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Computational fluid dynamics Fourier-based methods have found increasing
use for aircraft applications in the last decade. Two applications which benefit
are aeroelastic stability analysis and flight dynamics for which previous work
is reviewed here. The implicit solution of the methods considered in this work,
require an effective preconditioner for solving the linear systems. New results
are presented to understand the performance of an approach to accelerate
the convergence of the linear solver. The computational performance of the
resulting solver is considered for flutter and dynamic derivative calculations.
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1. Introduction

Unsteady flow problems encountered for aircraft applications can involve a periodic os-
cillation, allowing the use of Fourier-based methods. These methods can reduce the com-
putational time significantly due to direct calculation of the periodic state rather than
computing the transient response. The development of Fourier-based methods has largely
been for the analysis of turbomachinery flows with the two methods used here, namely
Linear Frequency Domain and Harmonic Balance, having their roots in this field. Hall
and Crawley (1989) proposed a linearised Euler method where the equations were lin-
earised about a steady mean state with a small perturbation for the analysis of a flutter
and a gust-response problem for a turbomachinery cascade flow. This approach was ex-
tended to capture non-linearities, and subsequently for the Navier-Stokes equations in He
and Ning (1998).
The Harmonic Balance method was developed for unsteady nonlinear turbomachinery

flows in Hall et al. (2002) and used in Thomas et al. (2002) and Thomas et al. (2004) for
aeroelastic analysis in the transonic regime for both inviscid and viscous flows. A similar
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method presented in McMullen et al. (2006) solves the system in the frequency domain
with a specified number of retained harmonics rather than the solution taking place in
the time domain.
Fourier-based methods are finding increasing use for external aircraft problems. Two

applications that can benefit include aeroelasticity (e.g. Mortchelewicz (1998)) and
for the calculation of dynamic stability derivatives of rigid aircraft (e.g. Murman
(2007), Da Ronch et al. (2011b) and Mialon et al. (2011)).
This paper continues with a brief description of the formulation of the two frequency

domain methods used here before moving to a discussion of the main numerical challenge
involved in solving linear systems. Two applications of Fourier-based methods for external
aerodynamic problems are then reviewed, before concluding with an evaluation of when
these methods are especially useful.

2. Formulation

2.1. Linear Frequency Domain

The governing equations of a fluid flow are first written in the semi-discrete form,

dw

dt
+R(w,u, u̇) = 0, (1)

where R is the fluid residual and w is the flow solution. The fluid residual is influenced by
the structural motion (described by the unknowns u and u̇) due to boundary conditions
applied at the interface between the fluid and structure. Also, the surface deformations
and velocities are communicated to the volume mesh giving the dependences on u and
u̇.
The basis of the linear frequency domain (LFD) method is the assumption of small

amplitudes which allows the variables to be represented as a small perturbation about a
steady mean state. This gives rise to

w(t) = w̄ + w̃(t), u(t) = ū+ ũ(t). (2)

The small time-dependent perturbation is assumed to be periodic which is then written
as a Fourier series in terms of the base frequency ω. This is combined with Eqs. (1) and
(2) to give,

{
inωI +

∂R

∂w

}
ŵn = −∂R

∂u
ûn − inω

∂R

∂u̇
ûn. (3)

where the hat accent indicates a vector of Fourier coefficients i.e. the sine and cosine
terms for each harmonic. Limiting interest to the first harmonic of the Fourier series, n is
taken to be 1, and hence the nonlinear Eq. (1) has been reduced to a single linear equation
in the frequency domain. The linear system is then solved for the Fourier coefficients of
the flow solution ŵ.
Equation (3) is a complex-valued linear system which can either be solved using com-

plex arithmetic or represented as two coupled real systems. For the latter, the real and
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imaginary parts, with subscripts Re and Im, are written in the form Ax = b where,

A =

[
∂R
∂w −ωI

ωI ∂R
∂w

]
, x =

(
ŵRe

ŵIm

)
, and b =

[
−∂R

∂u ω ∂R
∂u̇

−ω ∂R
∂u̇ −∂R

∂u

](
ûRe

ûIm

)
. (4)

