stru
ture is sinusoidal and that the whole stru
ture os
illateswith a single frequen
y for ea
h mode thenx(t) = xei!t (2.44)where x is the ve
tor of time independent amplitude of the mode with frequen
y !, hen
e�x = �!2xei!t (2.45)Substituting x and �x in Equation 2.43(K� !2M)xei!t = 0 (2.46)The frequen
ies ! 
an obtained by solving the determinantjK� !2Mj = 0 (2.47)The solution of Equation 2.47 gives N values of !i, whi
h are the natural frequen
ies of vibration.The i th natural frequen
y !i is substituted in Equation 2.43 to obtain the 
orresponding mode23



shape�i. The mode shapes are mass generalised before they are used for aeroelasti
 
al
ulations.Mass generalisation is performed thus �i = m�1=2i �massi (2.48)where mi is the generalised mass of the i th mode and �massi is the non mass generalised modeshape. The generalised masses are obtained from the orthogonality property of the modal systemwhi
h states that �massTi M�massi = mi (2.49)The mass generalised mode shape hen
e have the property of�TM� = I (2.50)Reformulating Equation 2.42 in the modal form, it 
an be rewritten as��i +Ci _�i + !2i �i = �iFs (2.51)where �i is known as the generalised 
oordinate and Fs is the total for
e a
ting on the stru
ture.Ci is an empiri
ally obtained value of stru
tural damping. Equation 2.51 
an be solved for �iusing one of the Runge-Kutta s
hemes. The deformation at the given time step for a problemwith p modes is given by x = pXi=1 �i�i (2.52)2.5 Sequen
ing of Stru
tural and Fluid SolversPMB employs a loosely 
oupled approa
h for 
al
ulating aeroelasti
 response. The CFD solver
al
ulates the aerodynami
 for
es on the body. These for
es are then transferred to the stru
turalmodel through a transformation s
heme. The FEM solver 
al
ulates the deformation on thestru
tural grid whi
h is then transferred ba
k to the 
uid grid. Ideally for a 
oupled dynami

al
ulation the 
uid and the stru
tural equations need to be solved simultaneously and progresstogether in time. However su
h a 
uid-stru
ture formulation is 
omplex and poses numeri
aldiÆ
ulties. The stru
tural equations are in Lagrangian or material 
oordinates where the gridnodes move as the solution progresses, where as the 
uid equations are in Eulerian or spa
e
oordinates where the 
ow moves through the stationary grid. The 
ombined formulation isusually referred to as Arbitrary Lagrangian Eulerian (ALE) formulation.In a loosely 
oupled approa
h to solve the stru
tural equations the value of the for
e isrequired at time levels n and n + 1. The PMB 
ode uses Jameson's [60℄ dual time steppings
heme for time mar
hing 
al
ulations. Here the unsteady problem is reformulated as a modi�edsteady state problem with ea
h iteration in pseudo time solved as a steady state problem until
onvergen
e. This allows for the 
oupling of the stru
tural equations within the pseudo timeloop. To solve Equation 2.51 an estimate of Fs is required at time level n+ 1. The sequen
ingin a dynami
 
al
ulation is performed as follows:� An estimate of the for
e at n+1 real time and mth pseudo time level F n+1;mf is 
al
ulatedon the 
uid surfa
e. 24



� This is transferred on to the surfa
e grid using the intergrid transformation s
heme to getF n+1;ms .� The stru
tural solution from Equation 2.51 is obtained using the transferred for
e xn+1;m =Ppi=1�i�n+1;mi . Here the value of the for
e at n+ 1 time level is estimated with the for
evalue at n+ 1;m.� Interpolate the deformations ba
k to the 
uid grid using the transformation s
heme.� in
rement m and 
ontinue until 
onvergedAt 
onvergen
e both stru
tural and 
uid solutions progress forward in real time together.

25



Chapter 3Transformation Methodology
3.1 Introdu
tionComputational Aeroelasti
ity involves the 
oupled solution of aerodynami
 and stru
tural equa-tions to obtain the aeroelasti
 response. These equations are usually solved on separate gridsand the 
oupling takes pla
e through an inter-grid transformation s
heme. The unsteady aero-dynami
 solver 
al
ulates the 
ow variables like for
e and pressure on the aerodynami
 grid.The 
al
ulated for
e values over the wetted body are interpolated onto the stru
tural grid. Theinterpolated for
es are input for the stru
tural solver whi
h 
al
ulates the deformation on thestru
tural grid. This deformation is then transferred to the aerodynami
 grid on
e again usingthe inter-grid transformation, to give a new geometry for the aerodynami
 solver. Figure 3.1shows a typi
al simulation 
y
le. The aerodynami
 methods used for the analysis 
an rangefrom linear panel methods like the doublet latti
e method to advan
e RANS solvers. Similarlythe method for solving stru
tural equations 
an either be a modal based solver on simpli�ed ordetailed geometry, or 
an involve a nonlinear FEM solution on a detailed stru
ture.The transformation s
heme that 
ouples the aerodynami
 and stru
tural solver has to 
on-form to the requirements of the solvers. For example the doublet latti
e method uses 2D panelsto 
al
ulate the aerodynami
s and 
an be 
oupled with a stru
tural solver using a simpli�edstru
tural grid through a 2D interpolation s
heme like the In�nite Plate Spline or Isoparametri
Mapping without a loss of a

ura
y. This is fa
ilitated by the fa
t that stru
tural and aerody-nami
 grid points for su
h a 
ase lie on the same surfa
e allowing simple interpolation betweenthe grid points. However for more advan
ed Euler and RANS based CFD solvers that modelaerodynami
s on the detailed geometry, a 3D interpolation s
heme is essential. There are anumber of papers in the literature that dis
uss and 
ompare the various transformation s
hemes[63, 64, 65, 66℄. For the sake of 
ompleteness a brief des
ription of some of the more populars
hemes is given in Se
tion 3.3.3.2 Requirements of a Transformation S
hemeIn a 
omputational aeroelasti
 
al
ulation the transformation s
heme plays a vital role as itlinks the di�erent physi
al models to obtain a 
oupled response. The task is further 
ompli
atedby the requirement to maintain grid �delity (smoothness) in CFD based simulations and thesimpli�
ation of the stru
tural models that are 
ommonly used [67℄. Taking into 
onsideration26
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(a) (b)Figure 3.1: A typi
al 
y
le for 
oupled aeroelasti
 simulations.the needs of high �delity CFD based simulations on 
omplex 
on�gurations there are 
ertainrequirements for a transformation s
heme that need to be ful�lled to enable robust and a

urateaeroelasti
 simulations.3.2.1 Grid SmoothnessThis is one of the basi
 requirements for all transformation s
hemes. The deformation transferredfrom the stru
tural grid to the aerodynami
 surfa
e grid should be as smooth as possible. Thisis important as surfa
e distortions introdu
ed on a

ount of ina

urate transformation 
an leadto spurious 
ow behaviour in RANS based simulations. The distortions 
ould lead to prematureseparation. In 
ases where there are dis
ontinuities in the stru
tural deformation, for examplethe interse
tion between 
omponents like wing and fuselage whi
h deform in di�erent planes,the s
heme should be able to blend this dis
ontinuity when transferring the information to theaerodynami
 grid.3.2.2 A

urate Information TransferA preferred property in a transformation s
heme is the ability to a

urately resolve the rigidbody rotational modes with minimal distortion of the 
ross-se
tion of the body. Most of the 2Dinterpolation s
hemes are unable to to this. Figure 3.2 shows a 
ir
le driven by a rigid bar. It
an be seen that 
ir
le loses its shape when the bar is rotated when using the IPS s
heme. Adis
ussion on this property is given in referen
es [49, 50℄.
27



(a) 0Æ (b) 57:3ÆFigure 3.2: A 
ir
le of points rigidly rotated by bar using the IPS s
heme (from [49℄).

X

Y

Z

Figure 3.3: The Hawk stru
tural model.
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3.2.3 Sparse Stru
tural ModelsIn general the stati
 and dynami
 behaviour of a stru
ture 
an be adequately modelled using asparse grid 
ompared with the grid density required for the aerodynami
s. However for a smoothtransformation of the deformed stru
ture it is sometimes ne
essary to in
rease the number ofstru
tural elements. In
reasing the number of stru
tural elements also in
reases the size of thetransformation matrix in
reasing the memory requirements. A good transformation s
hemeshould be able to perform smooth transformation using sparse stru
tural grids. One su
h 
asewas the Hawk air
raft whi
h was investigated by Woodgate et al. [67℄. Here the stru
turalmodel of the Hawk air
raft as used in the industrial 
utter 
erti�
ation pro
ess was used forCFD based predi
tions. The stru
tural model is relatively sparse with just 78 elements for the
omplete air
raft (see Figure 3.3). The problem with very sparse stru
tural grid arises in theasso
iation of the 
uid grid nodes with a suitable stru
tural element. Se
tion 3.4.1 addressesthis issue for the CVT s
heme.3.2.4 Complex GeometriesTo realise its potential as an aeroelasti
 simulation tool CFD based analysis needs to also ableto analyse these instabilities over 
omplex full air
raft 
on�guration. Transformation betweenthe stru
tural and 
uid grids has been identi�ed as one of the nontrivial issue. For 
ompleteair
raft 
on�gurations there is a need for a robust and a

urate transformation s
heme that 
antreat 
omplex geometries without introdu
ing holes at the 
omponent interfa
es.3.2.5 Memory RequirementsAn important 
onsideration for performing nonlinear aerodynami
 based aeroelasti
 simulationson full air
raft geometries arises from the fa
t that su
h high �delity simulations involve largeCFD and stru
tural grids. For example a typi
al grid for a full air
raft 
an have 1� 104 
uidpoints on the surfa
e (na = 104) and 200 stru
tural points (ns = 200). For the IPS and FPSmethods des
ribed in Se
tion 3.3 a matrix de�ning the transformation must be stored. Thenumber of elements in this matrix is 9 � na � ns, whi
h means around 18 million non-zerovalues. The BEM method requires even more memory. IPS, FPS and BEM de�ned in Se
tion3.3 are all global methods whi
h means that the deformation of a 
uid surfa
e point depends onall the points on the stru
tural grid and hen
e require large transformation matri
es. Comparedto that the CVT is a lo
al method in the sense that the transformation of a 
uid point dependson the 3 stru
tural points alone and hen
e the memory requirements are insigni�
ant.3.2.6 Conservation of EnergyThe transformed for
es from the aerodynami
 grid deform the stru
ture, hen
e energy is ex-tra
ted from the 
ow for performing this work. The deformed stru
ture in turn 
hanges thepressure distribution over the surfa
e whi
h on
e again e�e
ts the energy extra
ted from the
ow. For a

urate predi
tion of aeroelasti
 instabilities it is vital that the transformation s
hemebe 
onservative in for
e and deformation transformation. The CVT s
heme by de�nition 
on-serves the volume between the aerodynami
 and stru
tural grids. The prin
iple of virtual work29



is used to transfer for
es. This is shown in Se
tion 3.4.3.3 Interpolation S
hemesSome of the popular interpolation s
hemes are brie
y des
ribed here. This se
tion is based onthe MS
 thesis of Rampurawala [68℄ and is reprodu
ed here for the sake of 
ompleteness.3.3.1 In�nite Plate SplineThe In�nite Plate Spline method developed by Desmarais and Harder [69℄ is a widely used formof spline methods. Consider an in�nite plate on whi
h the stru
tural points are lo
ated, havingde
e
tions Æzi. The stati
 equilibrium equation for the plate is given byDr4Æz = q (3.1)where D is the plate 
exibility and q is the distributed load. The solution for plate de
e
tion
an be written as Æz(x; y) = a0 + a1x+ a2y + NXi=1 Fir2i lnr2i (3.2)where ri is the distan
e of any point (x; y) on the plate from the stru
tural point (xs;i; ys;i). Toprodu
e linear behaviour at in�nity, the for
e and momentum satisfyXFi = 0XxiFi = 0X yiFi = 0 (3.3)From the Equations 3.3 the 
oeÆ
ients Fi are 
al
ulated for known displa
ements at thestru
tural nodes. These are then ba
k substituted into Equation 3.2 to determine Æz for theunknown de
e
tions at the aerodynami
 grid points. Here all the aerodynami
 grid points areassumed to lie in the same plane as the stru
tural grid. If the stru
tural and aerodynami
 pointsdo not lie on the same surfa
e then they are proje
ted onto a neutral plane. The de
e
tionsfor the proje
ted aerodynami
 points are 
al
ulated and then the original o�set is added to theproje
ted points to re
over the de
e
ted aerodynami
 points.3.3.2 Finite Plate SplineThis method was developed by Kari Appa [70℄ and applied by Guruswamy and Byun [71℄ to a�ghter air
raft wing. The method makes use of a virtual surfa
e (VS) whi
h lies between thestru
tural and 
uid grids. The VS is dis
retisation into �nite elements whi
h are not ne
essarilythe same elements as on the stru
tural grid. A set of 
onstraints are established su
h thatthe deformed VS is for
ed to pass through the deformed stru
tural surfa
e nodes. Considerm aerodynami
 points at whi
h displa
ements are needed due to displa
ements at n stru
turalpoints. For any element the displa
ement at any point in the element is given byr = 
n (3.4)30



where 
 is the shape fun
tion of the element at a point used to interpolate the displa
ementswithin an element in terms of the nodal degrees of freedom n. The ve
tor n 
an be related tothe global displa
ement ve
tor q by the 
onne
tivity matrix A, hen
e the ith element 
an bestated as ni = Aiq: (3.5)Using the relation in Equation 3.4, the displa
ement ve
tor for stru
tural 
onstraint points 
anbe written after assembly, as qs = 	sq (3.6)where 	 = 266664 
1A1
2A2...
nAn
377775 : (3.7)Similarly the displa
ement ve
tor qa at the aerodynami
 points in terms of the global displa
e-ment ve
tor q 
an be written as qa = 	aq (3.8)where 	a is the displa
ement mapping matrix from the VS to the 
uid surfa
e grid. To for
ethe VS to pass through a given set of displa
ements qs the penalty method of 
onstraints (asdes
ribed in [72℄) gives the equilibrium state of the stru
ture.[K+ Æ	ts	s℄q = Æ	tsqs (3.9)where K is the sti�ness matrix of the VS, 	s is the displa
ement mapping matrix of the VS tothe stru
tural grid, and Æ is a penalty parameter. Solving for q and substituting in Equation3.8, the displa
ements at the 
uid surfa
e grid points 
an be expressed asqa = Tqs (3.10)where T = 	a(Æ�1K+	sT	s)�1	sT (3.11)3.3.3 Inverse Isoparametri
 MappingThe isoparametri
 mapping te
hnique is widely used in FEM analysis to transform state variableslike displa
ement, stress and loads from stru
tural grid points to the aerodynami
 grid points.In this approa
h the same shape fun
tion (N) is used to interpolate the aerodynami
 gridpoint and to approximate the stru
tural deformation. The isoparametri
 mapping is from alo
al 
oordinate (�; �) to a global 
oordinate system (x; y). The mapping of an aerodynami
point is de�ned by the shape fun
tions for a stru
tural element within whi
h it lies. Consideran aerodynami
 point lying in a quadrilateral stru
tural element (Figure 3.3.3). The lo
al
oordinates for su
h a point 
an be de�ned asx =XNi(�; �)xi 1 � i � 4 (3.12)31
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Figure 3.4: Isoparametri
 Transformationy =XNi(�; �)yi 1 � i � 4 (3.13)where N1(�; �) = 1=4(1 � �)(1� �)N2(�; �) = 1=4(1 + �)(1� �)N3(�; �) = 1=4(1 + �)(1 + �)N4(�; �) = 1=4(1 � �)(1 + �) (3.14)After 
al
ulating the global transformed aerodynami
 
oordinates the lo
al 
oordinates(�m; �m) of the aerodynami
 points on the deformed stru
tural grid are 
al
ulated as follows.An arbitrary line PQ is de�ned su
h that it lies on the aerodynami
 point M and on an elementnode P. The line transforms into P'Q' through inverse mapping. The equation for the line P'Q'
an be written as A�2 +B� + C = 0 (3.15)where the 
oeÆ
ients are 
onstants 
al
ulated from the shape fun
tions and the 
oordinates-ordinates of the elemental nodes [73℄. On
e the lo
al 
oordinates-ordinates for the transformedaerodynami
 grid point (�m; �m) are 
al
ulated then the transformed planar displa
ements (u; v)are obtained by isoparametri
 mappingu = nXi=1Ni(�; �)ui 1 � i � 4 (3.16)v = nXi=1Ni(�; �)vi 1 � i � 4: (3.17)32



The aerodynami
 loads 
an be distributed by using the (�; �) values. This form of transformationis a

urate but su�ers from a drawba
k that the aerodynami
 points and the stru
tural pointsmust lie on the same surfa
e.3.3.4 Boundary Element MethodThe transformation methods des
ribed earlier work on the 
uid surfa
e grid and stru
tural grid.Chen and Jadi
 [74℄ proposed a BEM solver based on the full three dimensional equilibriumequations that would e�e
tively transfer loads and displa
ement between the stru
tural and
uid grids. In this approa
h the 
uid surfa
e grid is 
onsidered as an elasti
 homogeneous bodywith the 
uid points as the nodes of the external boundary and the stru
tural grid nodes arethe internal points of the body as shown in Figure 3.5. A minimum strain energy requirementresults in the universal spline matrix S that relates the for
e and displa
ement ve
tors betweenthe CFD and CSD grids as ua = Sus (3.18)fs = ST fa (3.19)where ua and fa are the 
uid grid node displa
ements and loads, and us and fs are the dis-pla
ement and loads on the stru
tural grid nodes. The universal spline matrix S is obtainedas follows. The usual BEM approa
h is to obtain an integral form of the equilibrium equationrelating the internal displa
ement with the displa
ement and loads at the boundary �. Theequilibrium equation in terms of displa
ements in tensor notations is written [75℄ in the form[1=(1 � 2�)℄uj;jl + ul;jj = 0 (3.20)where � is the Poisson's ratio. The result of Equation 3.20 is known as the Somigliana's identity[75℄ and is written as uik + Z� p�lkukd� = Z� u�lkpkd� (3.21)The supers
ript i refers to an internal point and supers
ript * refers to a Kelvin solution. Theboundary of the body � is dis
retised into boundary elements and now Equation 3.21 
an bewritten in the matrix form as us +Hbiua = Gbip (3.22)where p are the surfa
e loads and the subs
ript bi refers to the boundary-interior in
uen
es. Forthe points on the boundary the relation between the displa
ement and the loads is given byHbbua = Gbbp (3.23)Here bb refers to the boundary-boundary in
uen
e. Substituting for p from Equation 3.23 inEquation 3.22 we have us = Bua (3.24)where B = GbiG�1bb Hbb �Hbb (3.25)33



Equation 3.24 
an be used only if the number of internal points (the stru
tural grid) is equal tothe boundary points (
uid grid), but in pra
ti
e the stru
tural grid is almost always 
oarser thanthe 
uid grid. To obtain the universal spline matrix a minimisation of strain energy approa
hwas used. The strain energy fun
tion � 
an be obtained as� = uTaRap (3.26)where Ra is the matrix 
ontaining the areas of the boundary elements. Substituting for p inEquation 3.26 we have � = uTaAua (3.27)where A = RaG�1bb Hbb (3.28)A Lagrange multiplier te
hnique is applied to minimise the strain energy. An obje
tive fun
tionis de�ned as F = uTaAua � �T (us � us;given) (3.29)where � is the Lagrange multiplier and us;given are the given values of the displa
ements. Byminimising the fun
tion in Equation 3.29 su
h that�F�ua = 0 (3.30)with the 
onstraints us = us;given (3.31)we get an expression for the universal spline matrix S asua = Sus (3.32)3.4 The Constant Volume TetrahedronThe des
ription of the CVT s
heme given here is based on the MS
 thesis of Rampurawala [68℄.The CVT s
heme is a transformation te
hnique proposed in Goura [49℄. It is a 3D s
heme usinga 
ombined interpolation-extrapolation approa
h for the transfer of the deformation variable.The stru
tural grid is dis
retised into triangular elements and ea
h 
uid surfa
e grid point (xa;l)is �rst asso
iated with a triangular element 4 
onsisting of grid points (xs;i, xs;j and xs;k). Theposition of xa;l is given by the expression
 = �a+ �b+ 
d (3.33)where a = xs;j � xs;i;b = xs;k � xs;i; 
 = xa;l � xs;i(t) and d = a � b: Here the term �a + �brepresents the lo
ation of the proje
tion of xa;l onto 4 and 
d is the 
omponent out of the planeof 4, as shown in Figure 3.6. In the above the values of �; � and 
 are 
al
ulated as� = jbj2(a:
)� (a:b)(b:
)jaj2jbj2 � (a:b)(a:b) (3.34)� = jaj2(b:
)� (a:b)(a:
)jaj2jbj2 � (a:b)(a:b) (3.35)
 = (
:d)jdj2 (3.36)34



Boundary 
Elements

CSD grid

Elastic Homogenous Material

CFD gridFigure 3.5: BEM treatment of an aerofoilthe volume of the tetrahedron is given byV = a:(b� 
)4 (3.37)Equation 3.33 gives a non-linear relationship between the 
uid and stru
tural lo
ations whi
h
an be linearised in the stru
tural displa
ements to giveÆxa;l = AÆxs;i +BÆxs;j +CÆxs;k (3.38)A = I�B�CB = �I � 
UV(b)C = �I + 
UV(a)U = I � 2d2D(d)S(d) (3.39)V(z) = 0B� 0 �z3 z2z3 0 �z1�z2 z1 0 1CA (3.40)D(z) = 0B� z1 0 00 z2 00 0 z3 1CA (3.41)S(z) = 0B� z1 z2 z3z1 z2 z3z1 z2 z3 1CA (3.42)35



