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Abstract. Transonic aeroelasticity requires CFD level aerodynamics for first principals
prediction. This also brings a computational cost, which is overcome in the current paper
by the use of eigenvalue based solution methods which avoid the need for time domain
simulation. Simulation tools need to be able to predict the influence of variability from
model components to be widely useful. In this paper the variability considered arises from
the structural model. A systematic study is carried out for the significance of the routes
of impact from structural variability, namely through the normal mode frequencies and
mode shapes, and from the aerostatic solution. The Goland wing and a jet transport wing
are used as test cases, and it is shown that most of the useful information can be obtained
efficiently from the normal mode frequency variation if the analysis is done about the
mean structural aerostatic solution.

1 INTRODUCTION

Considerable effort has been put into the problem of simulating transonic aeroelastic
response based on CFD level aerodynamics. The approaches were initially in the time
domain, but a research effort has been directed to developing reduced order models which
retain the important physics (and in particular can represent nonlinearity). More recently
these reduced order models have been used to assess the impact of structural variability.
The approach typically used is to build a reduced order model of the aerodynamics,
and then to couple this to structural models that have been generated from randomised
parameters.

There are three ways in which structural variability can influence the aeroelastic response.
First, the distribution of normal mode frequencies changes the stability characteristics.
This influence will be contained in a Monte Carlo simulation based on a reduced aerody-
namic model build at mean parameter structural mode shapes if the range of frequencies
is used in the training. Secondly, the mode shapes will also vary. This effect is typically
not in the reduced order aerodynamic model build using the mean parameter structural
model, with the assumption being that the aerodynamic response can still be represented
well when the structural modes change. Thirdly, the aerostatic solution also changes with
the structural parameters, and this could impact significantly on the reduced order model
built for the steady state at the mean parameters.

This paper will investigate the relative importance of these effects. The investigation
is based on an eigenvalue analysis which allows rapid evaluation of linear stability. This
approach has already been used to compute a Monte-Carlo simulation of the Goland wing
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with 1000 samples being computed overnight on a PC, including CFD level aerodynamics.
This level of performance allows the study of the influence of the three ways that the
variability can impact the aeroelastic response. The Goland and MDO wings are used as
test cases.

2 AEROELASTIC STABILITY FORMULATION

The semi-discrete form of the coupled CFD-FEM system is written as

dw

dt
= R(w, µ) (1)

where
w = [wf ,ws]

T (2)

is a vector containing the fluid unknowns (wf) and the structural unknowns (ws), and

R = [Rf ,Rs]
T (3)

is a vector containing the fluid residual (Rf) and the structural residual (Rs). In the
current work the structure is modelled by a small number of modes. The residual also
depends on a parameter µ (in this paper µ is altitude) which is independent of w. An
equilibrium w0(µ) of this system satisfies R(w0, µ) = 0.

The linear stability of equilibria of equation 1 is determined by eigenvalues of the Jacobian
matrix A = ∂R/∂w. The details of the Jacobian calculation are given in references [1,2].
Write the coupled system eigenvalue problem as

[

Aff Afs

Asf Ass

]

p = λp (4)

where p and λ are the complex eigenvector and eigenvalue respectively. Partition the
eigenvector as

p = [pf ,ps].
T (5)

The eigenvalue λ satisfies [3] the nonlinear eigenvalue problem

S(λ)ps = λps (6)

where S(λ) = Ass − Asf(Aff − λI)−1Afs. The solution of this problem is discussed in
reference [4], and is based on an approximation to the matrix (Aff − λI)−1 given by

(Aff − λI)−1 = A−1

ff + λA−1

ff A−1

ff + ...... (7)

This series converges for small values of λ, and so in practice a shift is used to ensure this
condition. The details of how to define the shift are described in reference [4] and will
not be considered further here.

There are a number of dependencies and options for this nonlinear eigenvalue problem
that we want to bring out. To do this define the residual of the problem as

E(w0, λ,ps, φ, ω) = (Ass − Asf(Aff − λI)−1Afs)ps − λps. (8)
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Note the dependence of this residual on the static solution w0 through all of the Jacobian
matrices. Also the residual depends on the structural normal mode shapes φ through the
matrices Ass, Asf and Afs, and the structural normal mode frequencies ω through the
matrix Ass. Also, this residual can be computed through one linear solve with the matrix
(Aff −λI) against the right hand side Afsps, which represents a manageable cost. Write
the the series approximation to this residual as

Es(w0, λ,ps, φ, ω) = (Ass − Asf(A
−1

ff + λA−1

ff A−1

ff )Afs)ps − λps, (9)

which, after the pre-computation of the series coefficients Aff , can be evaluated very
cheaply. The solution vector for the nonlinear eigenvalue problem is written as we =
[ps, λ]T . Then, two options are available to solve the nonlinear eigenvalue problem. Both
employ Newton’s method driven by the Jacobian matrix ∂Es/∂we which can be evaluated
rapidly. The first uses the residual E and the second option uses the approximate residual
Es. It was shown in reference [4] that the approximate residual can give good results at
the cost of the initial precomputation of the series.