2.2. Harmonic Balance

The Harmonic Balance (HB) technique was proposed in Hall et al. (2002) for use with
turbo-machinery flows. Unlike LFD, the system is never linearised but instead takes the
semi-discrete flow equations (1), using the assumption of periodicity to model the flow
variables and residuals as a Fourier series with frequency ω, and truncated to a specified
number of harmonics NH ,

w(t) ≈ ŵ0 +

NH∑
n=1

(
ŵan

cos(ωnt) + ŵbn
sin(ωnt)

)
. (5)

Combining Eqs. (1) and (5), then grouping similar harmonic terms gives a system of
NT = 2NH + 1 equations, written in matrix form as,

ωAŵ + R̂ = 0, (6)

where A is an NT × NT matrix containing terms A(n+1,NH+n+1) = n and
A(NH+n+1,n+1) = -n.
The solution of the system is discretised into NT equally spaced intervals over the cycle

to obtain,

whb =


w(t0 +∆t)
w(t0 + 2∆t)

...
w(t0 +T)

 Rhb =


R(t0 +∆t)
R(t0 + 2∆t)

...
R(t0 +T)

 , (7)

where T is the period of the cycle and ∆t = 2π/(NTω). The vectors in Eq. (7) are then
combined with Eq. (6) using a transformation matrix E to relate the vector of Fourier
coefficients to the respective HB vector. Introducing a matrix D = E−1AE, this can
then be reduced to

ωDwhb +Rhb = 0. (8)

Equation (8) is solved by introducing a pseudo-time derivative to allow iteration to
convergence using a time-domain CFD solver,

dwhb

dτ
+ ωDwhb +Rhb = 0. (9)

Equation (9) only differs from Eq. (1) by the HB source term ωDwhb. The treatment
of this source term is a key concern for effective solution of the HB system. An explicit
treatment of this term can lead to instabilities for certain problems although a method
to stabilise this was presented in Custer (2009). An alternative is to include the source
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term in the Jacobian matrix to form a fully implicit system as presented in Woodgate
and Badcock (2009). The linear system that must be solved for the implicit time stepping
to the solution of Eq. (9) is real, has Jacobian terms of the residual at each time slice
retained for the Harmonic Balance solution on the diagonal of a blocked matrix, and
has these blocks linked through diagonal blocks. The fully implicit approach is the one
used in this work. Once a converged solution is reached, the whb vector contains the flow
solution at a number of discrete points around the cycle. Once the Fourier coefficients
are known, the time domain solution is reconstructed using Eq. (5).

2.3. Implicit CFD solver

The solution of the systems arising in the frequency domain methods is carried out in this
paper using two CFD solvers. The LFD method uses the implicit solvers within the DLR
TAU code (Gerhold (1997)). The Jacobians used for the preconditioners are formed ana-
lytically with either a first order or second order stencil depending on the spatial discreti-
sation required. The HB method is run using the fully implicit CFD solver PMB (Badcock
et al. (2000), Woodgate and Badcock (2009)). The terms in the residual are calculated
using Osher’s approximate Riemann solver with MUSCL interpolation to obtain second
order accuracy combined with a turbulence model for the viscous contributions in RANS
simulations. For both methods, linear systems of the form Ax = b are set up, allowing
solution with a generalised conjugate residual (GCR) Krylov subspace method (Eisenstat
et al. (1983)) with incomplete lower-upper preconditioning (Saad (2000)).

3. Solving Linear Systems

Using implicit solvers requires the solution of a linear system of the form Ax = b. For
CFD analyses, the matrix A can be very large and often poorly conditioned. There is a
need for efficient preconditioning particularly for very stiff or non-diagonally dominant
systems. For the LFD method, an iterative preconditioned Krylov subspace solver has
been used. Methods of preconditioning have been the focus of a number of papers sum-
marised in Benzi (2002). The majority of the techniques when applied to CFD problems
are primarily focussed on using properties of the given matrix to carry out the permu-
tation of terms to improve the conditioning. Very few papers make use of properties of
the underlying problem to improve the preconditioner performance. In Pueyo and Zingg
(1997), Wong and Zingg (2005), the preconditioner is based upon an approximate Jaco-
bian matrix and is shown to accelerate the convergence compared with using the exact
Jacobian. This work makes use of approximate Jacobians to significantly accelerate the
solution of linear systems arising from the CFD derived LFD problem.
Preconditioning looks to improve the condition number of a matrix in order to make

a system easier to solve using an iterative method. A linear system of the form

Ax = b (10)

is recast, for left preconditioning, as

P−1Ax = P−1b (11)