Figure 3.6: The Constant Volume Tetrahedron (from [67℄)It was found in [49℄ that the linearisation error introdu
ed 
an signi�
antly e�e
t the stati
 anddynami
 responses 
omputed. Therefore, the matri
es A, B and C are updated every time thesurfa
e is moved so that the linearisation 
an be 
onsidered as being about the latest 
uid andstru
tural positions. The values of the transformed de
e
tions have to be interpreted a

ordingly.This method is found to give geometri
ally identi
al results to using the full nonlinear method.The 
ost of 
omputing the matri
es is very small 
ompared to the 
ow solution itself. Thereis a linear relationship for ea
h appli
ation of the transformation, and the prin
iple of virtualwork is then used to give the for
e transformation. Denoting the linear relationship de�ned byEquation 3.38 as Æxa = S(xa;xs)Æxs; (3.43)the 
ondition of the 
onservation of for
es for the transformation 
an be stated asÆfTs xs = ÆfTa xa = ÆfTa Sxa (3.44)hen
e the for
e transformation is given asÆfs = ST Æfa: (3.45)3.4.1 Sele
tion of the Stru
tural ElementsThe stru
tural models used for aeroelasti
 predi
tions 
an be in many 
ases extremely 
oarse[67℄. The la
k of stru
tural elements means that the method used to asso
iate 
uid points with36
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Figure 3.7: Sear
h domains when using the triangle 
entroids to map 
uid points onto trianglesa triangle 4 be
omes 
riti
al. This mapping is done as a prepro
essing step and is provided asinput required for the time mar
hing 
al
ulation. The method used for 
ases with reasonably �nestru
tural grids was to sele
t the triangle whi
h minimises the distan
e between the proje
tionof the 
uid point and the 
entroid of the stru
tural triangles. On very 
oarse stru
tural gridsthe situation shown in Figure 3.7 arises. The line P1P2 shows the transition between 4ABDand 4BCD when nearest 
entroids are used. This method of asso
iation means extrapolation isused, for example near 
orner D of 4ABD when it is preferable to use linear interpolation withintriangle 4ABD. To keep extrapolation to a minimum the following modi�
ation was made.For ea
h triangle in the stru
tural model we 
al
ulate the area of the jth triangle ABC andthe sum of the areas of triangles APB, BPC, and APC where P is the proje
ted point xp;i, asshown in Figure 3.8. The di�eren
e in the sum of the three triangles 
ontaining the proje
tedpoint and the original triangle is de�ned asX4j = j4ABC �4APB �4BPC �4APC j (3.46)The minimisation of X4j is used to asso
iate 4i to point xf;i and sin
e X4j is zero if theproje
ted point is inside the triangle this also minimises the number of displa
ements 
al
ulatedusing extrapolation. Figure 3.3 shows a 
oarse stru
tural model of the Hawk air
raft used forpredi
ting 
utter in [67℄. Figure 3.9 shows the di�eren
e between the two methods of asso
iationwhen used to transform one of the stru
tural modes of the Hawk air
raft.3.4.2 1D Constant Volume TetrahedronFor stru
tural 
omponents modelled as 1 dimensional beams (eg. the fuselage in many models)the CVT transformation does not work without some modi�
ation. In the original CVT, toform a tetrahedron 3 stru
tural points forming a triangle are required. For an undeformed 1D37
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ing proje
ted points into triangles.
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Z(b) AreasFigure 3.9: Di�eren
e in the transformed surfa
e due to sear
h method used. The surfa
egradient is smoother and 
onforms better to the original geometry when using the Areas methodin Figure (b) than when using the Nearest Centroid method in Figure (a).
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Figure 3.10: The 1D CVT �
titious pointbeam element this is not possible as the stru
tural points do not form a plane. One possiblesolution would be to 
reate a stru
tural triangle by adding in a �
titious point 
lose to oneof the stru
tural nodes so that the two nodes of the beam element along with the �
titiouspoint forms a triangular element. When the stru
ture deforms the displa
ement of this �
titiouspoint is 
al
ulated as equal to the displa
ement of the real stru
tural point 
losest to it i.e. itundergoes only translation without adjusting the relative position to the bending of the fuselage.A �
titious third point for the stru
tural grid was introdu
ed for ea
h 1D beam element. Thispoint had the same x and z 
oordinates as one of the two points forming the 1D element. The y
oordinate of the �
titious point has a unit more than that of the original point. Figure (3.10)shows the 1D stru
tural element formed by the points xs;j, xs;i and the �
titious stru
turalpoint xs;k. xs;k = xs;i + ĵ (3.47)where ĵ is a unit ve
tor in the dire
tion of the y-axis. The triangular element formed is thenused in the 
onventional CVT te
hnique as des
ribed in se
tion 3.4. This te
hnique gives puretranslation to the 
uid points . No rotation is introdu
ed, 
onsistent with the motion of thepoints on the beam (refer Figure (3.11)). Consider the deformation of the node xs;i whi
h 
anbe written as x1s;i = x0s;i + Æxs;i (3.48)where the supers
ript 1 and 0 represent the deformed and undeformed states of the stru
turalnodes. The deformed �
titious node 
an then be 
al
ulated asx1s;k = x0s;k + Æxs;i (3.49)3.5 Full Air
raft TransformationThe pre
eding se
tions have dealt with the basi
 formulation of the CVT whi
h 
an be usedfor simple stand alone geometries like the wing. A version of the CVT whi
h 
an do thetransformation for the 
omplete air
raft with the minimum of manual intervention and whi
h39
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Figure 3.11: Translation of the 1D CVT elementpreserves the surfa
e mesh, parti
ularly at jun
tions between 
omponents is des
ribed in the
urrent se
tion. The insight for the method is provided by the paper of Melville [76℄ whi
htreats the air
raft 
omponents in a hierar
hy.The �rst stage of the method is to partition the 
uid and stru
tural points into levelsasso
iated with 
omponents. The primary 
omponent is the fuselage. The 
uid and stru
turalgrid points on the fuselage are therefore designated as being of level 1. Next, the wings, horizontalstabiliser and the verti
al �n are 
onne
ted to the fuselage and the 
uid and stru
tural grid pointson these 
omponents and the fuselage are designated level 2. The idea of the hierar
hy is thatlevel 2 points have a primary motion due to the fa
t that they are 
onne
ted to the fuselage anda se
ondary motion due to their own elasti
ity. Extra 
omponents atta
hed to the wing, su
has pylons and 
ontrol surfa
es would be designated level 3, with their primary motion being dueto the fa
t that they are atta
hed to the wing.At this stage a number of subsets of points have been de�ned for the 
uid and stru
turalgrids, with one subset for ea
h level. Denote the set of aerodynami
 points in level m as Amand the stru
tural points as Sm. The lowest level 
ontains all of the points in the respe
tivegrids and level m� 1 is a subset of level m.The �rst stage for the CVT as des
ribed above is to asso
iate ea
h 
uid point with threestru
tural points. This is done in pra
ti
e by de�ning a triangularisation of the stru
tural gridand then asso
iating the point with a triangle as des
ribed in se
tion 3.4.1. This mapping 
anbe done over the stru
tural points in ea
h level as well, de�ning mappings for ea
h level. In thefull air
raft 
ase the level one mapping will have all points in the 
uid grid driven only by pointson the fuselage. The level 2 mapping will have the fuselage and the level 2 
omponents like thewings, tail and the �n being driven by the respe
tive stru
tural 
omponents where as the level3 
omponents like pylons and 
ontrol surfa
e will be mapped by the level 2 
omponents theyare atta
hed to. Level 3 mapping is equivalent to the original CVT method applied to all gridpoints without restri
tion. Consider a full air
raft 
ase having the fuselage, the wings, the 
apatta
hed to the wings, the pylon atta
hed to the wing, the �n, the rudder and the tail planeas 
omponents. Figure 3.12 shows the s
hemati
 of the 3 levels of transformation that lead to40



a �nal transformation dis
ussed later on. The transformation of a large generi
 air
raft withengine is demonstrated in Se
tion 3.8. A problem with the mapping arises at jun
tions between
omponents. For example at the wing fuselage jun
tion nodes that are not on the fuselage arebeing driven by a di�erent transformation from those a
tually on the jun
tion, whi
h are drivenby the fuselage. This leads to a small but disastrous distortion of the grid in the jun
tion regions.Using the level one mapping treats all points in a 
onsistent way and maintains the grid qualityin the jun
tion regions as a result. However, the level one mapping misses all e�e
ts introdu
edby the elasti
ity of the non-fuselage 
omponents, sin
e these stru
tural 
omponents are not usedto drive the 
uid surfa
e grid. A new method is therefore needed to 
orre
tly transform the
omplete deformation while avoiding the problems at jun
tions. The basis for the method is theobservation that the level one and two transformed mode shapes on level two 
omponents inregions 
lose to the fuselage are almost identi
al. Similarly the level two and three transformedmode shapes on level three 
omponents in regions 
lose to the level two 
omponents are alsoalmost identi
al This follows from the observation of Melville [76℄ that the fuselage drives thewing motions and this e�e
t is dominant 
lose to the wing root as opposed to any wing aloneelasti
 e�e
ts. Similarly the wing/�n drives the pylon/
ontrol-surfa
e motions and this e�e
tis also dominant 
lose to the jun
tion. The method therefore blends the level one, two andthree transformed 
uid points, giving priority to the level one transformation as we approa
hthe fuselage (in general the level m transformation is given priority as the level m 
omponentis approa
hed). This means that in the jun
tion region the 
uid grid is transformed from theupper level stru
tural model rather than individual 
omponents.Denote the transformed de
e
tion for a 
uid point xa;l using the mth level mapping as Æxma;l.The blending used to give the �nal transformed displa
ement is given asÆxa;l = �nm=1wm;lÆxma : (3.50)The weights for the blending wm;1 must add to one. To de�ne the values of the weights for levelm we need to 
onsider the distan
e from the 
omponents asso
iated with that level. De�ne thenearest distan
e of the point xa;l to all of the points in level m by dm;l. It is a simple matterto 
al
ulate dm;l by sear
hing over the 
uid points de�ned in level m for the nearest point. Ifxa;l a
tually belongs to level m then dm;l = 0. For a 
ase with three levels (see Se
tion 3.8) theweights for blending the two levels of transformation are 
omputed fromw1;l = e�10d1;l (3.51)w2;l = 1� w1;l (3.52)For the third level 
omponent the weights for blending the three levels are 
omputed as followsw1;l = e�10d1;l (3.53)w2;l = e�10d2;l (3.54)w3;l = 1� w1;l � w2;l (3.55)For points on the fuselage the entire weight will be put on the fuselage driven transformation,for points 
lose to the fuselage most weight will be given to the fuselage driven transformation41
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and otherwise most weight is given to the level two 
omponent driven transformation. Theexponential fun
tion e�10d 
ontains the blending parameter �10d and is found to be suitable forfor most test 
ases but some experimentation with fun
tions and parameters for other 
ases maybe required. The e�e
t of this parameter on aeroelasti
 stability is made evident in Chapter 3.Moreover this parameter is also used to get a smooth blending at 
ontrol surfa
e inboard andoutboard edges.The 
ost of 
omputing the original CVT transformation is small and the 
ost of applyingthe new multi-level s
heme is also small. On 
ost grounds there is an obje
tion to using theexponential fun
tion in the weighting but the weights are 
al
ulated as part of a prepro
essingstep so this is insigni�
ant.3.6 Control Surfa
e TransformationThe wing trailing edge 
ontrol surfa
es are usually modelled stru
turally as plates hinged at itsleading edge. The inboard and outboard edges of the 
ontrol surfa
es are free and not blendedinto the wing. Computational simulations involving moving 
ontrol surfa
es are still not 
ommonmainly due to the diÆ
ulty in treating the grid over and around the 
ontrol surfa
es. The freeedges of the 
ap 
ause a geometri
al dis
ontinuity along the wing span whi
h is diÆ
ult totreat within the framework of a multiblo
k 
ode. There are a number of ways a 3D 
ap 
an bemodelled in a multiblo
k environment as listed in Figure 3.13 and are brie
y des
ribed in thesubsequent se
tions.3.6.1 TranspirationA

ording to how the 
ap edges are modelled the 
ap treatment 
an be broadly 
lassi�ed intotwo 
ategories, blended and 
ap with free edges. The blended edge treatments are more 
ommondue to simpli
ity and ease of implementation.Of the blended treatments transpiration is one of the oldest methods and is easy to implementas it does not require deformation of the volume grid. This method is a means to manoeuvrethe 
ow solver into seeing a de
e
tion of the surfa
e when in fa
t there is none [43℄. The basi
idea as des
ribed in [43, 77℄ is summarised here. If the variation in the surfa
e normals isknown, from a FEM solver for example, then this 
an be dire
tly applied to the CFD gridsthrough a modi�
ation of the existing surfa
e normals. A 
hange in the orientation of thesurfa
e is brought about by 
hanging the velo
ity boundary 
onditions of the a�e
ted nodes.The 
hange in boundary 
ondition 
omes in form of additional 
uid velo
ity outside of theexisting surfa
e elements. This additional velo
ity a�e
ts the way the unsteady 
ow solverresolves the 
ow tangen
y boundary 
onditions as shown in Figure 3.14. Here the VOriginal isthe original tangential velo
ity with normal n̂. In a moving 
ontrol surfa
e this surfa
e normal
hanges to a new value n̂New. In steady the 
ow tangen
y boundary 
ondition is expressed asV:n̂ = 0 (3.56)this 
ondition simply states that the velo
ity normal to the body must be zero. For the dynami
43
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Figure 3.13: Di�erent types of 
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e treatment in CFD analysis.
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ation of the transpiration velo
ity
ase the equation for 
ow tangen
y 
ondition is expressed asV:n̂ = Vb:n̂ (3.57)and means that the velo
ity normal to the surfa
e just be equal to the velo
ity of body normalto itself. Hen
e it ensures that no 
ow 
an pass through the surfa
e. It should be noted thatVb is not equal to VTranspirational in Figure 3.14.3.6.2 Rigid blendingOne of the simplest te
hniques is the blending of inboard and outboard edges of the 
ap withthe wing surfa
e. The blending does 
ause a deviation from the proper representation of the 
apgeometry but for most 
ases with small amplitude rotations of the 
ap this method is reasonablya

urate. By rigid blending it is meant that there is no 
ontrol on the length of the blendedregion. The blended region in
ludes the 
ells of the 
ap edges whi
h get deformed as the 
apmoves. Rigid 
ap blending has been used for both for
ed 
ap and aerodynami
ally driven 
apsimulations. . 44



3.6.3 Multilevel blendingMultilevel blending is a method developed for aeroelasti
 analysis of 
omplex 
on�gurations andis des
ribed in Se
tion 3.5. The method ensures grid smoothness at the 
omponent interfa
es.This method is useful when the two 
omponents at the interfa
e deform in di�erent dire
tions
ausing gaps. An os
illating 
ap atta
hed to the wing at the hinge 
an be treated as a two
omponent 
on�guration and the multilevel blending 
an be used to blend the 
ap edges withthe wing. The blending is easily implemented in the simulations while maintaining a reasonablegrid quality, even for very large 
ap de
e
tion angles (see Chapter 5). The blending of inboardand outboard 
ap edges is 
arried out using a three level hierar
hi
al blending s
heme des
ribedin Se
tion 3.5. For the 
ap this means that the inboard and outboard edges are driven by thewing and the 
ap nodes adja
ent to the edge nodes are driven by a 
ombination of wing and 
apdeformations. The extent of the in
uen
e of the �n/fuselage on the 
ap depends on the blendingparameter and hen
e the 
hoi
e of the blending parameter 
ontrols the extent of blended lengthof the 
ap. Figure 3.18 is a s
hemati
 that illustrates the e�e
t of blending on a two 
omponentsystem su
h as the 
ap and wing. The 
hoi
e of the blending parameter depends on the extentof mismat
h at the 
omponent interfa
e. A very large mismat
h will require a smaller absolutevalue of the blending parameter whi
h means a large area of the lower hierar
hy 
omponentwill be in
uen
ed by the higher hierar
hy 
omponent. A larger value will limit this in
uen
e toa smaller area of the lower hierar
hy 
omponent. The e�e
t of the blending parameter on theaeroelasti
 response on a rudder-�n system has been investigated in Chapter 6.3.6.4 Chimera gridsChimera or overset grids 
an be used e�e
tively for the treatment of 
ontrol surfa
es in aeroelasti
simulations. The 
ap de�nition is maintained and the gaps at the interfa
e 
an be modelleda

urately using overset methods. They involve generation of two sets of grids. As des
ribed inreferen
e [44℄ the main grid or mother grid is 
onstru
ted over the whole domain ex
ept aroundthe region of the 
ap. The se
ondary or 
hild grid is 
onstru
ted in the region around the 
ap.The 
hild grid is 
ompletely enveloped by the mother grid and there exists a region where the twogrids overlap. During a dynami
 aeroelasti
 simulation the physi
al properties from the 
hildgrid is interpolated to the mother grid through the overlapping region, the 
ow 
omputations areperformed in the whole of the mother grid and the 
al
ulated physi
al properties are interpolatedto the interior of the 
hild grid through the overlapping region and the 
y
le repeated.3.6.5 Virtual zonesThe virtual zone te
hnique is an attra
tive method for treatment of 
ontrol surfa
es. The edgede�nition of the 
ap is maintained and the gap between the 
ap and wing is a

urately modelled.Referen
e [41℄ des
ribes the methodology of virtual zones for for 
ontrol surfa
es. The virtualzones are zones of zero thi
kness whi
h are introdu
ed at the 
ap and wing edges to a
t as aninterfa
e for the interpolation of physi
al properties between the moving and stationary grids.
45



3.6.6 Gap blo
ksAnother option for modelling the 
ap is through the introdu
tion of small gaps between theinboard/outboard 
ap edges and the wing. When the 
ap is de
e
ted along its hinge the 
ellsin these gap blo
ks are sheared. A 
ap modelled in this way maintains its geometri
 details butthere is a penalty to be paid in 
omputational time as the grid quality inside the sheared gapblo
ks is poor. Both the methods of 
ap treatment have been used in Chapters 4 and 5.3.7 Assessment of Control Surfa
e TreatmentsIn the 
urrent work blending and the 
ap with free edges having gap blo
ks at the interfa
e areused in the simulations. The e�e
t of blending on the aeroelasti
 response has not been assessedin the literature. In the subsequent se
tions the issues related to blending of 
ontrol surfa
esare assessed with the aid of examples3.7.1 Control Surfa
e Transformation-RudderThe blending of the rudder is easily implemented in the 
al
ulation while maintaining a rea-sonable grid quality, even for very large 
ap de
e
tion angles. The blending of inboard andoutboard 
ap edges is 
arried out using a three level hierar
hi
al blending s
heme whi
h is anextension of the two level s
heme previously des
ribed. For the rudder this means that theinboard and outboard edges are driven by the �n and the rudder nodes adja
ent to the edgenodes are driven by a 
ombination of wing and 
ap deformations. The extent of the in
uen
eof the �n/fuselage on the 
ap depends on the blending parameter,[51℄ hen
e the 
hoi
e of theblending parameter 
ontrols the extent of blended length of the 
ap. Figure 3.16 shows thee�e
t of the blending parameter on the shape of the 
ap.Figure 3.15 shows the sli
e taken through the �n-rudder deformed in the rudder de
e
tionmode. The position of the sli
e taken is indi
ated out in Figure 3.17. The 
ross se
tion of the�n-rudder 
uid grid is driven by the stru
tural grid that lives inside it. The rudder se
tion of the
uid grid does not exa
tly follow the stru
tural grid be
ause of the in
uen
e of �n deformationover its own deformation brought about by the hierar
hi
al blending. Figure 3.18 is a s
hemati
that illustrates the e�e
t of blending on a two 
omponent system su
h as the rudder and �n.The 
hoi
e of the blending parameter depends on the extent of mismat
h at the 
omponentinterfa
e. A very large mismat
h will require a smaller absolute value of the blending parameterwhi
h means a large area of the lower hierar
hy 
omponent will be in
uen
ed by the higherhierar
hy 
omponent A larger value will limit this in
uen
e to a smaller area of the lowerhierar
hy 
omponent. The e�e
t of the blending parameter on the aeroelasti
 response on arudder-�n system 
an be seen from Figure 3.19. A single rudder de
e
tion mode is in
ludedin this analysis and the rudder is blended with the �n using blending parameters of -10d and-30d. As there is no possibility of 
oupling of modes the de
e
tion should damp down to zeroafter a while, but as it 
an be seen from Figure 3.19 the simulation with the smaller value ofblending results in the generalised velo
ity diverging away. It damps down to zero when a largerblending parameter is used. For the 
urrent work a blending parameter of -30d is used for allthe 
al
ulations. 46



(a) (b)

(
) (d)Figure 3.15: Dependen
e of the transformed mode shape on the value of blending parameter

47



Blending parameter used = -20

Wing
Flap

Blended width of the flap

(a) Blending parameter used = -100

Blended width of the flap

Wing
Flap

(b)Figure 3.16: Transformed 
ap mode using two di�erent values of blending parameter

Figure 3.17: Position of the sli
e on the �n-rudder
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Figure 3.18: E�e
t of blending on a two 
omponent system
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Flap with Free Edges

Wing
Flap

Gap

(a)
Sheared cells in the gap

Flap

Wing

(b)Figure 3.20: Transformed 
ap mode of a 
ap with free edges3.7.2 Comparison of Flaps with Blended and Free EdgesThe blending of the 
ap edges with the wing using multilevel blending is very simple but the e�e
tof the blending on the stru
tural response needs to be assessed. It was shown in the pre
edingse
tion that the 
hoi
e of the blending parameter is important. However it will be seen fromthe test 
ases analysed in the subsequent 
hapters that if the 
orre
t blending parameter is usedthe di�eren
e between the aeroelasti
 responses from 
aps with free edges and blended 
aps isnegligible. The 
ap with free edges in the 
urrent work is modelled by introdu
ing gaps betweenthe 
ap edges and wing. When the 
ap is deployed the grid in the gap shears as shown in Figure3.20. Though this type of 
ap modelling is more a

urate as the lo
al 
ow features around the
ap edges are resolved more time is required for the 
ow to 
onverge in the sheared grid.Figure 3.21 from Chapter 5 shows the 
ap response in a buzz simulation of 
aps with freeand blended edges. It 
an be seen that the response is very similar though the amplitude for the
ap with blended edges is marginally greater than the 
ap with free edges on a

ount of largersurfa
e area. The 
ap with free edges has a slightly greater frequen
y.Figures 3.22 and 3.23 from Chapter 4 show the real and imaginary 
omponents of the un-steady surfa
e pressure distribution on the BACT test 
ase. Here the 
ap is os
illated at afrequen
y of 5 Hz and an amplitude of 2:02Æ. Flap with blended and free edges are used and itseen that unsteady pressure distribution is identi
al. It should be noted that the 
ap blendingin the for
ed 
ap 
ases in the 
urrent work does not involve the multilevel mapping instead theblending is performed on the CAD geometry as explained in Chapter 4.
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(b) In-phase 
omponent at 60% spanFigure 3.22: BACT Case 3 unsteady Cp values using blended 
ap and 
ap with gaps. M =0.769, Re. No. 3.96 million, 
ap amplitude = 2:0Æ, FOF 5 Hz.
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(b) Out of phase 
omponent at 60% spanFigure 3.23: BACT Case 3 unsteady Cp values using blended 
ap and 
ap with gaps. M =0.769, Re. No. 3.96 million, 
ap amplitude = 2:0Æ, FOF 5 Hz.3.8 Multi-
omponent Test CaseThe mapping of the aerodynami
 grid to the stru
tural grid is one of the 
entral steps inthe aeroelasti
 
al
ulations. In the 
urrent work the mapping is done as a prepro
essing stepbefore performing the 
oupled 
al
ulations. Figure 3.24 shows the various 
omponents that areassembled for a typi
al aeroelasti
 
al
ulation. The mapping blo
k in the �gure involves theidenti�
ation of the triangular element to whi
h ea
h surfa
e aerodynami
 point is an
hored to,and the 
al
ulation of the distan
e of ea
h point on the lower hierar
hy 
uid 
omponent fromthe nearest point on an upper hierar
hy. This is written down in a mapping �le whi
h is usedfor the CVT and 
omponent blending s
heme as des
ribed in Se
tions 3.4 and 3.5. On
e themapping �le is obtained, the transformation needs to be visually inspe
ted for ea
h mode of thestru
ture. This 
an be done by for
ing the stru
ture to stati
ally deform in ea
h mode withouta
tually performing the 
uid 
al
ulations. These 
al
ulations do not have any physi
al meaningex
ept for mimi
king the surfa
e grid transformation of the individual mode shapes during thea
tual 
al
ulations.The Generi
 Large Air
raft (GLA) test 
ase has been adapted from the AIAA Drag Pre-di
tion Workshop. It is a relatively 
omplex geometry for nonlinear aeroelasti
 
al
ulations asthere are 3 levels of hierar
hy. The �rst level is the fuselage to whi
h the wing is atta
hed.Here the deformation of the wing root depends on the fuselage, hen
e it is 
lassi�ed into a se
-ond hierar
hy 
omponent. The pylon is atta
hed to the wing, and at the wing-pylon jun
tionthe deformation is due to the wing and hen
e the pylon is 
lassi�ed as the a third hierar
hy
omponent. The engine na
elle however is 
lassi�ed into a se
ond level 
omponent sin
e thede
e
tion at the jun
tion between the na
elle and the pylon is due to the na
elle and not thepylon. Moreover as the engine is at a distan
e from the fuselage the in
uen
e of the fuselage onthe na
elle is negligible on a

ount of the exponential blending parameter des
ribed in Se
tion3.5. Figure 3.25 shows the hierar
hi
al 
lassi�
ation of the stru
tural 
omponents of the air
raft.52
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Figure 3.24: Components of an aeroelasti
 
al
ulationsThe pro
ess for stru
tural 
lassi�
ation has the following steps� The stru
tural nodes for ea
h 
omponent are extra
ted from the FEM modelling tool.� The extra
ted grid points are then triangulated using a Delaunay triangulation. Theoutput from this is 
onne
tivity data in a �le with ea
h element 
onsisting of the linenumbers of the 3 nodes from the nodal �le. A 
omponent label is given to ea
h triangularelement, in the 
urrent 
ase, 1 for fuselage elements, 0 for wing, 2 for pylon and the 3 forthe na
elle.� The nodal �les and the 
orresponding labelled element 
onne
tivity �les are assembledinto a single node �le and a single 
onne
tivity �le.Like the elements of the stru
tural 
omponents the nodes lying on the surfa
e of the aerodynami
grid of the various 
omponents are also labelled. However the labelling is done during the gridgeneration step itself. The nodes on the fuselage of the aerodynami
 grid are labelled as 50001,on the wing 50000, on the pylon 50002 and on the na
elle 50003. An aerodynami
 surfa
e grid�le 
ontains the nodal 
oordinates along with the labels. The linking of the elements of thestru
tural 
omponents to the nodes of the 
orresponding 
omponents on the aerodynami
 gridis done in a small �le. This �le 
lassi�es the 
omponents into their respe
tive hierar
hies. Forthe 
urrent 
ase the linking is as follows41 50001 10 50000 22 50002 33 50003 2 53
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Wing
Hierarchy level 2