In reference [5] the influence of structural variability was considered. It was assumed that
a small number of structural parameters are uncertain, in either a probabilistic or inter-
val sense. This leads to the requirement to solve the nonlinear eigenvalue problem at a
number of different normal mode and frequency sets. This is done by solving against the
residual E(w0, λ,ps, φj, ωj) at the normal mode shapes and frequencies evaluated at the
jth realisation of the uncertain structural parameters, using the series Jacobian approxi-
mation ∂Es(w0, λ,ps, φ̄, ω̄)/∂we where the notation φ̄, ω̄ indicates the mode set evaluated
at the mean uncertain structural parameters. In other words, the series approximation to
the Jacobians is evaluated at the mean structural parameters and is then used to drive
the Newton solution for every realisation of the uncertain structural normal modes.

We want to calculate the solutions to the nonlinear eigenvalue problem for matched calcu-
lations to locate where in the envelope eigenvalues with a positive real part (i.e. instability)
might be encountered. The most convenient way of doing this is to fix the Mach number
and incidence, and to vary the altitude to change the velocity and density in a matched
way. Then, in previous work, the series approximation is computed at a high altitude
(with the normal mode frequencies as shifts), and the nonlinear eigenvalue problem con-
vergence is then driven by these matrices as the altitude is decreased towards the ground.
In this way the modification of each normal mode eigenvalue in the aeroelastic system
can be traced as a function of altitude. In addition, any modes which show a tendency
to instability can be examined for the influence of structural variability, again exploiting
the series approximation already computed.

There are two additional questions that we consider in the current paper. First, in general
the steady state w0 depends on the altitude also. This was neglected in previous work
and the wing was held at its rigid shape for the calculation of the steady state. The
inclusion of the static deflection requires at least the updating of the residual E at the
correct static equilibrium, and possibly also the updating of the series approximation if
the change in the equilibrium is too large.

The second additional question relates to the calculation of the influence of uncertainty.
The inclusion of aerostatic equilibrium effects introduces an additional route for the struc-
tural uncertainty to influence the aeroelastic eigenvalues. These routes can be summarised
as

3



1. Normal mode frequency - the variability changes the normal mode frequencies
2. Normal mode shape - the variability changes the normal mode shapes
3. Static equilibrium - the change of normal mode shapes and frequencies changes the

static equilibrium.

In the current notation the following scenarios can be considered by applying the approach
described above for treating structural variability in the following ways:

• Route 1 can be computed by solving the nonlinear eigenvalue problem defined by the
residual Es(w̄0, λ,ps, φ̄, ωj). The series residual is evaluated at the jth realisation
of the normal mode frequency, but at the mean structural parameter normal modes
and the equilibrium w0 calculated at the mean normal modes and frequencies.

• Routes 1 and 2 combined can be computed by solving the nonlinear eigenvalue
problem defined by the residual E(w̄0, λ,ps, φj, ωj). This was the problem solved in
reference [5], and used the mean parameter equilibrium w0, and the jth realisation
of both the normal mode frequencies and mode shapes.

• Routes 1-3 can be combined by solving the nonlinear eigenvalue problem defined by
the residual E(w0j, λ,ps, φj, ωj). In this case the equilibrium is also evaluated at
the jth realisation of the normal mode shapes and frequencies.

If route 1 dominates, then a very efficient method is obtained for calculating the influence
of structural model variability. The method for route 1 would be far more efficient than
the method demonstrated in reference [5] for routes 1 and 2. Hence, the first objective of
this paper is to consider the importance of route 2. Finally, the importance of route 3 is
also considered.

