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INTRODUCTION

The influence of nonlinearities on modern aircraft and the requirement for more accurate tools
for the prediction of their influence is becoming increasingly important. These nonlinearities
may occur due to structural (such as freeplay, hysteresis, cubic stiffness), and from aerodynamic
(transonic effects) or control system (time delays, control laws, control surface deflection and
rate limits) phenomena. Of particular interest is the prediction of certain Limit Cycle Oscilla-
tions (LCO) which cannot be found from a linear structural and/or aerodynamic model is used
for analysis.

Although not destructive in the same sense as flutter, LCO can lead to fatigue and pilot control
problems. A further difficulty is the case of an unpredicted LCO occurring during the flight flut-
ter test programme, as the question then arises as to whether the vibration is flutter or LCO [1].
A significant amount of expensive testing is currently required to resolve this type of problem.

There has been much work given to determining the effects of structural non-linearities on
low order simulated aeroelastic systems [2, 3] and also some experimental studies as in ref-
erence [4]. Recent studies have investigated the use of mathematical techniques to predict the
amplitude of the LCO without recourse to numerical integration e.g. using Normal Form [5] or
Higher Order Harmonic Balance [6].

A substantial amount of research has been directed recently towards modelling the effect of
non-linear aerodynamics on aeroelastic systems in the transonic regime. Such coupled Com-
putational Fluid Dynamics/Finite Element (CFD/FE) calculations are expensive and therefore
there is a need to produce Reduced Order Models (ROM) of aeroelastic systems that can be used
to determine and characterise the subcritical behaviour and stability boundaries. The CFD/FE
can then be directed towards the most critical flight regions of interest.

A key element of Reduced Order Modelling is the curve-fitting of data obtained from coupled
CFD/FE models. Recent work in this area has included the use of higher order spectral meth-



ods [7] and Volterra Series [8]. One advantage for the analysis of aeroelastic systems containing
concentrated structural non-linearities [3] is that these non-linearities are always present and are
related to a certain point of the structure. However aerodynamic non-linearities arising in the
transonic regime are not related to specific parts of the lifting surfaces as the shocks move about
on the structure.

This paper is part of a study investigating the prediction of aeroelastic behaviour subjected to
non-linear aerodynamic forces. Of interest here is whether the sub-critical vibration behaviour
of the aeroelastic model gives any information about the onset of the LCO. It would be useful to
be able to use system identification methods to estimate aeroelastic models that characterise the
LCO. Such a methodology would be very useful, not only for analysis with coupled CFD/FE
models, but also during flight flutter testing.

In this paper, the responses to initial inputs on the Goland Wing [9] CFD/FE model at different
flight speeds are analysed to determine the extent of the non-linearity below the critical onset of
LCO. Analysis is also performed using a linear identification model.

AERODYNAMIC AND STRUCTURAL MODELLING

Aerodynamics

The three-dimensional Euler equations can be written in conservative form and Cartesian coor-
dinates as
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where wf = (ρ; ρu; ρv; ρw; ρE)T denotes the vector of conserved variables. The flux vectors
Fi, Gi and Hi are
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where ρ, u, v, w, p and E denote the density, the three Cartesian components of the velocity,
the pressure and the specific total energy respectively, and U∗, V ∗, W ∗ the three Cartesian



components of the velocity relative to the moving coordinate system which has local velocity
components ẋ, ẏ and ż i.e.

U∗ = u− ẋ (3)
V ∗ = v − ẏ (4)
W ∗ = w − ż (5)

The flow solution in the current work is obtained using the PMB (Parallel Multi-Block) code,
and a summary of some applications examined using the code can be found in reference [10].