Pylon
Hierarchy level 3

Engine nacelle
Hierarchy level 2

Figure 3.25: Division of 
omponents into hierar
hi
al levelsThe �rst line indi
ates the number of 
omponents the geometry 
ontains. The �rst 
olumnspe
i�es the stru
tural 
omponent label, the se
ond 
olumn spe
i�es the 
orresponding aero-dynami
 
omponent it is linked to and �nally the third 
olumn spe
i�es the hierar
hy level ofthe 
omponent. The linking �le along with the labelled stru
tural elements �le and the labelledaerodynami
 surfa
e grid is used for the mapping. For ea
h aerodynami
 surfa
e grid point themapping utility sear
hes for the nearest stru
tural element of the fuselage in the level 1 mapping.In the se
ond level it sear
hes for the nearest fuselage element for the aerodynami
 grid pointson the fuselage and for the rest of the 
omponents it sear
hes for the nearest se
ond hierar
hy
omponent stru
tural elements. Finally in the third level the utility sear
hes for the neareststru
tural element of ea
h 
omponent from the aerodynami
 point on that 
orresponding 
om-ponent. This information is written down in the mapping �le to be used by the transformations
heme during the 
oupled 
al
ulations. However before the mapping �le is used the mapping isinspe
ted by for
ing the aerodynami
 surfa
e grid to deform in ea
h stru
tural mode to be usedin the 
al
ulation. The transformed mode shaped of the �rst 6 modes of the GLA are shown inFigure 3.26. From visual inspe
tion in the plotting tool TECPLOT these were found to be smoothand maintained the grid quality at 
omponent interfa
es.
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(a) Mode 1 0.56 Hz (b) Mode 2 1.65 Hz

(
) Mode 3 1.93 Hz (d) Mode 4 2.69 Hz

(e) Mode 5 3.63 Hz (f) Mode 6 4.23 HzFigure 3.26: Transformed mode shapes of the GLA.
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Chapter 4Validation for For
ed Flap Motions
4.1 Introdu
tionOn 
exible wings a 
ontrol surfa
e 
an indu
e twisting of the wing, whi
h in extreme 
ases 
anlead to a 
ontrol surfa
e reversal. This phenomenon o

urs when the deformation of the wing dueto 
ontrol surfa
e de
e
tion is large enough to have the opposite aerodynami
 response to thatintended, limiting the maximum operational amplitude of 
ontrol surfa
es. It is important that
ontrol surfa
es are free of any stru
tural or aerodynami
 instabilities. Predi
tion of stru
turaldeformation due to 
ontrol surfa
e de
e
tion is important to prevent the air
raft en
ounteringsu
h phenomenon. Another instability en
ountered is at transoni
 Ma
h numbers when the sho
kos
illates over the trailing edge 
ontrol surfa
e. This 
an lead to sho
k indu
ed instabilities ofthe 
ontrol surfa
e and is an issue for supersoni
 transport air
raft with thin trailing edge 
aps.The la
k of spa
e at the trailing edge in these 
on�gurations prevent adequate 
onstraints tobe applied to the 
ontrol surfa
e. The study of sho
k os
illation over the 
ontrol surfa
e isimportant in these 
ases.One of the �rst 
omputational for
ed 
ap os
illation studies was performed by Bharadvaj onthe F5 and HARW wing 
on�gurations [39℄. His 
omputational analysis used the transoni
 fullpotential equations to 
al
ulate the unsteady loads due to the for
ed 
ap os
illations. The 
ontrolsurfa
e de
e
tions were brought about by an equivalent body velo
ity approa
h that 
hanges theboundary 
onditions to model the e�e
t of a moving 
ontrol surfa
e. The vis
ous e�e
ts weremodelled through an intera
tive inverse boundary layer and the transpiration velo
ity approa
h.In both the wings were assumed to be rigid and hen
e the aeroelasti
 deformations were not
al
ulated. For
ed 
ap os
illations were performed over the F5 wing and a 
lipped delta wing byObayashi and Guruswamy using the RANS 
ode ENSAERO [40℄. The 
ontrol surfa
e de
e
tionswere modelled by shearing the grid at the 
ontrol surfa
e-wing interfa
e for both the 
ases. Thewings were treated as rigid.Obayashi et al. analysed a full span rigid arrow wing with symmetri
 and anti-symmetri
os
illating 
ontrol surfa
es[78℄. Reynolds-averaged thin layer Navier-Stokes equations were usedin this study and the intera
tion of the primary vortex, the wake vortex and the 
ap os
illationsat moderate angles of atta
k was demonstrated. The results were validated against wind tunnelexperiments. Klopfer and Obayashi developed and implemented a virtual zone te
hnique forthe treatment of os
illating 
ontrol surfa
es. The te
hnique uses intermediate virtual zones toa
t as an interfa
e between the 
ontrol surfa
e and wing edges. This was applied to a 
lipped56



delta wing and the 
omputed results were validated against experiments[41℄ Unsteady pressuredistribution due to an os
illating trailing edge 
ontrol surfa
e was 
al
ulated over a 55Æ deltawing by Karlsson[79℄. Results for the transoni
 
ase were 
al
ulated using a linear aerodynami
sbased method, a transoni
 full potential method and an Euler equation based 
ode EURANUSand were 
ompared with the experimental results. On
e again the model 
onsidered was rigid.Tamayama et al. [80℄ performed a 2D for
ed 
ap os
illation 
al
ulations on the NAL-SST wingpro�le. The main obje
t of the study was to investigate the sho
k motion at higher transoni

ows due to 
ap os
illations. A 2D RANS 
ode with a thin layer assumption for the boundarylayer was used. The wing pro�le of the 2D 
ase was same as the one used in the 
urrentwork. A 3D for
ed 
ap os
illation 
omputational study in transoni
 
ow was performed byUtaka and Nakami
hi [44℄ on the NAL-SST 
on�guration. The wing was modelled as elasti
and unsteady pressure was 
ompared against the experiments. The dynami
 deformation washowever not validated. A 
himera grid approa
h was used to model the 
ontrol surfa
e and theEuler equations were used to model the 
ow.The BACT wing has a ri
h database for the validation of aeroelasti
 and aeroservoelasti

omputations. Computations for unsteady pressure predi
tion have been performed on theBACT 
ase by S
huster for the 
ase with os
illating trailing edge 
ontrol surfa
e [42℄. This 
aseis also studied in the 
urrent 
hapter for the purpose of validating the CFD 
ode. The BACTwing is rigid and hen
e the pressure unsteadiness brought about by the 
ap os
illations alone.As the stru
tural deformations are absent there is no 
ow unsteadiness due wing bending. Thissimpli�es the problem in the sense that errors due to aero-stru
tural 
oupling are absent andhen
e makes it a good 
ase for validating the for
ed 
ap os
illation methodology.A transpiration boundary 
ondition was applied to treat the os
illating 
ap by Cole etal. to simulate a Ben
hmark A
tive Control Te
hnology (BACT) 
ase [43℄ and the unsteadypressure distribution 
ompared with the experiments. Flutter suppression and alleviation byA
tive Control Te
hnology (ACT) [81, 77℄ and predi
tion of 
ontrol surfa
e reversal due to wing
exibility [82℄ has been the motivation for many of 
omputational aeroservoelasti
ity simulations.As all air
raft wings are 
exible up to some extent, a more representative 
ase is of anos
illating 
ontrol surfa
e on a 
exible stru
ture. The unsteady pressure distribution over thewing due to 
ontrol surfa
e os
illations results in dynami
 stru
tural de
e
tions. Moreover theFlap Os
illating Frequen
y !F may resonate with the natural frequen
y of vibration of thestru
ture 
ausing large deformations. Su
h a simulation is performed in the 
urrent study on a
exible supersoni
 
on�guration along with a for
ed 
ap os
illation simulations on the BACTwing 
ase.The Japan Aerospa
e Exploration Agen
y (JAXA)1, as part of the Japanese SST program,is developing an experimental Supersoni
 Transport model and a wind tunnel model of this wastested in the transoni
 regime for unsteady pressure and dynami
 deformation [33, 83℄. Thepurpose of the experiment was to a

umulate veri�
ation data for the validation of aeroelasti

odes and a
tive 
ontrol te
hnology. The experimental data from this work is used here.In this 
hapter we try to 
omputationally predi
t the dynami
 deformation and pressuredistribution that are brought about by the for
ed os
illation of the 
ontrol surfa
e in transoni

ows. Development of this ability is a step towards 
omputational analysis of 
ontrol surfa
e1formerly National Aerospa
e Laboratory 57



Figure 4.1: The BACT wind tunnel model with its upper spoiler and trailing edge 
ontrol surfa
ede
e
ted.instabilities on air
raft. Apart from validation of the aeroelasti
 methodology an importantout
ome of this study is the assessment of the e�e
t of a blended 
ontrol surfa
es on the aerody-nami
s of the wing. This is an issue whi
h needs to be addressed as there is not mu
h informationavailable in the literature regarding the e�e
t of 
ontrol surfa
e treatment on the aero-stru
turalresponse.4.2 The Experimental Models4.2.1 The BACT WingThe Ben
hmark A
tive Control Te
hnology wing model was developed at NASA Langley aspart of the Ben
hmark Model Program. It is a simple generi
 re
tangular wing with a NACA0012 wing pro�le. It has upper and lower surfa
e spoilers and a trailing edge 
ontrol surfa
ewhi
h 
an be os
illated for use in 
utter suppression and dynami
 response ex
itation. Therehave been a large number of experiments performed on this model over the years in
ludingthe identi�
ation of the 
utter boundary when the model is mounted on a Pit
h and PlungeApparatus (PAPA), steady and unsteady 
ontrol surfa
e e�e
tiveness studies and measurementof dynami
 response of a 
exible system due to 
ontrol surfa
e ex
itation. The experimentson for
ed trailing edge 
ontrol surfa
e os
illations used in the 
urrent work were performed byBennett et al. [84℄ using a wide range of parameters in
luding Ma
h numbers, 
ap os
illationfrequen
ies (!F ), angles of in
iden
e, 
ap de
e
tion angles and spoiler de
e
tion angles. Figure4.1 shows the BACT apparatus on a rigid mount with the upper spoiler and 
ontrol surfa
ede
e
ted. The BACT wing is 
onsiderably sti� and hardly exhibits any stru
tural deformationdue to the for
ed motion of the 
ap. Figure 4.2 shows the lo
ations of the pressure sensors at40% and 60% span. The sensor array at 60% span runs a
ross the 
ap.A total of 3 experimental 
ases have been sele
ted for the validation study. Details of theexperiments are given in Table 4.1. Case 1 and Case 2 are stati
 whereas Case 3 involves for
ed
ap os
illations.
58



Figure 4.2: Lo
ations of the pressure sensors at 40% and 60% span of the BACT wing.
In
iden
e Mean 
ap angle Ma
h number !F (Hz) Flap amplitudeCase 1 �4:02Æ 0Æ 0.769 0 0ÆCase 2 0:03Æ 5:0Æ 0.769 0 0ÆCase 3 0Æ 0Æ 0.766 5 2:02ÆTable 4.1: Experimental details of the BACT 
ases sele
ted for 
urrent 
omputations.
In
iden
e Mean 
ap angle Ma
h number !F (Hz) Flap amplitude10 1:203ÆCase1 0:0Æ 0:0Æ 0.8002 15 1:312Æ20 1:116Æ25 1:004Æ10 1:567ÆCase2 �2:0Æ 0:0Æ 0.8009 15 1:448Æ20 1:229Æ25 1:091Æ5 1:844Æ10 1:756ÆCase3 �4:0Æ 5:0Æ 0.9007 20 1:284ÆTable 4.2: Conditions of the SST 
ases sele
ted for 
omputations.59



Figure 4.3: Dimensions of the SST wind tunnel model.4.2.2 The NAL SST Arrow WingComputational validation of the se
ond test 
ase is based on the transoni
 aeroelasti
 experi-ments performed at NAL [33℄. One of the motivations for the experiments was to generate aset of results against whi
h aeroelasti
 
odes 
ould be validated. For this reason, along withthe unsteady pressure distribution over the wing, the dynami
 deformation and unsteady for
e
oeÆ
ients were also measured.The SST arrow wing is a 
ranked double delta with a root 
hord of 2.103 metres. A halfmodel is used in the experiments with a semi-span of 1 metre. The se
tion pro�le is a NACA0003. The inboard delta has sweep angle of 72:8Æ and the outboard a sweep of 51:6Æ. The trailingedge 
ap starts at 20% half-span and terminates at 50% half-span. The 
ap 
hord is 0.11 metres.Figure 4.3 shows the dimensions of the experimental model in millimetres. Experimental datais available for a range of Ma
h numbers between 0.79 and 0.91, angles of atta
k of 0Æ, �2Æ and�4Æ, 
ap mean angles of 0Æ, �5Æ and 5Æ and Flap Os
illating Frequen
ies(!F ) of 5 Hz, 10 Hz,15 Hz, 20 Hz, 25 Hz and 30 Hz.FEM data in the form of a stru
tural grid and 
omputed natural modes of vibration areprovided in the paper [33℄. A brief des
ription of the stru
ture of the experimental model ispresented in an earlier paper by Tamayama [83℄. The wing stru
ture is made up of a 7 mmthi
k aluminium plate with holes drilled out to make it 
exible. It was found in the experimentsthat the frequen
y of the �rst wing bending mode in
reased from 9.79 Hz in va
uum to around15 Hz at Ma
h 0.8 [83℄. As the frequen
y of this mode lies in the vi
inity of the for
ed !F(5 Hz-30 Hz), and as the frequen
y of the next natural mode is higher (40.25 Hz) almost allthe deformation of the stru
ture is due to the �rst wing bending mode. It was observed in theexperiments that this mode sti�ened in the 
ow and 
oupled with the !F of 15 Hz. This meansthat the maximum wing dynami
 deformations o

ur at a !F of 15 Hz.It was found in the 
urrent study that the FEM model provided in the paper presenting theexperimental results [33℄ did not resonate with the !F of 15 Hz. To examine this an aeroelasti
simulation was performed with the given FEM model and the 
ow 
onditions des
ribed in theexperiment [83℄. A small impulse was given to the wing and the frequen
y of the os
illation was60
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al CAE loop showing the 
oupling of stru
tural and 
uid solver. An inter-mediate step that models the for
ed motion of the 
ap is added in the 
urrent study.measured. At Ma
h 0.8 and a dynami
 pressure of 23.35 kPa the frequen
y of the �rst wingbending mode in
reased from 11.09 Hz (in va
uum) to 12 Hz lower than the 15 Hz quoted inthe experiments. A sti�er model was 
onstru
ted with the frequen
y of the �rst bending modegreater than the one obtained from the GVT. The new sti�er model resonates with a !F of 15Hz as in the experiments.Table 4.3 shows the generalised mass and frequen
ies of the �rst 3 modes of the original FEMmodel the new sti�ened model and the frequen
ies obtained from the GVT. Figure 4.8 showsthe stru
tural grid and the �rst three modes of the sti�ened model transformed onto the surfa
egrid. The wing deformations are primarily in the y dire
tion and the y-
oordinate 
ontours areplotted in the �gure. The �rst three natural modes are in
luded in the aeroelasti
 
al
ulations.4.3 Aeroelasti
 ModellingThe CFD 
ode PMB solves the Euler and Navier-Stokes equations on the 
uid grid and 
al
u-lates the aerodynami
 for
e on the geometry surfa
e. The predi
ted aerodynami
 for
e is thentransferred to the stru
tural grid using the Constant Volume Tetrahedron (CVT) transformations
heme. The modal FEM solver in
orporated in PMB 
al
ulates the stru
tural response andtransfers the deformation information to the 
uid grid using the CVT. An intermediate stepto the above loop for the for
ed 
ap 
al
ulations is the in
lusion of for
ed motion of the 
apgeometry. Every real timestep the 
ap geometry if moved by a 
ertain angle and 
onsequentlythere is a redistribution of pressure over the wing. The FEM solver is 
oupled to the 
uidsolver in pseudo time hen
e the stru
tural response takes into a

ount the pressure redistribu-tion due to the for
ed motion while 
al
ulating the deformation before moving onto the nextreal timestep. Figure 4.4 shows a typi
al CAE loop and a for
ed 
ap loop that in
ludes wing
exibility. If the wing is assumed to be rigid then the FEM solver is omitted from the loop toget a purely sinusoidal os
illation of the 
ap. When in
luding the wing 
exibility it is important61
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Figure 4.5: Blending of the 
ap edge with the wing.that the redu
ed frequen
y of the for
ed 
ap motion is 
al
ulated in a 
onsistent manner withthe stru
tural redu
ed frequen
ies.4.3.1 Flap Grid TreatmentIn the 
urrent work blended 
aps and 
aps with free edges are used for simulations. The 
apblending is performed on the CAD model by simply lofting the 
ap edge 
urves with the wingtrailing edge 
urves to 
reate a blended surfa
e as shown in the s
hemati
 in Figure 4.5. The
ap with free edges is 
onstru
ted by introdu
ing small gaps between the 
ap edge and the wingin the CAD model. A single blo
k is then used to grid spa
e in inside this gap. Figure 4.7 showsthe 
lose-up of the two types of 
ap edge modelling. The 
aps in the �gure are de
e
ted by anangle of 1:4Æ and the surfa
e pressure 
ontours are plotted along with the surfa
e mesh. Thegaps at the 
ap edges are 0.5% of the 
ap width and they de
rease the e�e
tive surfa
e areaof the 
ap by 1%. For the for
ed 
ap os
illation 
ases three sets of geometries are 
onstru
ted.The �rst is the one with 0Æ 
ap de
e
tion. The se
ond and third have the 
ap de
e
ted at�5Æ. Surfa
e grids are generated on these three geometries. A 
ap mode shape is obtained bysubtra
ting the 
oordinates of the surfa
e grids of the geometry with 
ap de
e
ted at �5Æ fromthe geometry with 
ap de
e
ted at 5Æ . In unsteady CFD 
al
ulations the for
ed 
ap os
illationis brought about through the sinusoidal variation of the s
aled 
ap mode shape with time. The
ap mode shape 
ontributes to the wing shape in a similar way to the stru
tural mode shapesex
ept that the modal 
oordinate is applied rather than 
omputed from the stru
tural model.The surfa
e grid deformations Æxf are therefore obtained from the equationÆxs = A sin!t�f (4.1)62