An incomplete lower-upper (ILU) factorisation can be used to form an approximation
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to the inverse by limiting the number of additional non-zero terms introduced beyond
the original sparsity pattern during the factorisation process described in Saad (2000).
This is referred to as ILU(k) preconditioning where k indicates the level of fill-in. In the
current work one level of fill-in is used, which generates around two additional non-zero
terms in the matrix for each original non-zero term.
For CFD applications, a Jacobian matrix A2 based on the second-order spatial dis-

cretisation, is often found to lead to a very poor preconditioner P in the sense of bad
convergence of the Krylov method. This was shown in Chow and Saad (1997) that for
non-symmetric non-diagonally dominant matrices, the incomplete factors can be more
ill conditioned than the original matrix. It is possible to view this effect by assessing
how well the preconditioner approximates the matrix A−1 from looking at the solution
of Px = b. If the preconditioner was obtained using a direct method (i.e. P−1 ≡ A−1),
the exact solution would result. However, as an incomplete factorisation is used, the pre-
conditioner is only an approximation (i.e. P−1 ≈ A−1). The exact solution and second
order preconditioner solution are shown in Fig. 1.

(a) Exact solution Ax=b (b) Px=b

Figure 1. Second order preconditioner comparison

It can be seen that the preconditioner based on the pure second order spatial discretisa-
tion gives a solution which is highly oscillatory. This is consistent with poor convergence
of the Krylov method. Similar unstable behaviour in the forward and backward solves
were shown in Elman (1986) and Bruaset et al. (1990). A heuristic fix is to base P
on the Jacobian matrix A1 of the first-order spatial scheme, which seems to improve
on this situation significantly. This has the benefit of being more stable due to the in-
creased diagonal dominance as was shown in Saad (1994). The solution of the first order
preconditioner is shown in Fig. 2.
The preconditioner based on the first order Jacobian has little oscillatory behaviour and

is a reasonable approximation to the exact solution. This is due to the better conditioning
of the first order Jacobian not causing any stability problems in the factorisation steps
for forming the preconditioner. A variation on this approach is to calculate P based on
the matrix Aα, where

Aα = αA2 + (1− α)A1 (12)

The weighted preconditioner matrix Pα is then formed from the ILU factorisation of the
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Figure 2. First order preconditioner

matrix Aα. The solution of the new weighted preconditioner is shown in Fig. 3.

Figure 3. Weighted preconditioner α = 0.90

For α = 0.90, the majority of the small oscillations seen in Fig. 1(b) have been damped
by the introduction of a small amount of the first order Jacobian terms. The improved
stability in the factorisation and the better approximation from the second order terms
would be expected to improve the convergence of the linear solver.
The weighted preconditioner ILUα has been implemented for the solution of the linear

systems arising in the LFD method using a restarted GCR Krylov subspace solver (Eisen-
stat et al. (1983)). It is necessary to understand what effect the ILUα preconditioning
has on the convergence of the system and look to what happens to the solution when
this preconditioner is used. Results are shown here for the NACA 0012 aerofoil in forced
pitch, with the flow modelled by the Euler equations.
For assessing the performance of the new preconditioner, a sweep of α values for 0 ≤