A fully implicit steady solution of the Euler equations is obtained by advancing the solution
forward in time by solving the discrete non-linear system of equations

wn+1
f −wn

f

∆t
= Rf

(
wn+1

f

)
(6)

The term on the right hand side, called the residual, is the discretisation of the convective terms,
given here by Oshers approximate Riemann solver [11], MUSCL (Monitone Upwind Scheme
for Conservation Laws) interpolation [12] and Van Albadas limiter. The sign of the definition of
the residual is opposite to convention in CFD but this is to provide a set of ordinary differential
equations which follows the convention of dynamical systems theory, as will be discussed in the
next section. Equation 6 is a non-linear system of algebraic equations. These are solved by an
implicit method [13], the main features of which are an approximate linearisation to reduce the
size and condition number of the linear system, and the use of a preconditioned Krylov subspace
method to calculate the updates. The steady state solver is applied to unsteady problems within
a pseudo time stepping iteration [14].

Structural Dynamics, Inter-grid Transformation and Mesh Movement

The wing deflections δxs are defined at a set of points xs by

δxs =
∑

αiφi (7)

where φi are the mode shapes calculated from a full finite element model of the structure and
αi are the generalised coordinates. By projecting the finite element equations onto the mode
shapes, the scalar equations

d2αi

dt2
+ ω2

i αi = µφT
i fs (8)

are obtained where fs is the vector of aerodynamic forces at the structural grid points and µ



is a coefficient related to the fluid freestream dynamic pressure which redimensionalises the
aerodynamic forces. These equations are rewritten as a system in the form

dws

dt
= Rs (9)

with ws = (. . . , αi, α̇i, . . .)
T and Rs = (. . . , α̇i, µφT

i fs − ω2αi, . . .)
T

The aerodynamic forces are calculated at cell centres on the aerodynamic surface grid. The
problem of communicating these forces to the structural grid is complicated in the common
situation where these grids not only do not match, but also are not defined on the same surface.
This problem, and the influence it can have on the aeroelastic response, was considered in [15],
where a method was developed called the constant volume tetrahedron (CVT) transformation.
This method uses a combination of projection of fluid points onto the structural grid, transfor-
mation of the projected point and recovery of the out-of-plane component to obtain a cheap,
but effective, relation between deformations on the structural grid and those on the fluid grid.
Denoting the fluid grid locations and aerodynamic forces as xa and fa, then

δxa = S(xa,xs, δxs) (10)

where S denotes the relationship defined by CVT. In practice this equation is linearised to give

δxa = S(xa,xs)δxs (11)

and then by the principle of virtual work fs = ST fa

The grid point velocity on the wing surface are also needed and these are approximated directly
from the linearised transformation as

δẋa = S(xa,xs)δẋs (12)

where the structural grid speeds are given by

δẋs =
∑

α̇iφi (13)

The geometries of interest deform during the motion. This means, unlike the rigid aerofoil
problem, that the aerodynamic mesh must be deformed rather than rigidly translated and ro-
tated. This is achieved using transfinite interpolation of displacements (TFI) as described in
reference [16]. The grid point velocity are also interpolated from known boundary velocity. In
this way the grid locations depend on αi and the speeds on α̇i.



Time Domain Solver

For coupled CFD/FE calculations the aerodynamic and structural solutions must be sequenced.
For steady solutions, taking one step of the CFD solver followed by one step of the structural
solver will result in the correct equilibrium. However, for time accurate calculations more care
must be taken to avoid introducing additional errors. The exact formulation used to avoid this
is discussed in reference [17].