Figure 4.6: The 3-blo
k strategy to avoid 
ollapsed 
ells at the leading edge of wing root.where A is the amplitude of the 
ap os
illation, �f is the 
ap mode shape and ! is the frequen
yof the applied motion. The surfa
e de
e
tions due to stru
tural modes are transformed fromthe stru
tural grid and the new wing surfa
e grid is 
al
ulated by summing the applied andstru
tural 
ontributions. The volume grid is re
al
ulated by using trans�nite interpolation ofdispla
ements of the surfa
e grid de
e
tions. The deformation of the surfa
e grid requires are
al
ulation of the volume grid. This is performed with a Trans�nite Interpolation (TFI)s
heme that deforms the grid inside the blo
ks 
ontaining the deforming surfa
e grid. This 
apos
illation s
heme independent of the aeroelasti
 module. Hen
e it is possible to 
al
ulate theaerodynami
 quantities over the body surfa
e with an os
illating 
ap assuming the body to berigid.4.3.2 CFD GridsThe BACT WingTo model the e�e
t of gaps at the 
ap edges two di�erent grids have been used in this study.The �rst is a RANS grid with blended 
ap edges. The wall spa
ing is 1 � 10�6
 and has 800thousand 
ells. The se
ond grid is a RANS grid with free 
ap edges. A small gap of the width2 % of the 
ap span is introdu
ed between the 
ap edge and the wing. This gap has a wedgedshaped grid blo
k in the 
ow domain. The rest of the topology and wall spa
ings are as for theblended edge. The blo
king topology of the grids has a C-type blo
king over the wing leadingedge and a H-type blo
king at the trailing edge. The wing tip whi
h is a rotated aerofoil halfpro�le and blo
k fa
e over the tip is 
ollapsed into an edge.NAL SST Arrow WingTo model the e�e
t of gaps and vis
osity a total of 4 di�erent grids has been used in this work.The RANS grid has 15 
ells to resolve the boundary layer. The wall spa
ing is 1:8 � 10�6 
.The RANS 
al
ulations are performed only with blended 
aps as there are problems with gridquality when gaps are introdu
ed at 
ap edges. A C-Type grid topology is used over the wing63



leading edge, the wing tip and also around the fuselage. The blo
ks at the trailing edge are ofH-Type. The wing geometry is basi
ally a slender delta wing on the inboard side and a 
ollapsedtriangular blo
k is avoided at the leading edge tip by using a 3-blo
k strategy as shown in Figure4.6. Points are 
lustered around the trailing edge and the 
ap region where a sho
k is likelyto develop and move. There are 14 
ells in the 
hord-wise dire
tion and 28 in the span-wisedire
tion on the 
ap. The size of the RANS grid is 800 thousand 
ells. The blended 
ap Eulergrids have the same topology as the RANS grid. The �ne Euler grid has 1:6 million 
ells. Thereare 24 
ells in the 
hord-wise dire
tion and 50 span-wise. The wall spa
ing is 1 � 10�3 
. A
oarse grid is obtained from the �ne grid by removing every alternate grid point in all the threedire
tions. The 
oarse Euler grid has 200 thousand 
ells. The grid used for 
aps with gaps is thesame as the 
oarse Euler grid for blended 
aps but with two extra blo
ks in the gaps betweenthe 
ap edges and the wing.4.4 BACT ResultsThe steady 
ases 1 and 2 show a good 
omparison with the experiments as seen in Figures 4.9and 4.10. Figure 4.9 shows results using blended gap treatments. The modelling of the gap haspra
ti
ally no e�e
t on the lo
al pressure distribution at 40% and 60% even when the wing is atan angle of �4:02Æ and a Ma
h number of 0.769, whi
h is mildly transoni
 for this wing pro�le.Figure 4.10 shows the 
omparison between 
omputed and experimental results for Case 2 usingblended 
aps alone, and a good agreement is obtained. Figure 4.11 shows the mean 
omputedand experimental pressure 
oeÆ
ients for the unsteady Case 3 at 40% and 60% span. A goodmean 
omparison is an important indi
ator of the 
orre
tness of unsteady input parameters like
ap os
illation amplitude and redu
ed frequen
y. The blended 
ap and 
ap with gap treatmentresults show that the di�eren
es between the two are minor for this 
ase.Figures 4.12 and 4.13 show the in-phase and out of phase 
omponents of the unsteadypressure 
oeÆ
ient. These are the real and imaginary 
omponents obtained by performing aFourier analysis on the pressure time history. In the 
urrent analysis the 
ap is os
illated for4 
y
les and a Fourier analysis is performed on the last 
y
le when a periodi
 state is rea
hed.200 time intervals per 
y
le of 
ap os
illation are used. The transient vanishes during the �rst
y
le itself and the aerodynami
 response in time is a smooth sinusoidal 
urve. The majority ofthe response is in phase with the 
ap os
illations and a small per
entage is out of phase as 
anbe seen from Figures 4.12 and 4.13. The 
omputed Cps 
ompare well with the experiments forboth blended and 
ap with gap treatments.4.5 SST ResultsIt is observed for the rigid BACT 
ase that the transient dies after the �rst 
y
le with a !F of 5Hz. This was not found to be the 
ase when 
exibility is in
luded in the study of the SST wing.The duration of the transient 
an be between 6 to 40 
y
les of the 
ap os
illation. Figure 4.14shows the modal response of the �rst wing bending mode against non-dimensionalised time forCase 1. At the !F of 15 Hz there is 
oupling of the �rst stru
tural mode and the 
ap os
illations,resulting in large deformation of the stru
ture. The transient response is generally longer for64



higher !F .It is observed that the stru
tural response is sensitive to the size of the timestep at the!F where the 
oupling with the stru
tural modes takes pla
e (whi
h is 15 Hz for the 
urrent
ase). Figure 4.15 shows the generalised 
oordinate of the �rst mode plotted against non-dimensionalised time at Ma
h 0.8 and the !F of 15 Hz and 25 Hz respe
tively with two di�erenttimesteps. The timestep re�nement from 0.15 to 0.06 makes no di�eren
e at the !F of 25 Hz.However the amplitude of os
illation 
onsiderably in
reases at the !F of 15 Hz when the timestepis de
reased from 0.14 to 0.08 and is then insensitive when the timestep is further redu
ed to0.04.The unsteady pressure and deformation were obtained by taking a FFT of these valuesduring the last 
y
le of the 
ap after a periodi
 state is rea
hed. The unsteady pressure wasre
orded on the upper surfa
e at 38% and 74% wing span lo
ations as shown in Figure 4.16. At38% span the 
ap hinge is lo
ated at 90.5% of lo
al 
hord and distin
t peaks on the unsteadypressure 
an be seen aft of this point at all !F . The dynami
 deformation is obtained along aline originating at the wing root whi
h is at 8% semi-span in
luding the fuselage, and 80.7% ofthe root 
hord. The line makes an angle of 113Æ with the x-axis.Figure 4.17 shows the magnitude of the unsteady pressure, and deformation in metres, ona 
oarse grid using the Euler equations. Blended 
ap edges are used in this simulation. The
omputed unsteady pressure and deformation 
ompare well with measurements at the resonant!F of 15 Hz, The position and magnitude of the pressure peaks over the 
ap at 38% semi-spanare well predi
ted for all !F . There is a 
onsiderable in
rease in the pressure unsteadiness at74% semi-span whi
h de
reases from leading edge to trailing edge at the resonant frequen
y.This indi
ates the wing undergoing a twisting motion at the tip. The dynami
 deformationmagnitude peaks at the resonant !F frequen
y of 15 Hz. The phase angle of the unsteadypressure is 
ompared for the resonant !F and the 
omputed result has a lag almost 40Æ lessthan the experiments. It is found that although the timestep re�nement has a large e�e
t onthe amplitude of the os
illations at the resonant frequen
y, it does not have mu
h e�e
t on thephase of the unsteady pressure or dynami
 deformations.The 
omputational results for Case 1 obtained by using the original stru
tural model are
ompared with the experiments in Figure 4.21. The wing tip undergoes the maximum dynami
deformation for all 
ases and !F . The deformation at the tip is plotted against the !F usingthe two FE models and 
ompared with the experiments. It 
an be seen that the original modelresonates with the !F of 10 Hz instead of 15 Hz and the dynami
 deformation peaks at this value.It predi
ts the deformation a

urately at !F of 10 Hz but under-predi
ts the deformation forall the other !F . The sti�ened model has a mu
h better 
omparison with the experiments andfollows the experimental trend. The original model is also unable to predi
t well the unsteadypressure at 74% span lo
ationComputed results using the Euler equations for Case 2 are presented in Figure 4.18. A 
oarsegrid was used for the 
al
ulations and blended 
ap edges are used. The unsteady pressure anddeformation trends are similar to those observed in Case 1 and the 
omputed results on
e againmat
h the pressure unsteadiness well at all !F and both semi-span lo
ations. In 
ontrast toCase 1 the magnitude of the unsteadiness is higher. The 
omputed dynami
 deformation showsan in
rease of almost 20% with deformation at the tip in
reasing from 1 
m for Case 1 to 1.265




m for Case 2 at the resonant frequen
y. As for Case 1 the 
omputed pressure phase angle atthe two span lo
ations is under-predi
ted by 40Æ, though the experimental trend of the phasealong the 
hord is reprodu
ed well in the 
omputations.The angle of in
iden
e is further de
reased in Case 3 to �4Æ and the Ma
h number in
reasedto 0.9007. The 
ap os
illates around a mean 
ap angle of 5Æ. At these parameters a strongsho
k develops just aft of the 
ap hinge on the upper surfa
e of the wing. Figure 4.20 showsthe invis
id steady surfa
e pressure 
oeÆ
ient 
ontours over the wing and pressure plot at the38% semi-span lo
ation on a �ne grid. The Euler equations usually predi
t the sho
k lo
ationdownstream of the real lo
ation. For the Case 3 the 
ap os
illates around a mean de
e
tionangle of 5Æ, whi
h means that the sho
k for the 
ow modelled by the Euler equations predi
tsthe sho
k os
illation over the 
ap, whi
h may not happen in the real 
ow. This sho
k os
illationover the 
ap is the reason for the peak in the unsteady pressure magnitude at 38% semi-spanlo
ation seen in Figure 4.19.Figure 4.22 shows the pressure 
ontours on plane through the 
ross se
tion of the blended
ap and the 
ap with free edge treatment. The 
rosse se
tional plane is at 58 % from the 
aphinge as shown in the �gure. The 
ow 
onditions are for Case 2 where the wing is at an angleof �2Æ. There were no noti
eable di�eren
es observed in the pressure 
ontours for the two typeof 
ap treatments. To further assess the e�e
t of the blended edges on the 
omputed unsteadypressure and deformation an invis
id simulation is performed using 
aps with free edges. Figure4.23 
ompares the unsteady pressure and deformation for Case 2 at the !F of 15 Hz obtainedfrom blended 
ap and 
ap with free edges. There is little di�eren
e seen in the 
omputed resultsthough the blended 
ap predi
ts a slightly bigger dynami
 deformation on a

ount of it havinga larger 
ap surfa
e area.The NAL-SST arrow wing has a thin se
tion pro�le and for this reason the 
ow remainsatta
hed for most 
ases and for all !F . Vis
ous e�e
ts are not observed in the simulationsat low angles of in
iden
e and the 
omputed unsteady pressure and deformation using RANSare similar to the Euler results . Figure 4.24 shows the 
omputed results from the vis
oussimulation for Case 1. At 38% semi-span the pressure peak over the os
illating 
ap is under-predi
ted though the lo
ation of the peak mat
hes the experiment. The unsteady pressure at74% semi-span and the dynami
 deformation is similar to the invis
id 
al
ulations. At 
ow
onditions where the sho
k does not rea
h the 
ontrol surfa
e it is found that the invis
id resultsare similar to RANS. For 
ases where the sho
k does rea
h the 
ontrol surfa
e, as in Case 3,vis
ous 
al
ulations are required to predi
t the sho
k lo
ation a

urately. The sho
k indu
edseparation over the os
illating 
ontrol surfa
e 
auses pressure redistribution and 
ould have ane�e
t on the stru
tural response. Case 3 remains to be simulated using the RANS equations.4.6 Con
lusionUnsteady vis
ous and invis
id for
ed 
ap os
illation simulations were performed on the 
exibleNAL-SST arrow wing and the rigid BACT wing using using a range of !F . A good 
omparisonis obtained of the steady and unsteady surfa
e pressures with the experiments for the BACT
ase. The pressure unsteadiness is in-phase with the 
ap os
illations as the Fourier pro
essedout-of-phase 
omponent is very small 
ompared to the in-phase 
omponent. The predi
ted66



CP

0.324815

0.268333

0.211852

0.15537

0.0988889

0.0424074

-0.0140741

-0.0705556

-0.127037

-0.183519

-0.24

(a) Cp 
ontours on a blended 
ap.
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-0.0203704

-0.0777778

-0.135185

-0.192593
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(b) Cp 
ontours over a 
ap with free edges.Figure 4.7: The two types of modelling of the 
ap edges on the BACT and SST wings.Natural Frequen
ies (Hz)Mode GVT FEM - Original FEM - Sti�enedMode 1 - First wing bending 9.79 11.09 12.44- - 41.65 -Mode 2 - First wing twisting 40.25 44.00 51.65Mode 3 - Se
ond wing bending 47.91 56.26 58.32Table 4.3: Natural frequen
ies of the experimental and FEM models of the SST 
on�guration.dynami
 deformation of the SST 
ompares well with the experiments at the resonant frequen
yand a reasonable 
omparison for unsteady pressure distribution was obtained for all frequen
ies.Vis
ous e�e
ts were found to be negligible and invis
id predi
tions were as a

urate as vis
ousfor the 
ase with 0Æ in
iden
e. It is 
on
luded that Euler equations 
an a

urately predi
t theunsteady pressure for transoni
 Ma
h numbers where the sho
k remains well ahead of the 
ontrolsurfa
e hinge. The e�e
t of blended 
ap edges on the predi
tion of pressure distribution anddeformation of wing was found to be insigni�
ant when 
ompared with 
aps with free edges. TheFEM stru
tural model was sti�ened to allow the resonan
e to take pla
e at !F of 15 Hz. Futurework 
ould in
lude a detailed FEM model that takes into a

ount the stru
tural nonlinearities.
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(a) Stru
tural model Y: -0.0347604 0.0312716 0.0973035 0.163335 0.229367 0.295399(b) Mode 1 - 12.44 Hz

Y: -0.235892 -0.160944 -0.0859948 -0.011046 0.0639028 0.138852(
) Mode 2 - 51.65 Hz Y: -0.370937 -0.275169 -0.179401 -0.0836330.0121348 0.107903(d) Mode 3 - 58.32 HzFigure 4.8: The stru
tural model and transformed mode shapes used in the 
exible SST simu-lations.
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(b) 60% spanFigure 4.9: BACT Case 1 steady Cp values using blended 
ap and 
ap with gaps. M = 0.769,Re. No. 3.96 million, � = �4:02Æ
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(b) 60% spanFigure 4.10: BACT Case 2 steady Cp values using blended 
ap. M = 0.769, Re. No. 3.96million, 
apangle = 5:0Æ
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(b) 60% spanFigure 4.11: BACT Case 3 mean Cp values using blended 
ap and 
ap with gaps. M = 0.769,Re. No. 3.96 million, 
ap amplitude = 2:02Æ
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(a) In-phase 
omponent at 40% span
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(b) In-phase 
omponent at 60% spanFigure 4.12: BACT Case 3 unsteady Cp values using blended 
ap and 
ap with gaps. M =0.769, Re. No. 3.96 million, 
ap amplitude = 2:0Æ, !F 5 Hz.
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(b) Out of phase 
omponent at 60% spanFigure 4.13: BACT Case 3 unsteady Cp values using blended 
ap and 
ap with gaps. M =0.769, Re. No. 3.96 million, 
ap amplitude = 2:0Æ, !F 5 Hz.
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e !F of the SST,Case 1, Euler simulation.

(a) Lo
ation of unsteady pressure transdu
ers. (b) Lo
ation of opti
al targets to measure dy-nami
 deformation.Figure 4.16: Lo
ation of measurement points in the SST experiments.
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Local chord at 38% semi-span
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(a) Unsteady pressure at 38% semi-span lo
a-tion. Local chord at 74% semi-span
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(b) Unsteady pressure at 74% semi-span lo
a-tion.
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(
) Unsteady deformation along the span (seeFigure 4.16). Local chords at 38% and 74% semi-spans
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(a) Unsteady pressure at 38% semi-span lo
a-tion. Local chord at 74% semi-span
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(b) Unsteady pressure at 74% semi-span lo
a-tion.
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(
) Unsteady deformation along the span (seeFigure 4.16). Local chords at 38% and 74% semi-spans
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Local chord at 38% semi-span
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(a) Unsteady pressure at 38%semi-span lo
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(a) Surfa
e Cp 
ontours.
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(b) Steady pressure at 38% semi-span lo
ation.Figure 4.20: Steady invis
id pressure 
ontours for the SST Case 3. The region of low pressureat the 
ap leading edge has supersoni
 
ow.
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Local chord at 38% semi-span

M
ag

ni
tu

de
of

un
st

ea
dy

pr
es

su
re

(n
on

di
m

en
si

on
al

is
ed

)

0 0.25 0.5 0.75 1

0.01

0.02

0.03

0.04

0.05

0.06 Blended flap, coarse grid
Flap with gaps, coarse grid
Flap with gaps, fine grid
Expt.

(a) Unsteady pressure at 38% semi-span lo
a-tion. Local chord at 74% semi-span
M

ag
ni

tu
de

of
un

st
ea

dy
pr

es
su

re
(n

on
di

m
en

si
on

al
is

ed
)

0 0.25 0.5 0.75 1

0.01

0.02

0.03

0.04

0.05

Blended flap, coarse grid
Flap with gaps, coarse grid
Flap with gaps, fine grid
Expt.

(b) Unsteady pressure at 74% semi-span lo
a-tion.
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(
) Unsteady deformation along the span (seeFigure 4.16). Local chords at 38% and 74% semi-spans
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oarse gridswith at the !F of 15 Hz.Figure 4.23: Unsteady pressure and deformation plots for the SST Case 2 
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aps with gaps and at !F of 15 Hz using the Euler equations.
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Local chord at 38% semi-span
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(a) Unsteady pressure at 38% semi-span lo
a-tion. Local chord at 74% semi-span
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(b) Unsteady pressure at 74% semi-span lo
a-tion.
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(
) Unsteady deformation along the span (seeFigure 4.16). Local chords at 38% and 74% semi-spans
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Chapter 5Control Surfa
e Instability
5.1 Introdu
tionIn re
ent years Computational Aeroelasti
ity (CAE) has advan
ed to a point where 
utterboundaries for 
omplete air
raft 
on�gurations 
an be predi
ted, even in the diÆ
ult transoni

ow regime [76, 85, 86, 67℄. Along with simulations of 
lassi
al aeroelasti
 instabilities like
utter and divergen
e, an interesting area of CAE appli
ation is the predi
tion of 
ontrol surfa
einstabilities like buzz. Extensive work on numeri
al simulations of buzz has not been undertaken.This is mainly be
ause by the time the 
omputational tools were in pla
e for su
h an undertaking,buzz 
eased to be an issue in modern air
raft. The advent of hydrauli
 a
tuators redu
ed the
han
e of 
ontrol surfa
es developing os
illation about its hinge, when 
ompared with 
aps onolder air
raft with me
hani
al spring loaded �xtures.Experimentally there were a number of important studies in the 60s and 70s exploring thebuzz phenomenon[4, 87, 88℄. The popular 
lassi�
ation of buzz in the literature was de�ned byLambourne[4℄. During the 
ourse of his experiments he found that there are 3 main types ofbuzz possible on a trailing edge 
ap, whi
h he 
alled Types A, B and C. Type A buzz o

urswhen the sho
k stands somewhere ahead of the 
ap hinge line and intera
ts with the boundarylayer and the 
ap motion. The limit 
y
le os
illation is brought about by the syn
hronisationof the sho
k strength and motion, the 
ow separation and the angular 
ap motion. As the
ontrol surfa
e moves it alternately weakens or strengthens the sho
k, 
ausing separation andre-atta
hment of the 
ow. The separated 
ow in turn 
reates a hinge moment at the 
ap leadingedge whi
h makes the 
ap undergo os
illation. The Type A buzz is limited to thi
k aerofoils,and is rarely seen in aerofoils with less than 10% 
amber[3℄. Sho
k indu
ed 
ow separation is theprimary requirement for Type A buzz to o

ur. Type B buzz is when the sho
k 
rosses the hingeline and translates over the 
ontrol surfa
e. The driving me
hanism here is the unsteady hingemoment from the pressure pulse 
reated by the sho
k motion. The hinge moments involved inType B buzz are greater than in Type A and are mu
h more diÆ
ult to alleviate. In termsof numeri
al simulation, Type B buzz 
an be simulated using the Euler equations. Althoughthere 
an be 
ow separation over the 
ap in Type B buzz, whi
h 
an e�e
t the amplitude andfrequen
y of the buzz, the a
tual onset of buzz is not in
uen
ed by vis
ous e�e
ts [3℄. Type Cbuzz o

urs when the sho
k has 
rossed the whole length of the 
ontrol surfa
e and is atta
hedto the trailing edge. This type of buzz o

urs in supersoni
 
ows and is thought not to involve
ow separation. 80



Until now there have been few numeri
al simulations of buzz des
ribed in the literature. Oneof the �rst su
h studies was performed by Steger [36℄ who 
arried out a 2D buzz simulation ona P-80 wing using an impli
it �nite di�eren
e 
ode 
apable of solving the RANS equations. TheP-80 air
raft was already known to su�er from buzz problems during 
ight testing and this wasfurther investigated in the NASA Ames wind tunnel by Eri
kson and Stephenson [89℄. Stegerwas able to mat
h the 
omputed results with the experiments, and also measured the e�e
t ofvis
osity on buzz simulations. It was found that for a 
ertain Ma
h number the os
illations inan invis
id 
al
ulation would die down after an initial ki
k but that the os
illations in vis
oussimulations would result in a limit 
y
le[36℄. At a higher Ma
h number the invis
id simulationwould diverge whereas the RANS simulation would still predi
t a limit 
y
le. Hen
e he dedu
edthat vis
osity had an e�e
t of both preserving and mitigating the os
illations.Fuglsang et al. [90℄ solved a buzz problem on the �n-rudder se
tion of T-45 Goshawkair
raft through steady CFD simulations. By analysing the 
ow �eld using CFD around the
ow parameters where buzz was known to arise, a solution using two parallel sho
k strips wasdeveloped. Sho
k strips are raised se
tions that are stu
k on the wing to move the sho
k forwardof its original position. The strips were su

essful in alleviating buzz in the T-45 
ight envelope.Bendiksen numeri
ally investigated a type of buzz instability that relies purely on the inter-a
tion between the sho
k and 
ap motion, whi
h he termed non-
lassi
al buzz[3℄. He showedthat for 
ertain 
ases, espe
ially for thin aerofoil se
tions, the 
ow separation does not play animportant role in maintaining a limit 
y
le os
illation. A buzz boundary tra
ed from invis
id
al
ulations 
ompared well with experiments [3℄. Re
ently the non-harmoni
 motion of the sho
kover an aerofoil with a harmoni
ally os
illating 
ap[80℄ and 3D aileron buzz 
al
ulated using thethin layer RANS equations were shown[38℄.The Japan Aerospa
e Exploration Agen
y1 (JAXA) has been developing s
aled powered andnon-powered Supersoni
 Transport models as part of their obje
tive to a
quire and establishadvan
ed air
raft integration te
hnology. The �rst non-powered model from this program waslaun
hed in Woomera, Australia in 2002. As with all supersoni
 
on�gurations this model hadthin, low aspe
t ratio wings with little possibility of 
ow separating over the wing at moderateangles of atta
k within the 
ight envelope. However at high transoni
 and low supersoni

onditions a strong sho
k develops where a trailing edge 
ap/aileron might be situated. Due tothe thinness of a supersoni
 wing it is diÆ
ult to have sti� hinges or powered a
tuating systemsfor the trailing edge 
ap. This means that the sho
k motion over the 
ap 
an intera
t with theone degree of freedom 
ap motion by feeding energy to it and 
ausing undamped 
ap os
illationsthat grow in time. As the wings used for supersoni
 air
raft are usually thin, analysis for TypeB buzz is of most relevan
e. The 
ap in the 
urrent work is modelled as having blended edgesand free edges. Chapter 3.18 des
ribes these two type of treatments in detailed. The aeroelasti
response from the two types of modelling are 
ompared here.5.1.1 Test Case Des
riptionThe geometry of the 
on�guration is des
ribed in an RTO report [91℄. The se
tion pro�le isthe NACA 0003 and the wing is a 
ranked double delta. A fuselage swell near the wing trailing1formerly National Aerospa
e Laboratory (NAL) 81