α ≤ 1 is carried out. A NACA 0012 aerofoil has been used with 31,416 points at AGARD
CT2 conditions (Landon (1982)), maximum iteration count of 2000 and a minimum
residual of 1x10−8 with 20 Krylov subspace vectors. The α sweep is shown in Fig.4(a)
for both left and right preconditioning with one level of fill-in in the ILU factorisation.
Figure 4(a) shows that as the parameter α is increased from zero (preconditioned

based on pure first-order discretisation), the number of iterations to convergence reduces
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Figure 4. NACA 0012 AGARD CT2 results

down to around a factor of 5 fewer at α = 0.90. However, the solver does not converge for
α = 1.0 (preconditioner based on the pure second-order discretisation). Similar behaviour
has been observed for a wide variety of cases (insviscid and viscous aerofoil problems,
inviscid and viscous wings and full aircraft configurations).
Further assessment is shown in Fig. 4(b). This shows the magnitude of the largest

eigenvalue of the preconditioner matrices at different values of α as an indication of
conditioning of the matrix. Eigenvalues closer to the origin indicate a better conditioned
matrix. In this figure, it can be seen that as the number of iterations for convergence
improves, the magnitude of the largest eigenvalue reduces (i.e. becomes closer to the
origin). The blending of terms from the better conditioned first-order Jacobian matrix
and the better approximation from the second-order Jacobian matrix clearly improves
the overall effectiveness of the preconditioner.

4. Applications

A number of works have been carried out applying Fourier based methods to both Aeroe-
lastic and Flight Dynamics problems.

4.1. Aeroelasticity

Numerical approaches are routinely used to assist in flight flutter testing where tradition-
ally linear aerodynamic models are predominantly discussed due to cost considerations.
Aeroelastic stability analysis looks at the growth and decay of the system response follow-
ing an infinitesimal excitation. As such, the LFD approach is a well suited simplification
of the fully nonlinear aerodynamic system.
Taking the modal form of the structural equations and linearising using the assumption

of small perturbations gives the aeroelastic eigenvalue problem for the stability analysis
as,
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{
λ2
jMu + λjCu +Ku

}
ûj = ΦT ∂f

∂u
ûj +ΦT ∂f

∂w
ŵj. (13)

where Mu, Cu and Ku are the matrices of modal mass, damping and stiffness of dimen-
sions n×n with n as the number of normal modes, Φ is the mode shape matrix, ûj is the
complex amplitude of a small structural perturbation (i.e. an eigenvector) and λj is the
corresponding eigenvalue, the imaginary part of which gives the circular frequency ωj .

Additionally, the vector of generalised aerodynamic forces is written as ΦTf̂ = Q(k)ûj.
The matrix Q contains the aerodynamic influence coefficients depending on the reduced
frequency k as dimensionless form of the circular frequency.
The additional unknown vector ŵj for the fluid is modelled using the expression given

in Eq. (3), which results in the aeroelastic eigenvalue problem,{
λ2
jMu + λjCu +Ku

}
ûj = Qûj (14)

where,

Q = ΦT

{
∂f

∂u
− ∂f

∂w

(
iωjI+

∂R

∂w

)−1(∂R

∂u
+ iωj

∂R

∂u̇

)}
. (15)

To avoid expensive repeated computation of the aerodynamic influence matrix, it is
pre–computed for a small number of frequencies dictated by the normal mode frequen-
cies using the LFD solver. Kriging interpolation applied to these pre–computed values
makes the CFD approach similar to conventional linear aerodynamic tools as discussed
in Timme et al. (2011).
Figure 5 shows results of a typical stability analysis of the Goland wing/store con-

figuration (see Badcock et al. (2011) for details). The damping ratio and the frequency
are given as a function of the equivalent airspeed. The reference results were computed
solving Eq. (15) repeatedly, using the complex frequency λj , when solving the aeroelastic
eigenvalue problem (which is costly but possible). The mode traces computed using krig-
ing interpolation for the aerodynamic influence matrix are in excellent agreement with
the reference prediction. The Goland wing/store configuration encounters the classical
wing–bending–torsion flutter mechanism with interacting low frequency bending and
torsion modes. The interaction of the two higher frequency modes of this configuration
results in a second instability at a higher value of equivalent airspeed.
This case required 196 solves to evaluate the variation of the aerodynamic influence to