AEROELASTIC MODEL

In this study the Goland wing aeroelastic model [18, 9] was used. A flight flutter simulation was
performed by varying both the Mach number and airspeed, and keeping the altitude constant at
sea level conditions, and consequently the speed of sound is also constant, which was set at an
arbitrary speed of 647 ft/s (to ensure that LCO will occur at subsonic speeds). The flutter bound-
ary obtained using MSC.Nastran is presented in figure 1. The superimposed line corresponds
to the flight test path along which tests were performed. The finite element model is presented
in figure 2. This was built using CQUAD4 and CROD elements. A tip store rigidly attached
to the wing is also included. The natural frequencies (wind off) and mode shapes are presented
in table 1 and figure 3 respectively. Figure 4 shows the LCO amplitude, for a given initial ve-
locity in mode 1, for each mode. It can be seen that a bifurcation occurs between M=0.91 and
M=0.915. The bifurcation initially grows quickly in amplitude, but then disappears as the speed
is increased, thus giving a stable decaying behaviour after M=0.95 .
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Figure 1: Goland wing flutter boundary Figure 2: Goland wing finite element model

Mode 1 2 3 4
Freq(Hz) 1.71 3.05 9.18 11.39

Table 1: Goland wing normal mode frequencies



(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 3: Goland wing mode shapes

ANALYSIS

As the investigation was dealing with the transonic regime and there were shock waves present,
which implies non-linear aerodynamic forces. The initial part of the investigation involved the
analysis of the modal responses across the wing to initial velocity inputs at subcritical test points
between M=0.4 and M=0.91. This range finishes just below the start of the LCO region (which
starts at 0.915). Several different identification approaches were used, including: Homogeneity,
Hilbert transform and the Short Time Fourier Transform (STFT). It was hoped to determine
how non-linear the response was and to get an indication of what sort of non-linearity it was.

However, none of these methods showed non-linearities present at any of the subcritial speeds.
The STFT (figure 5) presents a single frequency for each mode throughout the response at
M=0.91, whereas multiple frequencies would be expected if nonlinearities were present. At the
same Mach number, two responses of different initial amplitude were compared to determine
any shift in frequency or amplitude in the Fourier transform (figure 6). None of the these
nonlinearity indicators are present. This result is confirmed by the backbone curves derived via
the Hilbert transform (figure 7). The curves oscillate around the same mean point throughout the
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(b) Mode 2
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(c) Mode 3
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(d) Mode 4

Figure 4: Goland wing bifurcation plots

displacement, indicating linearity. The oscillation present arise from from leakage problems, as
the response has not fully decayed when the simulation was stopped. These results confirm that
non-linear effect are not present at all transonic speeds.

As the responses were linear at all points below the LCO onset, it was thought that the aero-
dynamic nonlinearities manifest themselves via changes in the speed between each test point,
however, the aerodynamics behave in a linear manner at each flight condition. Such an effect
has been suggested elsewhere [19]. To verify this conjecture, the Nissim-Gilyard identification
method [20] was used to obtain the linear aerodynamic matrices using every consecutive pair
of test points for the identification. Points between Mach number of 0.40 and 0.98 where used.
Taking the standard linear aeroelastic equation of motion as

Aÿ + (ρUB + D)ẏ + (ρU2C + E)y = 0 (14)

where A, B, C, D, E are respectively the mass, aerodynamic damping, aerodynamic stiffness,
structural damping and structural stiffness, U is the airspeed and ρ is the density. The frequency-
damping plot for the system is presented in figure 8, where the linear damping and frequency
estimates are obtained via the Eigenvalue Realisation Algorithm (ERA) method [21]. With the
Nissim-Gilyard method the A−1B, A−1D, A−1C, A−1E matrices can be identified. If the
system was linear, the same matrices should have been identified at each point in the flutter



test. In figure 9 the behaviour for the A−1B matrix is displayed for each term. The Mach
numbers used in the identification are in table 2. The identification shows that the terms are
fairly constant until M=0.87 and M=0.88 (case 15) are used, where they start to deviate slightly.
This deviation becomes considerable when M=0.905 and M=0.91 are used (case 18). The same
pattern is found in all the other identified matrices. By the time the identification reaches case
26 (M=0.945 and M=0.95) the terms in the identified matrices have returned to their linear
identified behaviour prior to M=0.87. As the bifurcation starts at M=0.91, a window of 25 ft/s,
is available in which it should be possible to predict the start of the bifurcation. However, as
this bifurcation is within 4% of the flutter speed, this approach would not be acceptible in a real
flight flutter test as an indicator of imminent LCO.