Mode Frequen
y (Hz)- Model 1 Frequen
y (Hz)-Model 2Wing bending 10.39 10.44Flap Os
illation 16.202 -Wing Torsion 44.24 44.13Se
ond Wing Bending 53.89 50.23Se
ond Wing Torsion 89.06 88.80Table 5.1: Natural frequen
ies of the modeledge, whi
h was present in the experimental model to house the 
ap os
illation me
hanism, iseliminated from the CAD model. The wing tip is modelled by rotating the aerofoil at the tip.5.1.2 The Stru
tural ModelThe stru
ture of the SST was modelled as a 2D plate in NASTRAN with the aid of the PATRANprepro
essor. The 
ap is modelled as a separate plate atta
hed to the main wing through springs(See Figure 5.1). Two stru
tural models were 
onstru
ted using the same material and geometri
properties. The di�eren
e between the two models is in the value of the spring sti�ness at the
ap hinge. The spring sti�ness 
onstant in Model 1 is adjusted so that it gives a 
ap frequen
yof 16:2Hz whi
h is within the realisti
 frequen
y range of a me
hani
ally 
onstrained trailingedge 
ontrol surfa
e. The spring sti�ness 
onstant of the hinge in Model 2 is set to a very highvalue so that the 
ap is 
onstrained and the 
ap mode is eliminated. The �rst 
omputed naturalmode of vibration is a wing bending mode that has a frequen
y similar to previously publishedvalues[91℄. Table 5.1 gives the details of the natural frequen
ies of the 2 models used in the buzzand 
utter 
al
ulations. The se
ond natural mode of Model 1 is the 
ap os
illation mode whi
his used for buzz simulations. The �rst 5 natural modes were used for 
utter 
al
ulations for the
ase with the 
ap having a low hinge spring atta
hment sti�ness and the �rst 4 natural modeswere used in 
utter 
al
ulations for the 
ase with a high hinge spring atta
hment sti�ness. Byin
reasing the sti�ness of the 
ap hinge the 
ap os
illation mode was eliminated at the sametime maintaining the shape and frequen
ies of other modes. The wing stru
ture is made up of550 triangular elements and the 
ap has 20 elements. The fuselage stru
ture 
onsists of twotriangular elements that are 
lamped rigid.5.1.3 CFD GridsTo model the e�e
t of gaps and vis
osity a total of 4 di�erent grids have been used in this work.The vis
ous grid has 15 
ells to resolve the boundary layer. The wall spa
ing is 1:8� 10�6 
hordlengths. The vis
ous 
al
ulations are performed only with blended 
aps to avoid problems withgrid quality when gaps are introdu
ed at 
ap edges. A C-Type grid topology is used over thewing leading edge, the wing tip and also around the fuselage. The blo
ks at the trailing edgeare of H-Type. The C-Type blo
ks wrap around the rounded leading edge and the tip ensuringorthogonal 
ells whi
h otherwise would not be possible with an H-H Type of blo
king. The winggeometry is basi
ally a slender delta wing on the inboard side and a 
ollapsed triangular blo
kis avoided at the leading edge tip by using a 3-blo
k strategy as shown in Figure 5.2. Points82



Model 1-Flap oscillating mode 16.2 Hz

Oscillating flap

Rigid fuselage grid

(a) Flap mode

Model 1-First wing bending mode 10.39 Hz

Rigid wing

Deformed in first mode(b) Model1

Model 2-First wing bending mode 10.44 Hz

Rigid wing

Deformed in first mode(
) Model2Figure 5.1: Stru
tural models with the 
ap os
illation mode and the �rst wing bending mode

Figure 5.2: 3-blo
k strategy to prevent a 
ollapsed point at the leading edge of the wing rootare 
lustered around the trailing edge and the 
ap region where the sho
k is likely to developand move during the buzz simulation. There are 14 
ells in the 
hord-wise dire
tion and 28in the span-wise dire
tion on the 
ap. The size of the vis
ous grid is 800k 
ells. The grid is
apable of a

urately resolving the 
ow in the region of interest but at the same time is smallenough to allow rapid turn around for the unsteady 
al
ulations. The blended Euler grids havethe same topology as the vis
ous grid. The �ne Euler grid has 1.6 million 
ells. There are 24
ells in the 
hord-wise dire
tion and 50 span-wise. The wall spa
ing is 1� 10�3 
hord lengths.A 
oarse grid is obtained from the �ne grid by removing every alternate grid point in all thethree dire
tions. The 
oarse Euler grid has 200k 
ells. The grid used for 
aps with gaps is thesame as the 
oarse Euler grid for blended 
aps but with two extra blo
ks inside gaps betweenthe 
ap edges and the wing.
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(b) Euler 
al
ulation, Ma
h 0.95, k = 0.778 and dy-nami
 pressure = 26.468 kPaFigure 5.3: Timestep and grid re�nement 
al
ulations5.2 Results and Dis
ussionsThe steady and unsteady results for a 
ase with a for
ed 
ap motion have been validated withthe experiments in Chapter 4. The 
urrent 
hapter deals with a 
ap that is driven by theunsteady aerodynami
s and unlike the previous 
ase experimental results are not available forvalidation.5.2.1 Grid and time-step re�nement studyA timestep re�nement study was performed on the RANS 
ase at Ma
h 0.987. At a freestreamvelo
ity of 275m=s the redu
ed frequen
y of the response is 0.778. Figure 5.3(a) shows thetime tra
es of the modal response using timesteps of 0.025, 0.05 and 0.1. As 
an be seen the
urves of timesteps 0.025 and 0.05 almost overlap ea
h other and maintain the frequen
y andthe amplitude. Hen
e a timestep of 0.05 is used for all the buzz simulations in the 
urrent study.Figure 5.3(b) shows the modal response at Ma
h 0.95 using the Euler 
al
ulations on �ne and
oarse grids with timesteps of 0.05 and 0.1. On
e again the modal response 
urves overlap ea
hother. The results indi
ate the 
oarse Euler grid with a timestep of 0.05 are able to adequatelypredi
t the 
ap response.5.2.2 Dependen
e of buzz on 
ap blendingThis se
tion 
on
erns the e�e
t of the blending parameter [51℄ on the onset of buzz. Againa 
oarse Euler grid is used to assess this e�e
t as we are 
on
erned with the variation in thepredi
ted buzz Ma
h number with a 
hange in the blending parameter. In the �rst 
ase a lowblending value of 20 and in the se
ond a higher value of 100 is used. The larger the value ofthe blending parameter the more the transformed 
uid grid 
onforms to the stru
tural grid at84
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(b) Euler 
al
ulation, Ma
h 1.1, k = 1.42 and dy-nami
 pressure = 7.85 kPaFigure 5.4: Flap response at di�erent values of blending parameterMa
h No. 0.9 0.91 0.92 0.93 0.95 0.98 1.1 1.2 1.3 1.4Euler blended No No Yes Yes Yes Yes Yes Yes No -Euler gap No No No Yes Yes Yes Yes Yes No -Vis
ous No - No - Yes Yes Yes Yes Yes MaybeTable 5.2: Buzz predi
tion at various Ma
h numbers by di�erent modelsthe given transformed mode. For the 
ap mode where the 
ap nodes move relative to the wingnodes the blending parameter a
ts as a damper limiting the motion of the 
ap. This dampinge�e
t de
reases with the in
reasing value of the blending parameter. Also a higher blendingparameter maintains a sharper shape at the 
ap edge. Figure 5.4 shows the 
ap angle againsttime for the two values of blending parameter. The 
ap modelled with a blending parameter of20 has, in general, a more restrained response both in amplitude and in frequen
y.To assess the in
uen
e of blending gaps are introdu
ed at the inboard and outboard edges.The total width of both gaps 
ombined is 1% of the 
ap span. The 
ells in these gaps are shearedas the 
ap moves from its mean position. It takes longer to 
onverge due to poor grid qualityof the sheared 
ells, and hen
e in
reases the overall 
omputation time by almost 50%. In termsof predi
tion of the Ma
h number at whi
h buzz o

urs the two types of 
ap treatment givesimilar results. Table 5.2 shows the o

urren
e of buzz at di�erent Ma
h numbers as predi
tedby di�erent simulation methods. The angle of in
iden
e for all the 
ases is 0:6Æ and the Reynoldsnumber for the vis
ous 
ase is 21.42 million. The maximum amplitude of 
ap rotation arises atMa
h numbers 0.91 - 0.93 with 
ap rotation angles approa
hing 25Æ. The amplitude of the 
apangle for the blended 
ase is larger than the 
ap with free edges as seen in Figure 5.5. This isbe
ause the blended 
ap has more surfa
e area for the sho
k driven unsteady aerodynami
s to85
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(b)Figure 5.5: Flap response of blended and free 
aps at di�erent Ma
h numbersa
t on and hen
e more for
e is transferred to the stru
tural grid resulting in larger deformations.A 
on
lusion that 
an be drawn from Table 5.2 with respe
t to Euler and RANS 
al
ulationsis the dependen
e of Type-B buzz on the sho
k predi
tion. As the Euler equations predi
t thesho
k aft of RANS modelled 
ows for a given angle of in
iden
e and Ma
h number, and hen
ethe Ma
h number at whi
h the RANS equations predi
t the onset of Type-B buzz is higher. Itwas found for the 
urrent 
ase that the lo
ation of the sho
k predi
ted by the Euler equationsat Ma
h 0.98 is the same as the lo
ation predi
ted by the RANS equations at Ma
h 0.987.Figure 5.6 shows the pressure 
ontours for the invis
id 
ase at Ma
h 0.98 and the vis
ous 
aseat Ma
h 0.987. The sli
e is taken at 38.4 % span and the sho
k lo
ations for both the 
ases isat approximately 95.7% lo
al 
hord. The angle of in
iden
e is 0:6Æ.5.2.3 Dependen
e of buzz on the initial impulseIt is known that 
ontrol surfa
e buzz is sensitive to the initial disturban
e. In 
ruise 
onditionsthis displa
ement of the 
ontrol surfa
e 
an be brought about by atmospheri
 turbulen
e orsudden 
hanges in dynami
 pressure along the 
ight path. Depending on the magnitude of thedispla
ement angle of the 
ontrol surfa
e and the Ma
h number, a sho
k 
an develop over eitherthe upper or lower side of the 
ontrol surfa
e. Figures 5.7 through 5.9 show unsteady pressure
ontours through a 
y
le of os
illation that is growing in amplitude. This is for an invis
idsolution on the �ne grid with the wing at an in
iden
e of 0:6Æ and at a Ma
h number of 0.95.The sli
e is taken through 32 % wing span whi
h interse
ts the 
ap at 40 % span. The 
oupled
al
ulation is initiated by perturbing the 
ap velo
ity. Depending on the angle the 
ap rea
hesfollowing the initial perturbation and the Ma
h number, the sho
k 
an either move far aft ofthe 
ap or remain near the 
ap leading edge. The strength and position of the displa
ed sho
kon the 
ap de
ides whether the system will enter an LCO or if the initial perturbation will86



P: 0.659523 0.704937 0.750351 0.795765 0.84118

(a) Euler - Ma
h 0.98

P: 0.654035 0.689349 0.724664 0.759978 0.795293

(b) RANS - Ma
h 0.987Figure 5.6: Steady pressure 
ontours for Euler and RANS 
ases at a sli
e taken at 38.4% span.die down. Hen
e the buzz onset depends both on the Ma
h number and the size of the initialperturbation at a given in
iden
e.Consider a 
ase where a large initial perturbation is applied as shown in Figures 5.7 through5.9. The side with the sho
k has an area of higher free stream velo
ity and hen
e lower dynami
pressure than the opposite side. This pressure di�eren
e a
ross the 
ontrol surfa
e 
reates ahinge moment that pulls the 
ontrol surfa
e towards the opposite side weakening the sho
k.Due to the inertial for
es and the lag in the aerodynami
 response the 
ontrol surfa
e 
ontinuesits motion resulting in the formation of a sho
k on the opposite side. This 
y
le 
ontinues lo
kingthe system into a limit 
y
le os
illation due to the motion of the sho
k over the 
ontrol surfa
e.Figure 5.11 shows the same 
ase but with a low initial perturbation. Here the initial impulseis not strong enough for the 
ap to de
e
t to a required angle for a strong sho
k to developover the 
ontrol surfa
e. Hen
e the hinge moment 
reated is too weak for the LCO to ensue.Figure 5.12 shows the dependen
e of buzz to the initial aerodynami
 impulse at di�erent Ma
hnumbers. It 
an be seen that for low transoni
 
ases, where the sho
k is not very aft of the hingeline, buzz is dependent on the initial perturbation, but for high transoni
 and supersoni
 
aseseven a small impulse 
an result in buzz. This phenomenon was also observed in 2D simulationsby Bendiksen[3℄. Steger found that buzz was dependent on the initial position of the 
ap[36℄ andthis is 
onsistent with Bendiksen's explanation of the non-
lassi
al buzz as dire
t 
onsequen
eof sho
k motion on the 
ap as the initial position of the 
ap shifts the lo
ation of the sho
ktowards the trailing edge .The results in Figure 5.12 are from 
al
ulations performed on a 
oarse grid using Eulerequations. As vis
ous e�e
ts are not modelled the instability here is brought about purely dueto the motion of the sho
k. However the dependen
e on the initial impulse is also observed inRANS simulations. Figure 5.13 illustrates the variation of the normal for
e on the upper andlower surfa
es of the 
ap with angular motion of the 
ap when given a high initial perturbationat Ma
h 0.95. This simulation is performed using the Euler equations. The stati
 for
e andde
e
tion have been subtra
ted from the plotted results. It 
an be seen that there is a phase87
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lag between the the for
e on the 
ap and the 
ap motion whi
h grows initially. The phase lagin aerodynami
 for
e on the 
ap in the Euler 
ase is due to the alternate strengthening andweakening of the sho
k on the 
ap end is self sustaining provided the initial perturbation resultsin a large enough phase di�eren
e. In 
ontrast Figure 5.14 shows the same 
ase but with asmaller initial perturbation. The sho
k driven phase di�eren
e between the for
e and the 
apmotion here is not large enough for the buzz to o

ur and keeps getting smaller until the the
ap and the for
e are in-phase and the os
illations die down. Figure 5.15 shows the plot thefor
e against 
ap motion plots while using the RANS equations at Ma
h 0.95 when given a largeinitial perturbation. Here too we get a 
ontrol surfa
e buzz however the amplitude is mu
hlower than from the Euler simulation as the sho
k predi
ted by the RANS equations is weaker.Also, as the unsteady for
e on the 
ap is a 
onsequen
e of the sho
k strength it is almost half ofwhat is predi
ted by the Euler simulations for the same Ma
h number and the angle of atta
k.Figure 5.16 shows the for
e and 
ap motion plot at Ma
h 0.95 using RANS equations but witha smaller initial perturbation.Here to we see a buzz developing though not as rapidly as thesimilar 
ase using Euler equations.5.2.4 Dependen
e of buzz amplitude and frequen
y on Reynolds numbersIt was shown experimentally [88℄ that for lower values of redu
ed frequen
y the LCO amplitudewas sensitive to the Reynolds number. Figure 5.17 shows the time tra
es of the 
ap amplitude for
onstant redu
ed frequen
ies and dynami
 pressure at two di�erent values of Reynolds number.Both the 
ases in Figure 5.17(a) and Figure 5.17(b) have the same dynami
 pressure but di�erentredu
ed frequen
ies whi
h is a
hieved by adjusting the freestream density. For both 
ases theamplitude and the buzz frequen
y in
rease slightly with an in
rease in the Reynolds number.Although it was shown [88℄ that the sensitivity to Reynolds number 
hanges was only at lowvalues of redu
ed frequen
y, it was observed in the 
urrent work that amplitudes were sensitiveto the Reynolds number even for higher values of redu
ed frequen
y. In the previous workvis
ous e�e
ts are more pronoun
ed on a

ount of the thi
ker aerofoil pro�le and bigger 
ap towing 
hord ratio.In the 
urrent 
ase the 
ow, at a Reynolds number of 21.42 million, is atta
hed along theentire 
hord of the wing ex
ept at larger 
ap de
e
tion angles when a separation bubble formsat the 
ap trailing edge. Figure 5.18 shows the instantaneous pressure 
ontours when the 
apis at 0Æ for two 
ases with Reynolds number of 3 and 21 million respe
tively. In both the plotsthe 
ap has �nished two 
y
les but the sho
k lo
ation for the 
ase with Reynolds number of21 million is mu
h aft than the 
ase with the Reynolds number of 3 million. This is be
ausethe separation bubble, the size of whi
h de
reases with in
reasing Reynolds number, pushes thesho
k towards the leading edge. This de
reases the moment a
ross the 
ap hinge and hen
eredu
es the buzz amplitude. Figure 5.19 shows the 
ow streamlines at Ma
h 0.987 for thetwo 
ases.. The instantaneous 
ap angle is 10:83Æ for both 
ases but the snapshots are takenat di�erent time levels as the frequen
y and amplitude of the buzz os
illations 
hange with theReynolds number. A separation bubble 
an be seen for the 
ase at Reynolds number of 3 millionand is absent for the 
ase with Reynolds number of 21 million. The separation is sho
k indu
edand plays a part in in
uen
ing the buzz 
hara
teristi
s.91
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(d) Flap lower surfa
eFigure 5.13: The unsteady for
e and 
ap motion when given large initial perturbation. Unsteadyfor
e values are taken on the 
ap upper and lower surfa
es. Euler simulation at Ma
h 0.95 anddynami
 pressure 26.4 kPa.
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(d) Flap lower surfa
eFigure 5.14: The unsteady for
e and 
ap motion when given small initial perturbation. Unsteadyfor
e values are taken on the 
ap upper and lower surfa
es. Euler simulation at Ma
h 0.95 anddynami
 pressure 26.4 kPa.
96



Flap angle [degrees]

U
ns

te
ad

y
fo

rc
e

on
th

e
fla

p
(n

on
di

m
en

si
on

al
is

ed
)

-20 -15 -10 -5 0 5 10 15 20
-0.0050

-0.0040

-0.0030

-0.0020

-0.0010

0.0000

0.0010

0.0020

(a) Flap upper surfa
e Time (nondimensionalised)

N
or

m
al

is
ed

un
st

ea
dy

fo
rc

e
an

d
fla

p
m

ot
io

n

0 5 10 15 20 25 30 35

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Normalised flap motion
Normalised unsteady force

(b) Flap upper surfa
e

Flap angle [degrees]

U
ns

te
ad

y
fo

rc
e

on
th

e
fla

p
(n

on
di

m
en

si
on

al
is

ed
)

-20 -15 -10 -5 0 5 10 15 20
-0.0050

-0.0040

-0.0030

-0.0020

-0.0010

0.0000

0.0010

0.0020

(
) Flap lower surfa
e Time (nondimensionalised)

N
or

m
al

is
ed

un
st

ea
dy

fo
rc

e
an

d
fla

p
m

ot
io

n

0 5 10 15 20 25 30 35

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Normalised flap motion
Normalised unsteady force

(d) Flap lower surfa
eFigure 5.15: The unsteady for
e and 
ap motion when given large initial perturbation. Unsteadyfor
e values are taken on the 
ap upper and lower surfa
es. RANS simulation at Ma
h 0.95 anddynami
 pressure 26.4 kPa.
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(d) Flap lower surfa
eFigure 5.16: The unsteady for
e and 
ap motion when given small initial perturbation. Unsteadyfor
e values are taken on the 
ap upper and lower surfa
es. RANS simulation at Ma
h 0.95 anddynami
 pressure 26.4 kPa.
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(b) RANS 
al
ulation, Ma
h 0.987, k= 0.778 anddynami
 pressure = 7.875 kPaFigure 5.17: Dependen
e of buzz amplitude and frequen
y on the Reynolds number5.2.5 Dependen
e of buzz amplitude on stru
tural dampingControl surfa
es 
an have me
hani
al dampers to restri
t os
illations and redu
e the stru
turalresponse. The e�e
t of damping on buzz is measured here by varying the damping values atMa
h 0.98 for Euler and 0.987 for RANS simulations. Per
entage damping is the value of thedamping 
onstant C in Equation 2.51 multiplied by 100. The damping term in Equation 2.51produ
es an opposing for
e linearly proportional to the speed of the 
ontrol surfa
e motion.Figure 5.20 shows the buzz amplitude against per
entage stru
tural damping for the Euler 
aseat Ma
h 0.98 and in
iden
e of 0:6Æ. The amplitude steadily de
reases until it dies suddenlyat a stru
tural damping of 24%. The amplitude of os
illation at 23% damping is 5:977Æ. In
ontrast to Euler simulations the buzz amplitude is mu
h more sensitive to damping in vis
oussimulations. Figure 5.20(b) shows the amplitude against damping for the vis
ous 
ase at Ma
h0.987. The slope of amplitude versus damping is mu
h more steeper and 13% damping is enoughto kill buzz 
ompletely.
5.2.6 Linear and CFD based 
utter results for Model1 and Model2The aeroelasti
 e�e
t of the os
illating 
ap when atta
hed to the wing trailing edge is 
omputedin this se
tion. Linear 
al
ulations are performed using NASTRAN. The wing and the 
ap arein
luded in the analysis with a total of 486 aerodynami
 panels to 
al
ulate the aerodynami
s.The Doublet Latti
e Method is used in the subsoni
 
ows and ZONA51 for supersoni
 
ows.The �rst 5 natural modes in
luding the 
ap mode of vibration are used in the aeroelasti
 analy-sis of Model 1 (See Se
tion 5.1.2) whereas the �rst 4 natural modes are used for the aeroelasti
analysis of Model 2. Figure 5.21 shows the 
utter boundary of the two models 
al
ulated by99
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(b) Reynolds number 21 millionFigure 5.19: Separation on the 
ap along a buzz 
y
le. Instantaneous 
ap angle of 10:83Æ, RANSsimulation.
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ting modes 
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ulated by NASTRAN andPMBlinear methods and CFD.
The 
utter velo
ity 
al
ulated by NASTRAN for Model1 has a big dip at Ma
h 1.05 and thenin
reases. As the linear models are not able to predi
t sho
ks, this dip remains unexplained.The behaviour of Nastran at Ma
h 1.05 in predi
ting the 
utter velo
ity is very similar to whatwas observed in Chapter 3 with the Hawk model. This re-enfor
es the 
on
lusion that linearbased aeroelasti
s tools are unable to predi
t 
utter between Ma
h numbers 1.0 and 1.1 for
ases with trailing edge 
ontrol surfa
e. One possibility is that linearised supersoni
 theoriesgive negative damping for an aerofoil pit
hing along its leading edge at low supersoni
 Ma
hnumbers. In the 
urrent 
ase the 
ap is os
illating along its leading edge (the hinge line) andthis might be the reason for the spurious 
utter velo
ities of the wing between Ma
h numbers1.05 and 1.4. The 
utter velo
ities 
al
ulated by CFD on a 
oarse grid and using the Eulerequations mat
h the linear results in the low subsoni
 regions. There is a dip at Ma
h 0.9 dueto the sho
k formation over the wing whi
h is not predi
ted by NASTRAN. After Ma
h 0.95 thesho
k moves over the 
ontrol surfa
e and the os
illations due to buzz dominate the aeroelasti
response. As buzz is sho
k driven the os
illations persist at even very low velo
ities (as low as100 m/s). It was shown in Se
tion 5.2.3 that the onset of buzz is sensitive to the initial impulsegiven to the 
ap. It was also shown that for the 
urrent 
ase the buzz does not o

ur whenthe initial impulse is small at Ma
h 0.95. Hen
e it is possible to 
ouple the wing bending andwing torsion mode by giving a small impulse to the wing bending mode at Ma
h 0.95 withoutex
iting the 
ap mode. This is the reason a 
utter velo
ity 
ould be extra
ted at Ma
h 0.95 butnot at higher Ma
h numbers where there is onset of buzz at a small impulse to the 
ap mode.101