establish the flutter boundary for each Mach number in this range. LFD is at least an
order of magnitude quicker (2.7 times the computational cost of a steady-state for this
case) than the equivalent time-accurate solve, showing the benefit of using the frequency
domain methods for this application. As the number of solves required scales with the
number of points in the parameter range (e.g. frequency), number of parameters and
the number of normal modes, it is clear that the use of a time-accurate solver is no
longer feasible and the use of frequency domain methods combined with an effective
sampling technique is even more important. Other cases that have been computed with
this method include several aerofoils, the MDO wing and the open source fighter aircraft
configuration, all described in Badcock et al. (2011), and a RANS computation of a large
realistic aircraft model based on 100 normal modes.
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Figure 5. Damping ratio and frequency vs. equivalent airspeed (VEAS) for Goland wing/store
configuration.

The linear solver for each case typically accounts for around 90% of the solution time.
The rest of which is spent setting up the relevant matrices. The benefit to having an
improved linear solver is clear.

4.2. Dynamic Derivatives

For flight dynamics analysis, force and moment dependency on flight and control states
is often expressed in tabular form. An efficient method for the generation of aerodynamic
tables using CFD was reported in Da Ronch et al. (2011a). These tables are typically
formed from static data and require dynamic derivatives to introduce the effects from an
unsteady motion. Previous studies have looked at exploiting frequency domain methods
for the generation of the dynamic derivative terms in Da Ronch et al. (2011b), bench-
marking these against the time-accurate solve.
Dynamic derivatives are computed from forced periodic oscillations. The computation

of the longitudinal dynamic derivative values from the time-histories of the forces and
moments assumes that the aerodynamic coefficients are linear functions of the angle of
attack, α, pitching angular velocity, q, and rates, α̇ and q̇. The in-phase and out-of-phase
components of the measured or computed aerodynamic loads are defined as

C̄jα =
(
Cjα − k2Cjq̇

)
(16)

C̄jq =
(
Cjα̇ + Cjq

)
(17)

for j = L,m,D. In Da Ronch et al. (2012), two techniques to post-process time-domain
sampled data arising from forced applied motions have been described to obtain the
values of these dynamic terms.
To assess the frequency domain methods, a two-dimensional NACA 0012 aerofoil was

run at AGARD CT2 conditions (Landon (1982)) with a time-accurate solver, the LFD
solver and Harmonic Balance with 1, 2 and 3 modes retained. Figure 6 shows the re-
sponse of the pitching moment coefficient to the changing instantaneous angle of attack.
Increasing the number of Fourier modes in the HB solution had little effect on the result
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after the first three modes. Observe that including the second Fourier mode in the HB
solution has a large impact on improving the correlation to the reference solution. This
reflects the frequency spectrum of the moment coefficient, due to the flow conditions
and symmetry in the aerofoil geometry. Higher modes are not included, but they closely
overlap the reference solution. The LFD solution is illustrated in Fig. 6(b), and indicates
a degraded prediction of the moment dynamic dependence. Consistent with the other
data, the LFD predicts a large hysteresis but the loop has a lower mean slope than the
other methods.

AoA [deg]
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(a) Pitching moment coefficient, HB
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(b) Pitching moment coefficient, LFD

Figure 6. NACA 0012: pitching moment coefficients dynamic dependence (M = 0.6, α0 = 3.16◦,
αA = 4.59◦, and k = 0.0811)

The force and moment loops indicate the accuracy of the dynamic derivatives values.
For the pitching moment, the HB results illustrate that the one-mode solution should
provide a reasonable estimation of the information needed for flight dynamics although
for greater accuracy, at least two modes would be required. The predictions of the LFD
should be reasonable for the aerodynamic damping term (i.e. loop hysterisis), while the
in-phase component would feature a large inaccuracy (i.e. gradient of mean slope). This
case is however, outside of the assumptions made to formulate the LFD solver and as
such would be expected.
While providing adequate predictions, the main benefit of the frequency domain meth-

ods is the computational savings that can be obtained. Figure 7 conveys the computa-
tional efficiency of the HB method with respect to the underlying time-domain simulation
(line corresponding to a speed up = 1). For the comparison, the solutions were obtained
using 64 time-steps per cycle and were simulated for 3 periods.
The LFD solution was obtained with a speed up of around 60 compared to the corre-