If a linear system is assumed, then the structural and aerodynamic matrices identified using the
Nissim-Gilyard method result in a predicted flutter speed of around 0.90, which is just below
the LCO onset speed. If one of the speeds used in the identification was in the non-linear region,
i.e. from M=0.86 onwards, no flutter speed is then detected.

LCO in the transonic region are caused by movement of the shock waves interacting with the
flexible structure. It could be suggested that in this case, the position of the aerodynamic centre
would vary. A simple investigation to examine the influence of changing the position of aero-
dynamic centre was carried out using a three degree-of-freedom aeroelastic model [22] with
modified quasi-steady aerodynamics. By changing the eccentricity, i.e. the distance between
lift and flexural axis, the position of the aerodynamic centre was moved, mimicking the effect
of moving the shocks along the wing in a transonic flow with different speeds. The eccentricity
was moved from the leading edge up to the half chord. Figure 10 shows the changes in the
system matrices identified using the Nissim and Gilyard method. It can be seen that a similar
behaviour to the findings from the CFD/FE model with different terms being identified for the
A−1B matrix as the aerodynamic centre is moved towards the half-chord.

Case M(1) M(2) Case M(1) M(2) Case M(1) M(2)
1 0.400 0.450 11 0.800 0.825 21 0.920 0.925
2 0.450 0.500 12 0.825 0.850 22 0.925 0.930
3 0.500 0.550 13 0.850 0.860 23 0.930 0.935
4 0.550 0.600 14 0.860 0.870 24 0.935 0.940
5 0.600 0.650 15 0.870 0.880 25 0.940 0.945
6 0.650 0.700 16 0.880 0.900 26 0.945 0.950
7 0.700 0.725 17 0.900 0.905 27 0.950 0.955
8 0.725 0.750 18 0.905 0.910 28 0.955 0.960
9 0.750 0.775 19 0.910 0.915 29 0.960 0.965

10 0.775 0.800 20 0.915 0.920 30 0.965 0.970

Table 2: Nissim-Gilyard test cases
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Figure 5: Short Time Fourier Transform at
M=0.91
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Figure 6: Fourier Transform at M=0.91
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Figure 7: Hilbert Transform at M=0.91
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Figure 8: Frequency-damping plot

DISCUSSION OF RESULTS

The results show that for an aeroelastic wing in the transonic regime, it is possible for limit cycle
oscillations to occur due to the presence of shock waves. However, it was shown that there is
no indication of the non-linearity at sub-critical speeds until just before the LCO onset. At each
test point the aerodynamics behaves in a linear manner, but the variation between test points is
non-linear. The linear identification using the Nissim / Gilyard approach backs this finding up,
and comparison with the results obtained by moving the position of the aerodynamic centre on
a simple aeroelastic model indicates that the changes in the aerodynamic centre position may
produce this effect.

If these results are general, then this indicates that the production of reduced order models for
aeroelastic systems with non-linear aerodynamics will need to include information about the
flight regime at different test points. They also imply that sub-critical flight flutter test data may
remain linear even though a non-linear phenomenon such as LCO is about to occur. Further
work is ongoing to resolve some of these issues.
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Figure 9: Identified matrix M−1B for Goland
model
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Figure 10: Identified matrix M−1B for 3DOF
model

CONCLUSIONS

In this paper a number of system identification methods were applied to responses for the
Goland aeroelastic model in the transonic flight regime. It was found that the model displays
linear behaviour at all subcritical speeds. The Nissim-Gilyard method was used to show that,
by using linear identification, the identified structural and aerodynamic matrices of the aeroe-
lastic model varied in their behaviour as the LCO region was approached. The same pattern of
behaviour was found to occur on a simple aeroelastic model with varying aerodynamic centre
position.
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