To understand the dominan
e of sho
k e�e
ts at the upper transoni
 
ow, Figure 5.22 shows themodal response of the 5 modes of Model 1 at the Ma
h 0.95 and dynami
 pressure of 5.4 kPa.The freestream velo
ity is 125 m/s whi
h is below the 
riti
al 
utter velo
ity. When the initialimpulse is given to the �rst wing bending mode the os
illations are damped. However when theimpulse is given to the 
ap mode the wing starts to undergo a limit 
y
le os
illation involvingall the modes. Figure 5.22(f) shows the modal response of all the modes at Ma
h 1.05. Herethe wing undergoes limit 
y
le os
illation of all the modes even though the initial impulse wasgiven to the �rst wing bending mode.The 
utter velo
ities 
al
ulated for Model 2 where the 
ap is held rigid shows a normal wingbehaviour in both NASTRAN and CFD simulations. NASTRAN is unable to predi
t the transoni
 dipwhi
h is 
aptured by CFD. Also the big dip in the 
utter velo
ity predi
ted by NASTRAN whenthe 
ap is allowed to move in Model 1 is absent. A reasonable mat
h between the CFD andlinear results is obtained at subsoni
 and supersoni
 Ma
h numbers. As 
ompared to Model 1the 
utter velo
ities are mu
h higher whi
h unders
ores the signi�
an
e of the aeroelasti
 e�e
tsof 
ontrol surfa
es on the wing stru
ture.
5.3 Limitation of Linear Aerodynami
sThe linearised aerodynami
s used in NASTRAN is based on potential 
ow theory whi
h assumesthe 
ow to be invis
id and in
ompressible and for unsteady 
ow it is assumed to be gustingharmoni
ally. This means it is unable to predi
t sho
k whi
h is the main driver for buzz and buzzindu
ed 
utter instability as we saw in the pre
eding se
tions. NASTRAN uses the Doublet Latti
eMethod (DLM) in the subsoni
 and the ZONA51 in the supersoni
 
ows and brief theoreti
alformulations 
an be obtained in the NASTRAN User's Guide [92℄ and also the ZAERO Theoreti
alManual [93℄. Due to their inability to predi
t sho
ks the DLM based aeroelasti
 analysis tends toover predi
t the 
utter onset velo
ity usually between Ma
h numbers 0.7 and 0.95 depending onthe wing pro�le. For Ma
h numbers greater than 1 NASTRAN uses the ZONA51 whi
h is a methodbased on the linearised supersoni
 theory outlined by Jones [94℄[95℄. ZONA51 is basi
ally animprovement of the Potential Gradient Method (PGM) proposed in [95℄ in the sense that it hasredu
ed demands for the number of panels for higher redu
ed frequen
ies and low supersoni
Ma
h numbers (between Ma
h 1.0 and 1.2) whi
h were required in the PGM. However for theversion of ZONA51 used in NASTRAN there still is a dis
repan
y at low supersoni
 Ma
h numbers.The reason behind this is well known for most of the linearised supersoni
 theories and is dueto the term pM2 � 1 used during the 
al
ulation of the os
illatory lift. The Jones's supersoni
theory 
al
ulates the lo
alised lift on ea
h re
tangular panel of the wing as~l(x; y)dxdy = 
2�~l(x0; y0)dx0dy0 (5.1)where the ~l is the lo
al lift, x; y are the dimensional spa
e 
oordinates, 
 is the referen
e length,and x0; y0 are the nondimensionalised 
oordinates. The nondimensional lo
al lift~l(x0; y0) is 
al-
ulated thus, ~l(x0; y0) = 2���U2� �� Æ�Æx0 � i k��� e�ik0Mx0 (5.2)102
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where the � is the air density, U is the free stream velo
ity, � is pM2 � 1, � is the modi�edpotential di�eren
e above and below the aerodynami
 panel and is given by � � �above��below2� , kis the redu
ed frequen
y given by k=2�f
U where f is the frequen
y of the mode, k0 is the modi�edredu
ed frequen
y and is de�ned as k0 = kM� and �nallyM is the Ma
h number. In equation 5.2it 
an be seen that as the Ma
h number approa
hes 1 the term 1� approa
hes in�nity renderingthe lift 
al
ulation invalid. Physi
ally it has the e�e
t of in
reasing the value of the redu
edfrequen
y and sin
e the number of panels used to resolve the 
ow is proportional to the redu
edfrequen
y theoreti
ally a very large number of panels are required for 
ow analysis at Ma
hnumbers approa
hing 1 to get meaningful results. Further developments of ZONA51 have beenmade with reformulation of 
al
ulation of the unsteady lift that has solved this limitation at lowsupersoni
 Ma
h numbers [45℄ and is implemented in the ZAERO pa
kage [93℄. However thesedevelopments are not in
orporated in the original ZONA51 methodology used in NASTRAN whi
his the linear tool used in the 
urrent work. It should also be noted that that the in
lusion of the
ontrol surfa
e rotation mode is the sour
e of instability at the low supersoni
 Ma
h numbersand it this might be due to the negative damping observed in supersoni
 linear analysis foraerofoils undergoing pit
h os
illations about its leading edge [3℄. An exa
t explanation of thisphenomenon in NASTRAN requires details of ZONA51 whi
h is unavailable in literature.5.4 Con
lusionsA method for simulation of 3D buzz was demonstrated. Apart from the predi
tion of theinstability boundary, buzz parameters like amplitude, frequen
y and e�e
t of damping were alsomeasured using the Euler and RANS equations. Buzz simulations using the Euler equationswere performed on blended 
aps and 
aps with free edges and the 
ap response was found tobe similar. A strong dependen
e of the buzz onset on the initial impulse was observed. Frominvis
id simulations it was 
on
luded that although they 
an predi
t the onset of buzz, they
annot a

urately predi
t the buzz parameters like amplitude and frequen
y. Flow separationover the os
illating 
ap has an in
uen
e on these parameters and hen
e vis
osity e�e
ts need tobe modelled. Consistent with experimental observations the amplitude of LCO predi
ted by theRANS equations was found to be sensitive to the Reynolds number and the redu
ed frequen
yof the 
ap.The e�e
t of 
ontrol surfa
e on the 
utter of the wing was investigated and it was found to redu
ethe 
utter velo
ity signi�
antly even at subsoni
 
ows as 
ompared to a wing without a 
ontrolsurfa
e. In transoni
 and supersoni
 
ows the sho
k indu
ed os
illations of the 
ap dominatethe aeroelasti
 response of the wing di
tating the frequen
y of os
illations. Along with the linear
utter results on the SST from it is 
on
luded that linear methods are unable to predi
t 
utterbetween Ma
h numbers 1.0 and 1.1 for 
ases with trailing edge 
ontrol surfa
e. Though it isshown here that CFD based time mar
hing analysis is able to predi
t the instabilities due toaerodynami
 nonlinearities it remains 
omputationally expensive. Redu
ed Order Model (ROM)te
hniques like Proper Orthogonal De
omposition (POD), Volterra theory and Hopf Bifur
ationmethod for unsteady aerodynami
s maintain the �delity of the modelled aerodynami
s at thesame time lower the 
omputational degrees of freedom present in the numeri
al model [96℄.These have been used to determine the 
utter boundaries of wings and aerofoils in transoni
104




ow [97, 96℄ with 
omputational times two orders of magnitude lesser than that of time mar
hinganalysis [97℄.The present work has looked into time mar
hing simulation of a thin se
tion wing where the
ow is more or less atta
hed at all Ma
h numbers and at low in
iden
e angles. Future work
an in
lude geometries with thi
ker se
tions where the 
ow is deta
hed when it rea
hes the 
aphinge line.
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Chapter 6The Hawk Air
raft1
6.1 OverviewIt is noted here that due to the proprietary nature of the work the s
ales on all plots and�gures in Chapter 6 have been blanked. However there is no validation against experimentsperformed in this 
hapter with most of the plots being qualitative in nature. The 
omparisonof the 
utter boundaries in Chapter 6 using linear and CFD methods serve to establish thequalitative di�eren
es in the behaviour of the instability boundary at transoni
 Ma
h numbers.An aeroelasti
 analysis of the Hawk air
raft is 
arried out on 
on�gurations with in
reasinggeometri
 
omplexity. This enables an understanding to be built up of the issues related totime mar
hing analysis of realisti
 
on�gurations, and to assess the in
uen
e of the varioussimpli�
ations. Flutter boundaries based on linear methods are 
al
ulated for ea
h 
ase and
ompared with the CFD based analysis. It is noted here that due to the proprietary nature ofthe work the s
ales on all plots and �gures in the 
urrent 
hapter have been blanked. Howeverthere is no validation against experiments performed in this 
hapter with most of the plots beingqualitative in nature. In the subsoni
 region the 
omparison a
ts as a validation for the CFD aslinear methods have proven robust in this region. However, at transoni
 and lower supersoni
freestream Ma
h numbers the 
omparison highlights the limitations of the linear methods dueto an inability to predi
t sho
ks. Moreover at freestream Ma
h numbers between 1 and 1.2the linear methods have diÆ
ulty in representing trailing edge 
ontrol surfa
es. This is madeevident in 
omparison with the CFD based results.One of the most interesting aspe
ts of the 
urrent work is the investigation of the Hawk�n-rudder 
on�guration. Its relevan
e is a

entuated by the fa
t that transoni
 buzz responsesof the rudder have been reported in the literature in 
ight tests on the T45 Goshawk trainerair
raft in the U.S [90℄. However detailed unsteady 
al
ulations have never been reported andre
ommendations for su
h a study have been made [98, 90℄. This behaviour is easily resolvedthrough the use of sho
k strips [90℄, but presents a good 
on�den
e building test 
ase for theCFD 
apabilityThe stru
tural models used have been obtained from the original models developed by BAESYSTEMS for 
utter 
learan
e, with minor modi�
ation in the form of boundary 
onditions ap-plied to the air
raft 
omponents. These applied boundary 
onditions alter the modal behaviour1This 
hapter is reprodu
ed with the kind permission of BAE SYSTEMS pl
 2006. This 
ontains informationwhi
h is proprietary to BAE SYSTEMS. 106



marginally. The original stru
tural model of BAE SYSTEMS used for linear aeroelasti
 analysisis a half model. Se
tion 6.4.2 des
ribes the prepro
essing of the antisymmetri
 modes from thishalf model before they 
an be used for CFD based simulations.To lay foundations for the analysis of more 
omplex 
on�gurations, a detailed study of theHawk wing is reported �rst in Se
tion 6.2. This in
ludes grid and time re�nement studies alongwith a 
omparison with linear results. The results from this study have been reported in [67℄ andnaturally lead on to 
ases with a trailing edge 
ontrol surfa
e. Se
tion 6.3 brings in a trailingedge 
ap and assesses its e�e
t on the 
utter velo
ity. The 
ap is a 
ombat 
on�guration witha de
e
tion angle of 12:5Æ. This 
on�guration is of interest be
ause there is no simple pro
edurefor in
luding stati
 angles of 
ap de
e
tion in Nastran Aeroelasti
 Analysis (the \linear" methodused) where the 
ap angle is always assumed to be 0Æ. Se
tion 6.4 introdu
es the �n-rudder
on�gurations for the investigation of rudder buzz. There are three 
on�gurations studied here,the Body-Fin-Rudder (B-F-R), Body-Fin-Rudder-Tail (B-F-R-T) and Body-Fin-Wing-Rudder-Tail (B-F-W-R-T). The steady pressure distribution on the �n-rudder at �ve span-wise lo
ationshas been 
ompared with 
al
ulated values obtained at BAE SYSTEMS for a geometry in
ludinga detailed air
raft geometry in
luding the Radar Warning Re
eiver (RWR). The re
eiver, dueto its size and lo
ation, might have an in
uen
e in suppressing the sho
k indu
ed instability.Finally some 
on
lusions are drawn in Se
tion 6.56.2 The Hawk WingThis se
tion des
ribes the analysis of the Hawk wing [67℄. To pla
e the overall study of theHawk on a �rm basis, an evaluation of the CFD results for this is required. In the absen
e ofexperimental data the best 
he
k is to mat
h up the CFD results with linear predi
tions in thesubsoni
 range. A detailed grid and time step study has been done. These results for the Hawkwing only lay the basis for the studies of more 
omplex 
on�gurations later in the 
hapter. Forthe 
lean wing it is established from the linear results that the 
utter me
hanism is a wingbending-torsion intera
tion.6.2.1 CFD SetupA series of grids whi
h have an O-O topology was generated. The footprint of the blo
kson the surfa
e geometry is shown in Figure 6.1 along with the surfa
e grid itself. The blo
ktopology leads to a large number of points on the wing surfa
e. It will be shown below thatgrid independent solutions are obtained on this family of grids. It is noted that this sort oftopology around the trailing edge is not good at preserving wakes, but the 
urrent 
al
ulationsare invis
id so this is of no 
on
ern. For the wing only grid, there are 845,000 points on the �nelevel, with 11,565 points on the wing surfa
e. The medium and 
oarse levels have 114,000 and16,600 points in the volume grid and 2919 and 744 points on the wing surfa
e respe
tively.The 
on
entration of points in the wing tip region allows a grid 
onverged solution to beobtained. Flutter speed predi
tions on the di�erent grid levels are shown in Se
tion 6.2.3. Allthe 
al
ulations were run on a 
luster of 2.5 GHz PC's running under Linux and 
onne
ted by100 Mbit Fast Ethernet. For the wing only 
ase driving the residual down 6 orders for a steady107



Figure 6.1: Surfa
e topology and grid for the Hawk wing only 
on�guration.
al
ulation, the times were 44 se
onds, 35 minutes and 60 minutes on 1, 1 and 8 pro
essors forthe 
oarse, medium and �ne levels respe
tively.6.2.2 The Stru
tural ModelThe stru
tural model used was supplied by BAE SYSTEMS. This is version 6 of the modelused in the 
ompany's 
utter 
learan
e pro
edure and was 
onstru
ted in Nastran. Extrainterpolation nodes were added to the wing to aide the transformation in the CFD 
al
ulations.Figure 6.2 shows the original model. The various 
omponents of the air
raft are modelled asone dimensional beams (CBAR entries in Nastran). For example the wing is modelled by aone dimensional beam representing the wing 
exural axis. The elemental nodes of this beamhave lumped masses (CONM2 entries in Nastran) representing the real air
raft mass and inertiadistribution. Massless rigid bar (RBAR entries in Nastran) elements are atta
hed perpendi
ularto the 
exural axis beam and 
onne
t to nodes at leading and trailing edges. These nodes servethe purpose of relating the rotation and translation of the 
exural axis to the aerodynami
panels. Figure 6.3 shows a 
lose up of the wing 
exural axis with the rigid bars whi
h relatethe deformation at wing leading and trailing edges. The tailplane, �n and 
ontrol surfa
es are
onstru
ted in similar fashion. The fuselage is also a beam model but without the aerodynami
panels. In the present study wing tip missile, stores and wing fuel are not in
luded in thebaseline test 
ase.The transformation proves ina

urate when based on the arrangement of bars in the originalmodel. For this reason a number of intermediate nodes were added between the leading andtrailing edges and the 
exural axis by way of rigid bars. Also as the 
ontrol surfa
es were notin
luded in the 
urrent study, extra nodes were added along the trailing edge to represent thedeformation there. It should be noted that these modi�
ations do not 
hange the stru
turalproperties of the model and hen
e the modal response remains identi
al to the original model.108



Figure 6.4 shows the leading and trailing edge rigid bars and the addition of the extraintermediate bars. The 
omponents are atta
hed to their respe
tive parent geometry throughspring atta
hments (CELAS2 entries in Nastran). This provides some 
ontrol over the modalfrequen
ies of the individual 
omponents. Hen
e the 
ontrol surfa
es are atta
hed to the wingand the verti
al �n through sti� springs, and the wing and �n themselves are atta
hed to thefuselage through springs. Table 6.1 gives the spring sti�ness values of di�erent 
omponents. Thepit
hing axis of the stru
tural model is the y-axis here. For CFD 
al
ulations the z-axis formsthe pit
hing axis and hen
e the stru
tural model axes are transformed later to 
onform to CFDrequirements. The 
ontrol surfa
es and their masses are in
luded in the stru
tural model buttheir response is not 
onsidered in the aeroelasti
 
al
ulations. Hen
e although the presen
e of
ontrol surfa
es e�e
ts the wing modes, the deformation of the 
ontrol surfa
es themselves isnot in
luded in the wing alone analysis. Table 6.2 gives the frequen
ies and des
ription of the�rst 10 modes.
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Figure 6.2: Hawk stru
tural model.6.2.3 ResultsA rigid steady state 
al
ulation was used to initialise the stati
 aeroelasti
 
al
ulation, whi
h infa
t 
onverged rapidly sin
e a very small deformation was observed. Then, a non zero generalisedvelo
ity for the �rst mode was set and the time mar
hing 
al
ulations started. The responsefor di�erent values of dynami
 pressure was obtained and the airspeed at whi
h stability is lostwas inferred from the growth or de
ay of these responses. Stru
tural damping value of 0% wasused in the Nastran and the CFD 
al
ulations. A detailed time step 
onvergen
e study was
arried out and negligible di�eren
es between using 50 time steps per 
utter 
y
le and smallertime steps were observed on all grids and at all Ma
h numbers. Hen
e, this time step was109



Figure 6.3: Fuselage 
exural axis with atta
hed rigid bars
Component Tx Ty Tz Rx Ry ) Rz Mass(N/m) (N/m) (N/m) (Nm/rad) (Nm/rad) (Nm/rad) (Kg)Wing - - 6�108 5�106 5.5�108 - 504.321Tail - - 1.1�107 2�106 6�105 2�106 45.85Fin - 1�1012 - 1�1012 - 1�1012 33.115Rudder - - - - - 1.348�103 9.24Flap - - - - 131.2�103 - 14.58Aileron - - - - 24.7�103 - 8.16Fuselage - - - - - - 2017.664Table 6.1: Values of spring 
onstants and masses of ea
h 
omponent
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Leading and trailing edge bars on the original Hawk wing model

Leading and trailing edge bars on the modi�ed Hawk wing modelFigure 6.4: Hawk wing �nite element model
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Frequen
y [Hz℄ Mode des
ription12.4257 1st wing bending14.429 1st fuselage verti
al bending22.129 1st tail bending32.455 2nd fuselage verti
al bending37.870 1st wing torsion44.112 2nd wing bending50.552 2nd tail bending3rd fuselage verti
al bending55.840 2nd wing torsion due to 
ap rotation mode60.583 3rd wing torsion due to aileron rotation mode64.466 3rd tail torsionTable 6.2: Modal frequen
ies and des
ription for the symmetri
 modelused. At a given Ma
h number the 
utter point was identi�ed by interpolating between the two
losest values of the dynami
 pressure where the stru
tural response diverges and damps downrespe
tively. The 
utter speed was identi�ed this way at a series of freestream Ma
h numberson the wing only grids and the results are 
ompared in Figure 6.5 with the linear results forthe full 
on�guration. First, the wing only results show 
onvergen
e between the results on themedium and �ne grids, at both a low subsoni
 and a transoni
 freestream Ma
h number. Themedium grid and linear results are in 
lose agreement for all Ma
h numbers below a supersoni
freestream, when the CFD generated results show a signi�
ant rise in the 
utter speed as thesho
k wave rea
hes the trailing edge. In this 
ase there is no eviden
e of a signi�
ant 
utter dip.This was thought to be be
ause the Hawk stru
ture is fairly sti�. To test this the stru
turalmodel was weakened by redu
ing the elasti
 modulus by an order of magnitude. The 
omparisonbetween the linear and CFD predi
tions on the medium grid is shown in Figure 6.6. In this 
asethe CFD generated speeds dip below the linear predi
tions in the transoni
 range. For a singleresponse 
al
ulation the CPU times were 1 hour on a single pro
essor, 9 hours on 1 pro
essor,16 hours on 8 pro
essors on the 
oarse, medium and �ne grids respe
tively.6.3 Wing with FlapWing bending-torsion 
utter is unlikely to be a 
on
ern for an air
raft sin
e this is pre
luded bystrength requirements. Problems are more likely to involve the behaviour of a 
ontrol surfa
e,store or na
elle. In this se
tion a 
ombat 
ap is in
luded on the wing to in
rease the realismand exer
ise the 
ontrol surfa
e treatment. The three 
ases of the wing with 
ap whi
h areanalysed are shown in Table 6.3. The 
ap in the 
ombat 
on�guration is de
e
ted 12:5Æ aboutan axis below the wing. In linear aeroelasti
 simulations the 
ombat 
ap 
on�guration 
annotbe modelled easily. This is be
ause of the requirement of the linear unsteady method (NastranAeroelasti
 Analysis) that the 
ow be in the x-dire
tion at all times. This means that a wing ora 
ap 
annot have an angle of in
iden
e. Thus a se
ond geometry was 
onstru
ted with the 
ap112
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Figure 6.5: Qualitative 
omparison between the 
utter boundaries on the Hawk air
raft pre-di
ted on the Hawk air
raft using the linear method and the wing-only 
on�gurations for theoriginal stru
tural model [67℄.
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Figure 6.6: Qualitative 
omparison between the 
utter boundaries predi
ted using the linearmethod and the wing-only 
on�gurations for the weakened stru
tural model [67℄.
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Case Flap angle Flap in stru
tural modelCombat 
ap 12:5Æ YesWing with 
ap 0Æ YesWing 0Æ NoTable 6.3: The three 
ases of the Hawk wing with 
ap. Note that even though the 
ap stru
turalmodel is ex
luded in the third 
ase the 
ap mode is retained.at 0Æ de
e
tion. CFD based aeroelasti
 analysis is performed for these two 
ases and 
omparedwith results from Nastran. The 
ombat 
ap 
on�guration on the air
raft is deployed in 
ertainmanoeuvres only and has 
onstraints on the 
ight speeds within whi
h it 
an be deployed.These 
ight speeds are limited to subsoni
 Ma
h numbers and sho
k indu
ed instabilities on the
ombat 
ap 
on�guration in transoni
 
ows are of a
ademi
 interest only.A blended 
ap is used for the simulation of the wing with 
ap at 0Æ. It was shown in Chapters4 and 5 that the aeroelasti
 predi
tions of the blended 
aps are 
omparable to the 
ap withfree edges, however they slightly underpredi
t the 
utter velo
ity due to the larger aerodynami
surfa
e area of the blended region. As the air
raft 
ies with the 
aps undeployed at the fullrange of Ma
h numbers the aeroelasti
 predi
tions on this 
ase are of pra
ti
al interest.Finally simulation is performed using the blended 
ap grid but ex
luding the 
ap stru
turalnodes. This is done by mapping the the aerodynami
 nodes of the 
ap to the wing stru
turalgrid. This 
an be done by swit
hing the 2 level transformation to a 1 level transformationwhere all the aerodynami
 nodes are driven by the wing stru
tural model alone (See Chapter3). Pra
ti
ally this has the same e�e
t as ex
luding the 
ap rotation from the aeroelasti

al
ulations, although the stru
tural in
uen
e of the 
ap modes on the wing motion will stillbe present. The purpose of analysing this 
ase is to measure the in
rease in the 
utter velo
itywhen the 
ontrol surfa
e rotation is ex
luded.6.3.1 CFD SetupThe geometry of the Hawk wing with a 
ombat 
ap was 
onstru
ted by merging the two geome-tries using the EZ-Cad pa
kage of ICEMCFD. First all the 
omponents from the 
omplete air
raftCAD model were deleted ex
ept the wing, whi
h was left inta
t. Then the 
ombat 
ap, obtainedseparately from BAE SYSTEMS in the form of a large number of 
oordinates, was importedinto EZ-Cad as points. A spa
e for the 
ap to live inside the wing was 
reated by 
utting outthe se
tions of the wing around the 
ap. A gap of approximately 2% of the 
ap span was leftbetween the 
ap edge and the wing. A small groove was 
reated ahead of the 
ap leading edgeto 
onform to the original geometry whi
h has a similar 
avity as shown in Figure 6.8. CFDsimulations have shown that a twin vortex system sits inside this 
avity as seen in Figure 6.9.Dis
ussions with engineers from BAE SYSTEMS established that aerodynami
ally this 
avitydoes not have mu
h in
uen
e on the 
ow over the 
ap and 
an be 
ompletely eliminated for
urrent purposes. However for the purpose of maintaining a smooth grid over the 
ap leadingedge a shallow 
avity was retained.Figure 6.10 shows the blo
king strategy used to blo
k the wing with a free unatta
hed 
ap.114



Wing FlapGap(a) Gap between the wing and 
ap. (b) The 
ombat 
ap de�nition.Figure 6.7: The 
ap on the Hawk wing.A C-H blo
king over the wing and a separate C-H blo
k over the 
ap ensures a smooth grid overthe entire geometry. A 3-blo
k strategy is used on the wingtip and the inner edge of the wing inthe wing-
ap gap. This type of blo
king avoids grid singularities on geometries where a plane
ollapses into a line or a point. The grid has 827,300 points and a 
oarse grid was extra
tedby removing every alternate point in the three dire
tions, and has 117,800 points. There are22,000 points on the wing and 
ap surfa
e on the �ne level and 5,500 on the 
oarse level. A wallspa
ing of 10�3
 where 
 is the hawk wing root 
hord, is used for the simulations.For the 
ase with the 
ap at 0Æ the blo
king used is similar to the one used for the wingalone 
ase in Se
tion 6.2. Additional 
ap blo
ks are added to de�ne the 
ap edges over thewing. The 
ap edges are assumed to be blended with the wing. There are 3255 points on thewing and 
ap surfa
e and 119,808 in the volume grid on the 
oarse level.6.3.2 Stru
tural ModelThe stru
tural model used here has been derived from the Hawk stru
tural model des
ribed inSe
tion 6.2.2. The wing root is 
onstrained in all of the six degrees of freedom to isolate thewing and the 
ap modes from the rest of the air
raft stru
ture. The 
aps and the aileron areatta
hed to the wing though only the 
ap nodes are used in the simulation. The deformationin the aileron mode is not 
on�ned purely to the aileron. The wing and the 
ap deform also inthis mode but not to the same magnitude as the aileron. Hen
e, even though aileron stru
turalnodes are ex
luded from the mapping, the aileron mode itself is in
luded . The �rst six modesare used for the analysis whi
h in
ludes the �rst wing bending, the �rst wing torsion and the
ap rotation mode. For the sake of simpli
ity higher frequen
y modes have been ex
luded fromthe 
al
ulations.The 
ap is atta
hed to the wing at three hinge points. One of the hinges is spring loaded,representing the a
tuator sti�ness whi
h is assumed 
onstant. Due to the smaller dimensionsof the 
ontrol surfa
es as 
ompared to the major 
omponents of the air
raft the 
ontrol surfa
e115



(a) Flap de�nition in the 
urrent work. The
avity is ahead of the 
ap leading edge isshallow. (b) The original SOLAR from BAE SYS-TEMS [99℄Figure 6.8: Cross se
tion of the Hawk wing with 
ombat 
ap 
on�guration from the 
urrentwork and the grid from BAE SYSTEMS simulation using SOLAR.