sponding time-domain solver where the LFD solve is 0.82 times the steady-state cost for
this case. While achieving the largest computational time saving, a loss in accuracy was
observed in the LFD-based predictions of dynamic derivatives. With a performance of a
similar order to the LFD method, the HB formulation was seen to be adequate for the
prediction of stability characteristics and local flow variables. By retaining more Fourier
modes, the HB method eventually loses favour relative to solving the time-dependent
equations although for the majority of cases, low numbers of harmonics are used.
The frequency domain methods have also previously been applied to other models for
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Figure 7. CPU time speedup for Harmonic Balance method

flight dynamics purposes such as the SDM generic fighter aircraft in Da Ronch et al.
(2011b), for the DLR-F12 transport aircraft configuration in Da Ronch (2012) and for
the transonic cruiser configuration.
The dynamic derivative model presented here is widely used although there are key

regimes where it is no longer adequate such as when history effects and non-linearities
begin to dominate. Previous work by the authors along with continuing work is making
use of frequency domain methods to assess this model.
As for the aeroelastic application, a considerable amount of the solution time is spent

in the linear solver. For the HB method, this is around 95% due to the increased stiffness
of the matrices. Again, having a way to accelerate the convergence of the linear solver is
of great benefit for this application.

5. Conclusions

The LFD and Harmonic Balance methods have been demonstrated for flutter and dy-
namic derivative calculations, with sample results shown in this paper typical of a much
larger set of cases that have previously been published. The key issue for obtaining the
maximum computational gain from using the frequency domain formulation is the abil-
ity to solve linear systems efficiently. The key challenge in this is the formation of an
effective preconditioner. Using ILU to form the preconditioner based on the Jacobian
matrix of the second order spatial discretisation (which is the Jacobian of the problem
we are interested in) results in very poor convergence of a Krylov method. It has been
found that adding a small proportion of the first order spatial scheme Jacobian before
preconditioning effectively remedies this situation. Results presented in section 3 suggest
that the iterative process associated with forward and backward substitution is unstable
for the second order Jacobian, and that adding the first order Jacobian helps with this.
A rigorous analysis of this problem would require the identification of a suitable model
problem that is tractable.
The performance of the linear solver was considered in the context of two applications,

flutter analysis and dynamic derivative calculation. The LFD solver is the ideal tool for
the linear flutter analysis, providing high computational efficiency to allow routine cal-
culations of the stability based on very large models. A recent study of an in-production
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aircraft case, using 35 million grid points for a RANS flow model, 100 structural modes,
and retaining the full geometrical complexity of the aircraft, resulted in the damping-air
speed plots being generated at the rate of 1 Mach number per day using an 800 core
supercomputer. This calculation was not optimised, and it is likely that this time can
be reduced. The key to this level of performance is in the efficiency of the LFD solver,
in turn relying on the linear solver. The disadvantage of LFD is the inability to predict
nonlinear effects such as LCO. This can be tackled by the HB solver, or through a non-
linear model reduction technique which uses the coupled system eigenvectors as a basis
(Badcock et al. (2011)). The latter approach has the possible advantage of providing a
more feasible method for gust load analysis and control law design.
For the calculation of dynamic derivatives, it was found that the results of time domain

calculations could be reproduced using a number of modes in the HB solution, and that
there were significant discrepancies with the LFD solution. This is mainly due to the
fact that the LFD solver calculates solutions from the steady state flow field, whereas
the HB solver mean state is the time averaged solution over the cycle that introduces
some knowledge of the shock motion over the cycle. On the face of it the HB is useful for
this application. However, it should be noted that the right context for assessing whether
the HB offers significant improvements over LFD is in the influence that these have on
the final flight dynamics analysis. In this context the assumption of dynamic derivatives,
such as the independence on frequency of the applied motion, and the neglection of
dependence on several other parameters, must also be considered. For demanding flow
conditions, involving moving shocks, separation and vortices, it is possible that these
assumptions are not valid, and will be as least as significant as the effect of including
nonlinearity in the frequency domain solution. This subject is the matter of further study.
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