Figure 6.9: A vortex system sitting inside the 
ap groove in the SOLAR solution.
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(a) A C-H-type blo
king over the wing. (b) A C-H-type blo
king over the 
ap.
3-block strategy

Flap

Wing

(
) 3-blo
k strategy on the inner edge of thewing at the wing-
ap jun
tion.
Wing tip blocking topology(d) Blo
k topology over the wingtip.Figure 6.10: Blo
k topology used for the gridding of the Hawk wing with 
ap 
ase.

117



Frequen
y (Hz) Des
riptionMode 1 12.8 First wing bendingMode 2 37.9 First wing torsionMode 3 44.1 Se
ond wing bendingMode 4 55.7 Flap rotationMode 5 60.5 Wing tip twist (aileron rotation mode with the aileronstru
tural nodes not in
luded in the aeroelasti
 
al
ulations)Mode 6 70.0 Se
ond wing torsionTable 6.4: Natural frequen
ies and mode des
ription of the Hawk wing with 
ap 
ase.deformation modes have relatively higher frequen
ies. However the 
ontrol surfa
e rotationmodes depend on the hinge spring sti�ness and are important for aeroelasti
 instabilities. The
ap and the wing stru
tural nodes are mapped to the 
ap and wing 
uid nodes using a 2-level mapping as des
ribed in Chapter 3. The natural frequen
ies and mode des
ription for thestru
tural model are given in Table 6.4.6.3.3 ResultsThe 
ight envelope within whi
h the 
ombat 
ap 
on�guration is deployed is limited to subsoni
Ma
h numbers and the results presented here for transoni
 Ma
h numbers are purely of a
ademi
interest. The simulated 
ight 
onditions are outside the 
ight envelope and the results are notappli
able to the real air
raft. The obje
tive here is to simulate the sho
k indu
ed e�e
ts on adeployed 
ap and to assess the the e�e
t of the deployed 
ap on the 
utter boundary. Figure6.11 shows the 
utter boundaries for the 
ombat 
ap 
on�guration predi
ted using Nastran andCFD. The 
omparison is reasonable at subsoni
 Ma
h numbers. At a 
ertain transoni
 Ma
hnumber the CFD predi
tion shows a large drop in the 
utter velo
ity whi
h is due to a smallamplitude limit 
y
le os
illation of the 
ap. In 
ontrast Nastran predi
ts a peak in the 
uttervelo
ity at this Ma
h number. Moreover the Nastran method breaks down at low supersoni
Ma
h numbers due to the limitations of the linearised supersoni
 aerodynami
 theory explainedin Chapter 5. The amplitude of the os
illations in the CFD based simulation depends on thedynami
 pressure. However the de
rease in the amplitude is asymptoti
 and a �nite amplitudeexists even at very low values of the dynami
 pressure (see Figure 6.12).A 
ross se
tion through the wing-
ap shows a well de�ned sho
k standing at the wing trailingedge indu
ing a strong separation over the entire 
ap surfa
e (see Figure 6.13). The unsteadyseparated 
ow over the 
ap drives the 
ap to result in a LCO. The frequen
y of the os
illationswas found to be very high suggesting that the instability is driven mainly by the unsteadiness inthe 
ow. For mat
hed 
onditions at transoni
 Ma
h numbers the frequen
y of os
illations wastwi
e the natural frequen
y of the 
ap os
illations. Currently the timestep used in the simulationis based on the highest stru
tural frequen
y and a smaller timestep based on 
ow unsteadinesss
ales is required to a

urately resolve the amplitude and frequen
y of the os
illations. Thesho
k here stands ahead of the 
ap hinge hen
e a

ording to Lambourne's 
lassi�
ation [4℄ it
an be termed as a Type A buzz. The instability 
aused by separated 
ow has been termed as118




lassi
al buzz by Bendiksen [3℄. It is interesting to note that in the paper Bendiksen des
ribesnon
lassi
al buzz or \invis
id buzz" as a phenomenon where separation is not involved. Mainlyhe assumes that vis
ous e�e
ts are ne
essary to model the 
ow separation. In the 
urrent 
asethe separation is 
aused by a 
ombination of the sharp trailing edge of the wing, a strong sho
kand the de
e
ted 
ap. Separation of the boundary layer is not involved. It is seen here, thatlike the simulation of the non
lassi
al buzz in Chapter 5, a qualitative evaluation of 
lassi
albuzz is possible using the Euler equations. However for a

urate results with regards to ampli-tude of os
illations and frequen
ies modelling of the vis
ous e�e
ts is ne
essary. On
e again itshould be stressed that the air
raft does not 
y at transoni
 Ma
h numbers with a 
ombat 
ap
on�guration due to the stru
tural 
onstraints.Figure 6.14 shows the 
utter boundary for the wing with 
ap at 0Æ de
e
tion. The linearboundary here is the same as for the 
ombat 
ap 
on�guration. It is seen that the buzz instabilityis absent from the CFD results. It is also seen that there is no sho
k indu
ed separation on the
ap hinge observed in the 
ombat 
ap 
on�guration (see Figure 6.15). Absen
e of a separationbubble together with the fa
t that no LCO was observed in the 
ase with 0Æ 
ap de
e
tion attransoni
 Ma
h number suggests that a mean 
ap angle greater than 0Æ is ne
essary for theType A buzz to o

ur. The 
utter boundary 
ompares reasonably with the linear results in thesubsoni
 region. The CFD analysis predi
ts a shallow transoni
 dip whi
h is not present in theNastran results. As in all 
ases analysed so far the linear method predi
ts a large drop in the
utter velo
ity at low supersoni
 Ma
h numbers.Finally Figure 6.16 shows the 
utter boundary for the 
ase when the 
ap stru
tural nodesand hen
e the 
ap rotation is ex
luded from the analysis. The 
utter velo
ity in
reases toalmost twi
e when 
ompared to the 
ap 
ases. The transoni
 dip seen in the 
ase with the 
apis absent here as in the wing alone 
ase in Se
tion 6.2. This is due to the fa
t that the modes andthe stru
tural behaviour are similar to the wing alone 
ase. The general in
rease in the 
uttervelo
ities as seen in Figure 6.17 for all Ma
h number unders
ores the importan
e of the 
ontrolsurfa
e modes to the aeroelasti
 response The di�eren
e in the 
utter velo
ities for the 
asewithout the 
ap and the 
ases with 
ap is due to the di�eren
es in the stru
ture model. The
ap 
ases have the 
ap rotation mode whi
h is absent in the wing alone 
ase. The transoni
 dipdue to the sho
k indu
ed LCO in the 
ombat 
ap 
on�guration is absent in the 
ase with 
apat 0Æ. The di�eren
es in the predi
ted aeroelasti
 response between these two 
ases at transoni
Ma
h numbers is due to the di�erent aerodynami
s.6.4 Rudder CasesThe behaviour of the �n-rudder is investigated in this se
tion. One of the motivations for thisstudy 
omes from a diÆ
ulty with obtaining realisti
 results with the rudder rotation mode atlow supersoni
 Ma
h numbers in linear aeroelasti
 
al
ulations. A CFD based study is performedin this se
tion to investigate the aeroelasti
 response at a range of Ma
h numbers in
luding thelow supersoni
 Ma
h numbers. The 
on�guration 
onsidered has various degrees of 
omplexity.The interferen
e e�e
t of di�erent 
omponents on the pressure distribution over the �n andrudder is investigated. The �n bending and torsion o

ur in the antisymmetri
 modes of the119
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Figure 6.13: Sho
k indu
ed separation at the 
ap hinge at transoni
 Ma
h number.
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Figure 6.15: Atta
hed 
ow all along the 
ap at transoni
 Ma
h number when the 
ap is unde-ployed.
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omparison of 
utter boundaries using linear and CFD methods of theHawk wing with the 
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air
raft, and hen
e these are used for the 
al
ulations. Figure 6.18 shows the 
utter boundaryof the Hawk model as predi
ted by Nastran using antisymmetri
 modes of vibrations. The tail,�n and rudder are in
luded in this simulation. In an attempt to simplify the stru
tural responseonly the �n and the rudder were allowed to vibrate with all other 
omponents 
onstrained.Further interest in this parti
ular 
ase arises from development 
ights of the T-45A GoshawkAir
raft, the Hawk variant in use with the US Navy. During its early development the Goshawk�ghter trainer was reported to experien
e the phenomenon known as rudder buzz [90℄. Un
on-trollable rudder os
illations were des
ribed at Ma
h 0.9 at 10, 000 and 30, 000 feet and at Ma
h0.95 at 20, 000 feet. The os
illations were attributed to a sho
k indu
ed instability and weresu

essfully eliminated by the use of sho
k strips [90℄. The lo
ation of the sho
k was 
omputa-tionally predi
ted through steady simulations by Fuglsang et al. [90℄ using a Body-Fin-Ruddergeometry. It will be seen below that the interferen
e due to the wing has an e�e
t on the pre-di
tion of the sho
k on the �n and the predi
tion of sho
k indu
ed instability. This 
ase is auseful test to extend the CFD based analysis. Whilst the buzz phenomenon is straightforwardto resolve [90℄, for the simulation of moving 
ontrol surfa
e and sho
k provide a 
hallenge.6.4.1 CFD SetupThe 
onstraining of the stru
tural model everywhere ex
ept for the �n and the rudder e�e
tivelyeliminates the stru
tural intera
tion of the 
omponents whi
h though not dire
tly responsiblefor known 
utter instabilities do modify the modal responses of individual modes. However theaerodynami
 interferen
e of the 
omponents has an e�e
t on the pressure distribution espe
iallyat transoni
 and supersoni
 Ma
h numbers. The interferen
e e�e
t is investigated by perform-ing stati
 and dynami
 simulations on 
on�gurations with di�erent levels of 
omplexity. Thefollowing subse
tions des
ribe the CFD setup of the di�erent 
on�gurations.Body-Fin-Rudder CaseAs stated in Se
tion 6.4 the T-45A Air
raft experien
ed rudder buzz during a development
ight test programme at Ma
h 0.95 at 20, 000 feet [90℄. The os
illations were assumed to besho
k indu
ed and a steady state CFD analysis was performed on the Body-Fin-Rudder (B-F-R)
on�guration to lo
ate the position of the assumed sho
k. A strong sho
k was predi
ted at Ma
h0.95 just ahead of the rudder hinge on the B-F-R 
on�guration using a RANS based CFD 
odeTLSN3D. The instability observed in the 
ight test at Ma
h 0.95 was attributed to this. In the
urrent work a similar B-F-R 
on�guration is analysed. A grid was 
onstru
ted with 540,000points and the wall spa
ing of 10�3
 (where 
 is the wing root 
hord). The blo
king 
onsistsof an O-type blo
k over the fuselage and an H-type over the �n and rudder as shown in Figure6.19. There are 9500 points on the surfa
e of the air
raft. It was found that vis
ous e�e
ts wereminimal over the �n and did not alter the predi
ted lo
ation of the sho
k signi�
antly and onlythe invis
id 
al
ulations are performed for the rest of the 
ases.
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Fuselage

Fin
Rudder

The Hawk Body-Fin-Rudder Case

(a) Surfa
e blo
ks (b) O-type grid over the body (
) H-type grid over the �nFigure 6.19: The blo
king topology of the Body-Fin-Rudder test 
ase
The Hawk Body-Fin-Rudder-Tail Case

(a) Surfa
e blo
ks (b) O-type grid over the body
O-type blocking
over the tail

(
) O-type grid over the tailFigure 6.20: The blo
king topology of the Body-Fin-Rudder-Tail test 
aseBody-Fin-Rudder-Tail CaseAfter analysing the results of the B-F-R 
ase (see Se
tion 6.4.4) it was felt that a more detailedrepresentation of the air
raft may be required in order to get realisti
 aerodynami
 results overthe �n and the rudder. This is important as an intera
tion between the �n-rudder stru
ture andthe os
illating sho
k is observed in the unsteady simulation. To improve on the 
ow predi
tedover the �n the interferen
e e�e
ts from the adja
ent air
raft 
omponents may need to bein
luded. Hen
e the tailplane was added to the simulated geometry. The Body-Fin-Rudder-Tail(B-F-R-T) 
ase has an C-H blo
king over the �n-rudder and an O-blo
k over the tail and thefuselage (see Figure 6.20). The wall spa
ing is 10�3
 and the size of the 
oarse and �ne gridsare 300 thousand and 2 million points respe
tively.Body-Fin-Wing-Rudder-Tail CaseWhen the tail was in
luded in the simulation the steady pressure distribution 
hanged to a verylarge extent. This gave an indi
ation that at transoni
 Ma
h numbers the interferen
e of other
omponents has a very big impa
t on the pressure distribution. Re
ognising this the wing was125



The Hawk Body-Fin-Wing-Rudder Case

(a) Surfa
e blo
ks (b) O-type grid over the body
O-type blocking
over the wing

(
) O-type grid over the wingand the tailFigure 6.21: The blo
king topology of the Body-Fin-Wing-Rudder-Tail test 
aseFrequen
y (Hz) Des
riptionMode 1 18.8 Rudder rotationMode 2 22.3 First �n bendingMode 3 62.2 First �n torsionMode 4 71.3 Se
ond wing bendingTable 6.5: Natural frequen
ies and mode des
ription of the Hawk �n-rudder stru
tural model.also in
luded in the simulation to model the 
omponent interferen
e. It should be noted that theengine bulge on the fuselage and the radar on the �n have been not in
luded in this simulation.The blo
king is an extension of the B-F-R-T grid and 
onsists of an O-blo
k over the fuselage,the tail and the wing whereas the �n-rudder has a C-H blo
king. The size of the grids are 310thousand and 2.1 million points for 
oarse and �ne levels respe
tively.6.4.2 The Stru
tural ModelFor our purpose all the nodes ex
ept those modelling the �n and rudder are 
onstrained inall of the six degrees of freedom. Hen
e the whole air
raft ex
ept the �n and rudder is keptrigid. Modal analysis is performed and the �rst 4 natural modes of vibration of the �n-rudder areextra
ted from the Nastran output �le and 
onverted into the format required by the 
ow solverusing a parser utility. The stru
tural nodes required for the representation of the air
raft areextra
ted from the Nastran output �le and labelled for the multi-level transformation using anextra
tion utility. The extra
ted stru
tural nodes are triangulated using an open sour
e softwareTRIANGLE. The �rst four natural modes are used in the analysis. Table 6.5 gives the naturalfrequen
y of these modes. One of the important issues in a CFD based aeroelasti
 analysis isthe transformation between the stru
tural and the 
uid grids. Before 
ommen
ing the unsteady
al
ulations the transformation is 
he
ked by visually inspe
ting the stati
ally deformed modes.Figure 6.22 shows the for
ed modal deformation on the stru
tural grid and the 
orrespondingtransformed modes on the 
uid grid of the B-T-F-R 
ase.126



(a) Mode 1 - stru
tural (b) Mode 1 - 
uid

(
) Mode 2 - stru
tural (d) Mode 2 - 
uid

(e) Mode 3 - stru
tural (f) Mode 3 - 
uid

(g) Mode 4 - stru
tural (h) Mode 4 - 
uidFigure 6.22: The stru
tural mode shapes are transformed on to the 
uid surfa
e grid to visuallyverify the a

ura
y of the transformation. A medium 
uid grid of the B-F-R-T 
ase is used forthe visualisation. 127



Mirroring of ModesThe treatment of antisymmetri
 modes for aeroelasti
 analysis requires some explanation. Inour analysis we 
onsider only the translation of the stru
tural nodes and ignore the rotational
omponents. An air
raft is predominantly symmetri
 along the fuselage 
entre-line in the pit
h-ing plane (the xy plane, see Figure 6.23). This means that for the 
al
ulation of the aerodynami
for
e over the air
raft body in a 
ow without a 
rosswind, a half body representation of theair
raft is enough to predi
t the relevant aerodynami
s. In terms of stru
tural response an air-
raft 
an have 3 types of modes. The �rst are the symmetri
 modes, whi
h are su
h that themotion of any point on the stru
ture is mirrored in the symmetry plane (the x-y plane in theCFD 
ase). The 
omponents lying on the x-y plane, like the �n and the rudder deform in the xand y dire
tion and do not de
e
t in the z dire
tion. The se
ond type of possible modes are theantisymmetri
 modes. These are su
h that the motion of any point is 180Æ out of phase with themotion of its mirror image point in the x-y plane. Nodes in the CFD x-y plane have no motionin the x or y dire
tions, however they 
an move in the CFD z dire
tion. The third type ofmodes are the asymmetri
 modes. The deformation of points in these modes is independent ofthe motion of the mirror image points in the x-y plane. It should be noted that both symmetri
and antisymmetri
 modes 
an be obtained from a half-model by applying appropriate boundary
onditions to the stru
tural nodes lying in the plane of symmetry but asymmetri
 modes 
annotbe identi�ed from a half-model.To extra
t symmetri
 modes the nodes lying in the symmetry plane should be 
onstrained by:z = 0.0 Tx= 0.0 Ty= 0.0To extra
t anti-symmetri
 modes the 
onstraints should bex= 0.0 y = 0.0 Tz= 0.0Here x, y and z are the displa
ements and Tx, Ty and Tz are the rotations along x, y and zaxes respe
tively. These 
onstraints are for the CFD 
oordinate system (see Figure 6.23) whi
his di�erent from 
oordinate system of FEM model shown in Figure 6.2The 
urrent se
tion involves the analysis of the anti-symmetri
 modes of the �n-rudder
on�guration. In the linear analysis of the problem a half model of the 
on�guration is used.The stru
tural model of the 
omponents lying in the x-y plane like �n, rudder and the fuselageare modelled with half the weight of the full stru
ture. The aerodynami
 panels for these
omponents are the same as those for symmetri
 
omponents. An entry in the Nastran analysisde
k spe
i�es the plane of symmetry whi
h is x-z for the FEM model. Nastran re
ognises theaerodynami
 panels lying on the symmetry plane and the aerodynami
 loads 
al
ulated on thesepanels are exa
tly half of what would normally o

ur on a 
ompletely modelled air
raft. ForCFD based aeroelasti
 
al
ulations the full stru
tural and aerodynami
 models are required forantisymmetri
 modes of the 
omponents lying in the symmetry plane. CFD does not re
ognisethe symmetry plane for aeroelasti
 deformations unlike Nastran. Moreover the deformations arein the dire
tion perpendi
ular to the symmetry plane and hen
e a 
omplete model is required.For symmetri
 modes of 
omponents lying on the symmetry plane a half model of the air
raft128



Figure 6.23: Axes de�nition of the air
raft as used in the 
urrent work
an be used sin
e the deformations in these modes are not in the dire
tion perpendi
ular to thesymmetry plane.The 
oupled solver uses mass generalised modes for aeroelasti
 analysis. The mass gener-alisation is performed by Nastran while 
al
ulating the natural modes hen
e they 
an be useddire
tly for aeroelasti
 
al
ulations without performing any additional pre-pro
essing. The massgeneralisation of the natural modes is given by the equation[�i℄TM[�i℄ = 1 (6.1)where �i is the ith mode shape and theM is the mass matrix of the stru
ture. The mirroring ofthe stru
tural nodes and its modes in
reases the number of elements in the given mode shapeby 2 and hen
e the mirrored mode shapes now satisfy[�Fi ℄TM[�Fi ℄ = 2 (6.2)where �F is the mode shape of the full stru
tural model. To mass generalise the modes of themirrored model the mode shapes should be s
aled by p2 and hen
e"�Fip2#TM"�Fip2# = 1 (6.3)The following steps are taken to 
onvert a half model and its modes to a full model valid forCFD based aeroelasti
 
al
ulations. The FEM grid and modal data are available in the .f06 �leas part of the Nastran output.1. Extra
t the required stru
tural nodes of the half model from the .f06 �le.2. Extra
t the modal data 
orresponding to the extra
ted nodes from the .f06 �le.129



In
iden
e Ma
h numberCase 1 1:1Æ 0:88Case 2 �0:3Æ 0:94Table 6.6: Steady 
ases used for 
omparison with SOLAR.3. Transform the y and z 
omponents of the stru
tural 
oordinates to 
onform to the CFD re-quirements i.e. the pit
hing axis is the z-axis and the stru
tural starboard wing transformsto the CFD port wing.4. Mirror the stru
ture by dupli
ating all the nodes, ex
ept the ones in the CFD x-y plane,and multiplying the z-
oordinate of the dupli
ated nodes by -1.5. Multiply the pit
hing 
omponent (y-
omponent) of the mirrored modes by -1 if the ex-tra
ted modes are anti-symmetri
.6. Divide all of the modal de
e
tions by p2.6.4.3 The Complete Hawk ModelSteady Euler results obtained by the SOLAR 
ode for the 
omplete Hawk 
on�guration [99℄were provided by BAE SYSTEMS. The geometry used for the 
al
ulation is a detailed one andin
ludes smaller 
omponents like the radar on the �n, the lateral �ns and the Side MountedUnder Roof Fins (SMURFs). The steady pressure distribution on the �n was extra
ted fromthese 
al
ulations and are used here for 
omparison. The main obje
tive for these 
omparisons isto investigate the interferen
e e�e
t of the 
omponents on the pressure distribution at transoni
Ma
h numbers. Figure 6.24 shows the pressure distribution over the �n.6.4.4 Results and Dis
ussionsOne of the reasons for studying the Hawk �n-rudder 
ase using unsteady CFD based aerody-nami
s was to investigate the transoni
 buzz observed at Ma
h 0.95 during a 
ight test on theT45 air
raft [90℄. As this o

urs at upper transoni
 freestream Ma
h numbers and involve atrailing edge 
ontrol surfa
e it is important to �rst evaluate the sho
k position whi
h possiblyin
uen
es/ex
ites the rudder rotation mode. It was seen in Chapter 5 that the sho
k lo
ation isthe main parameter for 
ontrol surfa
e buzz and hen
e a

urate sho
k predi
tion is of primaryimportan
e.Steady ResultsThere are no experimental surfa
e pressure data available for the 
omparison with the 
omputedresults and hen
e the next best option was to 
ompare the results from the 
urrent work withCFD based results obtained from BAE SYSTEMS [99℄. Table 6.6 shows the 
onditions for thetwo 
ases used for 
omparison and Figure 6.24 shows the surfa
e pressure 
ontours on the �nfor the two 
ases. The absen
e of a sho
k on the �n is noti
eable. Surfa
e pressure 
uts wereobtained on the �n at �ve horizontal lo
ations shown in Figure 6.25. The Cp values are 
ompared130



(a) Euler 
al
ulation, Ma
h 0.88, In
iden
e1:1Æ

(b) Euler 
al
ulation, Ma
h 0.88, In
iden
e�0:3ÆFigure 6.24: Surfa
e pressure plots on the �n of the 
omplete Hawk 
on�guration [99℄.
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for three 
ases of in
reasing geometri
 
omplexity B-F-R, B-F-R-T and the B-F-W-R-T 
ases.Figures 6.26 to 6.30 show the plots of these 
omparisons. It 
an be seen that for both Case 1 andCase 2 there is an absen
e of a noti
eable sho
k along the �ve span-wise lo
ations. This absen
eis due to the fa
t that as the 
ow a

elerates over the wing resulting in a strong sho
k over thewing surfa
e. The sho
k redu
es the velo
ity of the 
ow rea
hing the �n and hen
e a strongsho
k does not develop over the �n. The tail too has a limited interferen
e e�e
t whi
h altersthe 
ow velo
ity over the �n. In Figures 6.26 to 6.30 it 
an be seen that the B-F-W-R-T 
ase
ompares 
losest to the BAE SYSTEMS results mainly due to the fa
t that the wings defusethe sho
k over the wing. The B-F-R 
ase is seen to predi
t a strong sho
k on the rudder hinge.This 
an 
ause the 
orresponding unsteady simulation to predi
t a sho
k indu
ed instabilitywhi
h would not be realisti
 as the sho
k exists due to inadequate modelling of the geometry.Another interesting feature of the 
omparisons is the hump that 
an be seen between 10 and 10.2metres on the X-axis and between 2.2 and 2.4 metres semi-span in Figures 6.28 and 6.29. Thisis attributed to the radar atta
hed to the �n (see Figure 6.24). This geometri
al feature is notmodelled in the 
urrent work though it seems to in
uen
e the pressure distribution over the �n.From these results it is also seen that the full B-F-W-R-T 
ase 
omes 
losest to the 
ompletelymodelled geometry and predi
ts a relatively strong sho
k whi
h 
an indu
e the 
ontrol surfa
einstability.The 
omputational work done on the by Fuglsang et al. [90℄ to investigate the rudder buzzin
ident in the 
ight test of the T45 air
raft used a simpli�ed 
on�guration of the air
raftignoring all the 
omponents ex
ept the body, �n, and rudder. Figure 6.31 shows the surfa
epressure plots taken from referen
e [90℄ at 41% and 68% semi-span at Ma
h 0.95. These plots
learly predi
t the presen
e of a strong sho
k near the rudder hinge. A similar 
al
ulation wasperformed on the 
urrent B-F-R 
on�guration whi
h also predi
ts a strong sho
k near the rudderhinge. However we know from the surfa
e pressure 
omparison with the full model that thissho
k will not a
tually exist on the real air
raft due to the interferen
e e�e
ts. An engineeringsolution to address the rudder buzz was based on the steady 
al
ulations performed on thissimpli�ed geometry and in
luded the pla
ement of sho
k strips before the rudder hinge. Sho
kstrips are raised surfa
es or \humps" that are used to a

elerate the 
ow and 
ause a prematuresho
k ahead of the lo
ation where a sho
k would normally o

ur. Finally Figures 6.33 and 6.34show the surfa
e pressure 
ontours on a 
ross-se
tional plane through the �n at Ma
h 1.05 forthe B-F-R, the B-F-R-T and the B-F-W-R-T 
ases. A strong sho
k before the �n 
an be seenon the 
ross-se
tional plane for the B-F-W-R-T 
ase.Dynami
 ResultsOne of the aims of the aeroelasti
 study of the �n-rudder 
ase was to investigate the region oflow supersoni
 Ma
h numbers where the linear analysis does not provide meaningful results.Linear aeroelasti
 analysis is known to be ina

urate between Ma
h numbers 1 and 1.3 as shownin Chapter 5. A drop in the 
utter velo
ity for all the 
ases at low supersoni
 Ma
h numberswas noti
ed in CFD based simulations, however this 
ommen
es at transoni
 Ma
h numbersless than 1 where the linear analysis predi
ts an instability at a mu
h higher 
utter velo
ity.A 
utter boundary was tra
ed for the 
omplete B-F-W-R-T 
on�guration and 
ompared withthe linear analysis (see Figure 6.35). The drop in the 
utter velo
ity is in transoni
 and lower132



supersoni
 Ma
h numbers and is due the sho
k indu
ed buzz instability. Figure 6.36 shows thevariation of the sho
k strength at a span lo
ation of y= 2.2. metres. It 
an be seen that thesho
k in
reases in strength initially and but weakens as the Ma
h number in
reases.In the subsoni
 region CFD predi
ts a lower 
utter velo
ity than linear. This is be
ausein the CFD analysis the 
ow a

elerates over the wings and when it �nally rea
hes the �n itis at a higher velo
ity than the freestream velo
ity. At upper supersoni
 Ma
h numbers theinterferen
e e�e
t of the wing on the �n seem to redu
e and a good 
omparison between linearand CFD based 
utter velo
ity is obtained.The e�e
t of 
omponent interferen
e was investigated by performing aeroelasti
 analysison the B-F-R, B-F-R-T and B-F-W-R-T 
ases. As seen in the steady 
ow simulations theinterferen
e e�e
ts of the 
omponents has a major e�e
t on the sho
k strength on the �n andhen
e the pressure distribution. Mat
hed point analysis was performed at 10,000 feet and atMa
h 0.97 on the three 
ases to investigate the presen
e of the buzz instability. Figure 6.37shows the modal response of the rudder rotation mode. It is seen that for the 
omplete B{F-W-R-T 
ase the initial perturbation damps down in time. In Figures 6.33 and 6.34 the B-F-W-R-T
ase in 
omparison to the other two 
ases has the weakest sho
k. The B-F-R and the B-F-R-T 
ases do undergo buzz at Ma
h 0.97 due to the presen
e of the sho
k. It is seen thatthe amplitude of os
illation is greater for the B-F-R-T 
ase as the presen
e of a tail 
hangesthe sho
k lo
ation to the rudder trailing edge (see Figure 6.38). Theoreti
ally the buzz onseto

urs mu
h earlier for the B-F-R and B-F-R-T 
ases than the B-F-W-R-T 
ases. Figure 6.35shows the dynami
 instability boundary of the B-F-W-R-T 
ase. In the subsoni
 region thereis a 
utter type instability, i.e. an undamped instability and not an LCO, predi
ted whi
h
ompares reasonably with the linear method. Figure 6.39 shows the damped and undampedmodal responses for two dynami
 pressures at Ma
h 0.85. Unlike the LCO type instability theamplitude of the 
utter os
illations keep growing until the 
al
ulations break down due severegrid distortions. A dip in the dynami
 pressure develops with in
reasing Ma
h number and ata 
ertain transoni
 Ma
h number the instability be
omes an LCO type. The linear analysisis unreliable 
lose to Ma
h number 1. However where linear results are a

eptable there is abig di�eren
e between the boundaries predi
ted by CFD and the linear method at supersoni
freestream Ma
h numbers. This is be
ause the instability is sho
k indu
ed and is beyond thepredi
tion 
apability of linearised aerodynami
s. On
e the sho
k defuses at higher Ma
h numberthe linear and CFD predi
tions begin to mat
h up. Figure 6.36 shows the pressure distributionon the B-F-W-R-T 
ase at 2.2 metres span (see Figure 6.25) at range of Ma
h numbers. It 
anbe seen that the sho
k is absent on the rudder at low transoni
 Ma
h numbers and the instabilityis of the \
utter" type. At upper transoni
 Ma
h numbers the sho
k strengthens on the rudderresulting in buzz. At upper supersoni
 Ma
h numbers the sho
k di�uses over the �n-rudder andbuzz disappears.6.5 Con
lusionsThe analysis in the 
urrent 
hapter has provided useful insights into the modelling of aeroelasti

ases for the predi
tion of buzz type instabilities.It was seen in the investigation of the 
ombat 
ap 
on�guration that at transoni
 numbers133
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Spanwise locations on the fin of the extracted Cp values

Figure 6.25: The span-wise lo
ations on the �n of the Hawk where the Cp values have beenextra
ted for 
omparison.
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-C
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B-F-R

-Cp on the fin at Y=1.8 Metres

(b) Ma
h 0.94Figure 6.26: Surfa
e pressure plots on the �n of the 
omplete Hawk 
on�guration at 1.8 Metresspan(but outside the 
ap envelope) there were instabilities involved whi
h were beyond the 
apabil-ities of linear aerodynami
s. It was also seen that the aeroelasti
 behaviour 
hanges with thein
lusion of a 
ap de
e
tion angle whi
h is also not 
urrently simple to implement in Nastran.Finally it was demonstrated that a Type A buzz instability or the 
lassi
al buzz instability 
anbe predi
ted using the Euler equations due to a 
ombination of a sharp wing trailing edge, the
ap de
e
tion and the sho
k at the trailing edge.The aeroelasti
 investigation of the Hawk �n-rudder 
ase highlighted the need for a detailedde�nition of the air
raft geometry in order to predi
t the buzz instability. The interferen
ee�e
ts of the various 
omponents 
an either in
rease the buzz amplitude like in the B-F-R-T
ase or damp it out 
ompletely as in the B-F-W-R-T 
ase. As the buzz boundary is sensitive tothe sho
k lo
ation and the sho
k lo
ation itself is in
uen
ed by the presen
e of other 
omponentsa detailed air
raft geometry is essential for the a

urate predi
tion.134
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e pressure plots on the �n of the 
omplete Hawk 
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Figure 6.31: The surfa
e pressure plots for Goshawk as predi
ted in referen
e [90℄ using RANSequations at Ma
h 0.95 and in
iden
e 0Æ for the B-F-R 
ase. Note that the \tail" refers to theverti
al tail i.e. �n.
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(a) Ma
h 0.95, Euler simulation, 41 % semi-span. X/C

-C
p

Rudder Hinge

68% Semispan location on the fin

(b) Ma
h 0.95, Euler simulation, 68% semi-spanFigure 6.32: Surfa
e pressure plots predi
ted at Ma
h 0.95 and in
iden
e 0Æ for the Hawk B-F-R
ase.
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P: 0.420 0.477 0.522 0.567 0.612 0.659 0.704 0.750 0.797 0.841 0.890

B-F-R Case, Euler Simulation, Mach 1.05

(a) The B-F-R 
ase at Ma
h 1.05

P: 0.4330 0.5041 0.5600 0.6158 0.6700 0.7275 0.7800 0.8392 0.8900

B-F-R-T Case, Euler Simulations, Mach 1.05

(b) The B-F-R-T 
ase at Ma
h 1.05

P: 0.433 0.484 0.524 0.565 0.606 0.646 0.687 0.728 0.768 0.809 0.849 0.890

B-F-W-R-T Case, Euler Simulation, Mach 1.05

(
) The B-F-W-R-T 
ase at Ma
h 1.05Figure 6.33: Hawk steady pressure 
ontours at Ma
h 1.05 for in
reasing level of geometri

omplexity showing the gradual formation of sho
k ahead of the �n. Cases (a) and (b) withoutthe wing show a sho
k over the rudder. 138
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(a) The B-F-R 
ase at Ma
h 1.05
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B-F-R-T Case, Euler Simulation, Mach 1.05

(b) The B-F-R-T 
ase at Ma
h 1.05
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B-F-W-R-T Case, Euler Simulation, Mach 1.05

Position of the cross sectional plane

(
) The B-F-W-R-T 
ase at Ma
h 1.05Figure 6.34: Hawk steady surfa
e pressure 
ontours at Ma
h 1.05 for 
ases with in
reasing levelof 
omplexity. 139
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Figure 6.37: Mat
h point analysis at 10,000 feet. Rudder rotation response of the Hawk B-F-R,B-F-T-R and B-F-W-T-R 
ases at Ma
h 0.97 and dynami
 pressure of 45.89 kPa.

(a) The sho
k lo
ation for the Hawk B-F-R
ase at Ma
h 0.97 (b) The sho
k lo
ation for the Hawk B-F-R-T 
ase at Ma
h 0.97Figure 6.38: Sho
k lo
ation on the Hawk B-F-R and B-F-R-T 
ases.
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Chapter 7Con
lusionsA methodology for treatment of 
ontrol surfa
es on 
omplex geometries for CFD based aeroe-lasti
 analysis has been developed and tested on a number of 
ases. A summary of the workperformed is given in the following se
tions.7.1 Treatment of Control Surfa
esA method has been developed and tested to treat air
raft 
ontrol surfa
es in unsteady CFDsimulations. The 
ontrol surfa
e edges are blended into the wing using the multilevel hierar
hi
alblending approa
h developed for 
omplete air
raft geometries. There is no extra input requiredfor this ex
ept for the value of the blending parameter whi
h di
tates the blended length ofthe 
ontrol surfa
e. For
ed 
ap os
illations and aerodynami
ally driven trailing edge 
ontrolsurfa
es have been simulated using this method.The validity of blended 
ontrol surfa
es have been determined by 
omparing the results witha 
ap treatment in
luding edges for stati
ally deployed , for
ed driven and aerodynami
allydriven 
aps. The 
ap with free edges was found to give similar results but required almost 50%more 
omputational time due to poor 
onvergen
e in the sheared mesh in the gap region.For aerodynami
ally driven 
aps (buzz simulations) 
ap rotation angles of up to 20Æ werere
orded with 
aps with blended edges without en
ountering problems with 
onvergen
e. Thisis mainly be
ause the blended 
aps maintain the grid �delity for large angles of 
ap de
e
tion.7.2 Buzz InstabilityDetailed unsteady 3D buzz simulations have been performed on a SST 
on�guration. The 
aptreatment was �rst validated by 
omparing the predi
ted dynami
 deformation and pressuredistribution against experiments. Flaps with free edges and blended 
aps were used for the val-idation and they gave similar results. The detailed validation of predi
ted dynami
 deformationhas not been reported in the literature for any test 
ase and the results presented in this workare the �rst.Chara
teristi
s of buzz observed in experiments have been reprodu
ed 
omputationally. Ithas been shown here that a Type B buzz boundary 
an be predi
ted as long as a 
orre
testimation of the sho
k lo
ation is made. It has also been shown that vis
osity has an extenuatinge�e
t on the buzz amplitude although it also maintains the low amplitude buzz os
illations143



whi
h are not predi
ted by the Euler equations. The buzz onset is dependent on the initialperturbation of the 
ap and is found to be independent of the dynami
 pressure for the SST
ase and at upper transoni
 Ma
h numbers the os
illations are sustained even at very low Ma
hnumbers indi
ating that buzz 
an o

ur at high altitudes. In
reasing the hinge damping helps inde
reasing the amplitude of os
illations and the de
rease is asymptoti
. The buzz amplitude wasfound to in
rease with in
reasing Reynolds number as shown in the experiments. It is 
on
ludedhere that though the Euler equations 
an predi
t the buzz boundary the RANS equations arerequired for predi
tion of 
hara
teristi
s like frequen
y, amplitude and damping of os
illations.Both blended and 
aps with free edges were used for buzz simulations on the SST. It was ob-served that the aeroelasti
 response predi
tions were similar however lo
alised 
ow phenomenonlike the trailing edge vorti
es due to the 
ap edges were not resolved by the blended 
aps. Thisis not an issue if the obje
tive is only to predi
t the aeroelasti
 behaviour of the wing-
ap.The Hawk air
raft was analysed for rudder buzz instability. Geometries with in
reasing
omplexity were tested and buzz has been identi�ed on in
omplete geometries. It was foundthat buzz onset is sensitive to the shape and lo
ation of the sho
k. For the Hawk air
raft itwas found that the addition of the tailplane 
hanged the sho
k lo
ation and shape by making itparallel to the hinge and moving it aft towards the trailing edge. This brought down the buzzonset Ma
h number as 
ompared to other 
ases. The sensitivity of the buzz onset to interferen
ee�e
ts from other 
omponents and the span-wise shape sho
k on the wing-
ontrol surfa
e 
allsinto question the validity of buzz predi
tions using to 2D simulations.7.3 Instability on Complex GeometryA transformation methodology is now in pla
e to enable aeroelasti
 evaluation of full air
raft
on�gurations in
luding na
elles, engines, missiles and 
ontrol surfa
es. The requirements fora su

essful transformation of deformation from stru
tural grid to the 
uid grid is the 
orre
tlabelling and 
lassi�
ation of the air
raft 
omponents. The hierar
hi
al blending ensures thatthe 
orre
t mat
hing up of the 
omponents at the 
omponent interfa
es and also the blendingof 
ontrol surfa
e edges. A parsing utility extra
ts the required modes of the 
omponents andwrites them down in the format required by the 
ow solver. This has been used for the analysisof a number of 
omplete air
raft test 
ases in
luding a generi
 �ghter air
raft, the Generi
 LargeAir
raft and the Hawk 
ases.It was found that the aerodynami
 interferen
e e�e
ts are important in the transoni
 
owregion as they alter the sho
k lo
ation and behaviour. This was seen in the Hawk rudder buzzinvestigations where the addition of 
omponents in
reased and also de
reased the buzz onsetMa
h numbers.In almost all the 
ases with a trailing edge 
ontrol surfa
e it was found that the linearaeroelasti
 analysis failed between Ma
h numbers 1 and 1.2. A large drop in the 
utter velo
ityis observed whi
h is due to the limitations of the linearised supersoni
 theory.The in
lusion of the 
ontrol surfa
e aerodynami
s and the 
orresponding 
ontrol surfa
estru
tural modes is very important to obtain realisti
 
utter velo
ities of the wing. This isbe
ause the 
utter me
hanism of the 
ases analysed here invariably involved the 
oupling of the
ontrol surfa
e modes with one or more wing modes. This is true in all the freestream Ma
h144



numbers. However a buzz instability 
an pre
ede a 
utter instability at transoni
 Ma
h numberssin
e buzz o

urs even at low values of dynami
 pressure.It is shown by all the 
ases that have been analysed in this work that time mar
hing aeroe-lasti
 analysis has the 
apability to a

urately identify and understand the physi
s behind theinstabilities. Detailed 
ow features and the stru
tural deformations 
an be extra
ted at any mo-ment of time. Moreover identi�
ation of instabilities like buzz whi
h are beyond the modelling
apabilities of linear methods 
an be done a

urately. However due to the long run times, timemar
hing methods 
annot be a repla
ement for linear methods that are 
urrently used in theindustry. The use of CFD must be targetted at diÆ
ult 
ow regimes for eg. transoni
 Ma
hnumbers (buzz) and high angle of atta
k 
ows (bu�et).7.4 CFD in IndustryOne of the out
omes of the Partnership in Unsteady Modelling of Aerodynami
s - Defen
e andResear
h Partnerships PUMA DARP sponsored work not dis
ussed earlier in the thesis has beenthe 
lose 
ollaboration with the engineers at BAE SYSTEMS for the aeroelasti
 simulations onthe Hawk air
raft. Stru
tural models used for 
utter 
learan
e were released by the 
ompanyfor use in the CFD based aeroelasti
 analysis. In turn the engineers from the 
ompany weretrained in the use of the CFD 
ode for aeroelasti
ity. A library of 
ases has been set up at theBAE SYSTEMS fa
ility in Brough. The 
oupled CFD 
ases have been setup in a manner thatany 
hanges in the stru
tural model 
an be easily realised in the aeroelasti
 
al
ulations withminimal prepro
essing on behalf of the engineers. This is a signi�
ant step in in
reasing the
on�den
e in CFD based simulations at produ
tion level and will en
ourage the use of CFD forinvestigation of future aeroelasti
 problems when and if they arise.7.5 Future WorkControl surfa
e freeplay is one of the important issues in the air
raft industry. Almost all
ontrol surfa
es have some freeplay built in due to the manufa
turing limitations. The standardspres
ribed by the aviation authorities are diÆ
ult to 
on�rm with. It is felt that these regulations
ould be relaxed if there is more understanding of the aeroelasti
 response due to freeplay. CFDbased analysis is an ex
ellent tool to study this phenomenon. For the aeroelasti
 tool used inthe 
urrent work it involves implementing a te
hnique to treat the freeplay nonlinearity in thelinear modal FEM solver that is 
oupled to the 
uid solver. This 
an be an interesting extensionof the 
urrent work whi
h has already established the 
apability of the 
ode to treat a 
ontrolsurfa
e instabilityIn re
ent years aeroelasti
 tailoring of air
raft wings have be
ome popular. Aeroelasti
tailoring 
an be de�ned as 
ontrolled aeroelasti
 deformation of the wing stru
ture in order toobtain bene�
ial aerodynami
 handling of the wing. As the aeroelasti
 deformation needs to be
ontrolled it requires Smart Material A
tuators that 
an deform or morph the wing shape asrequired. The a
tuating me
hanism 
an be 
ostly and before a model is built it would be helpfulto have an idea of the deformed shape and the rate of deformation that would give optimumaerodynami
 performan
e. Time mar
hing CFD simulations 
an provide predi
tions for this.145



Controlled wing deformations and for
ed os
illations are possible as shown in the for
ed 
apstudy earlier. The stru
tural model 
an be tuned 
omputationally to provide the best resultsand this 
an be used to guide the manufa
ture of the real wing.An interesting appli
ation of the time mar
hing CFD simulations are the loads and deforma-tions on an air
raft in a manoeuvre. Military air
rafts 
an undertake rapid manoeuvres resultingin large aerodynami
 and g loads on the wings. This 
an 
ause large deformations of the wings.A 
omputational 
apability of predi
ting the loads and the deformations on an air
raft in amanoeuvre 
an help in the design of the wings and for 
al
ulating the operational limits of theair
raft. This 
an be a future extension of the 
urrent work.
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