3 RESULTS

3.1 Clean Goland Wing

The Goland wing is a model wing which has a chord of 6 feet and a span of 20 feet.
It is a rectangular cantilevered wing with a 4% thick parabolic section. The structural
model follows the description given in reference [6]. Four mode shapes were retained for
the aeroelastic simulation. The eigenvalue formulation given in the previous section was
evaluated for the Goland wing test case in reference [4]. The CFD grid is block structured
and uses an O-O topology. This allows points to be focussed in the tip region which is
most critical for the aerodynamic contribution to the aeroelastic response. The fine grid
has 236 thousand points and a coarse level was extracted from this grid, which has 35
thousand points. The wing structure is composed of upper and lower skins, three spars
with caps, eleven ribs with caps and 33 posts. There are two versions of the wing which
are considered, namely with and without a tip store. The wing without a tip store is
referred to as clean. The tip store is added to the clean wing by including a point mass
at some streamwise location at the wing tip. The baseline tip mass configuration has the
mass located 0.25 ft from the leading edge. In both cases the parameters which define the
geometry of the structural model are the thicknesses of the skins, the areas of the spar
and rib caps, the thicknesses of the spars and ribs and the areas of the posts. The mean
values of these parameters follow those given in reference [7]. It should be noted that the
density of the structural elements was taken to be negligible and the inertial properties are
modelled as lumped mass elements. As a consequence the mass and stiffness properties
of the wing are decoupled.
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The sensitivity of the linear flutter speed to the parameters in the structural model was
calculated and the seven most important structural parameters selected. These are the
thicknesses of the leading and trailing edge spars, the upper and lower skin thicknesses
and the areas of the leading edge, trailing edge and centre spar caps. These parameters
were varied randomly with a coefficient of variation of 0.05. The results were reported in
reference [5], where the angle of attack used was zero, and combined with the symmetry
of the Goland wing, this meant that the static equilibrium was always the same as the
rigid wing shape.

For the current results we start by considering a Mach number of 0.5 and a small non-zero
incidence (0.8 degrees) to introduce a static deflection which depends on altitude. The
solution at 9000ft is shown in figure 1 and features almost a pure bending deflection of
approximately one thickness at the wing tip. The mode tracking for the normal modes
in the aeroelastic system is shown in figure 2. The first wing bending and torsion modes
interact. The eigenvalues are shown in the figure with the aerostatic deformation effect
included. The eigenvalues when keeping the static wing solution rigid shows flutter about
500ft lower than when the aerostatic deformation effect is included. Note that from the
plot of the imaginary part of the eigenvalues, the two modes that are interacting have
frequencies that have virtually merged by the flutter altitude.

These results were obtained for the mean structural parameters. Next a Monte Carlo
simulation was carried out. One thousand samples were generated based on the ran-
domisation of the crucial seven structural parameters. Here a sample consists of the four
normal shape shapes and frequencies. The mean behaviour indicated that the first wing
torsion mode was the one to become unstable. The series approximation was generated
about the mean flutter altitude with a shift given by the frequency at the crossing. This
series was then used to drive convergence for the nonlinear eigenvalue solves. The spread
of samples for the real part of the eigenvalue at the mean flutter altitude is shown in
figure 3(b). Included in this figure are the mean real part traces showing the cases with
the static deformation crossing the imaginary axis at a higher altitude. The spread of the
samples for the cases with and without the aerostatic deformation show a similar spread
of points, with the distribution shifted by a similar amount to the mean parameter values.
This is shown by the PDF in figure 3. Note that in this figure the PDF’s below the mean
value have been corrupted due to the nonlinear eigenvalue solver converging to the wrong
eigenvalue. The eigenvectors in this case for the first two modes and very close, making
the convergence rather sensitive. However, the important information in the plots is the
distribution above the mean value (i.e. more unstable) and this is not influenced by this
convergence behaviour. Finally, the Monte Carlo simulation for the deformed aerostatic
solution was rerun based on the series solution for the nonlinear eigenvalue residual.

To express these results in the terms of the previous section, routes 1-3 and route 1 give
similar results for the PDF, indicating that the changes to normal mode frequencies dom-
inates the aeroelastic eigenvalue real part variability as opposed to aerostatic deformation
and normal mode variability. This could be explained by the closeness of the aeroelastic
eigenvalue imaginary parts, which might make the damping very sensitive to changes in
the normal mode frequencies in this case.
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Figure 1: Views of the aerostatic solution for the clean Goland Wing at the mean structural parameters
and α = 0.8o, M=0.5.
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Figure 2: Mode tracking for the clean Goland Wing at the mean structural parameters and α = 0.8o,
M=0.5. Here Deformed refers to the wing shape used to generate the matrices i.e. the aerostatic
equilibrium at each altitude.

6



Real

P
D

F

-0.01 0 0.01 0.02
0

0.2

0.4

0.6

0.8

1 MC Mode 1 Full - D
MC Mode 1 Series - D
Map 3

Altitude[ft]

R
ea

l

5000 7500 10000 12500 15000

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035 MC Mode 1 - Alt 9000 - D
MC Mode 1 - Alt 9000 - R
Full M=0.50; α=0.80; D
Full M=0.50; α=0.80; R

Figure 3: PDF and real part spread for the clean Goland Wing with and without static deformation at
9000 ft and α = 0.8o, M=0.5.

3.2 Goland Wing with Wing Tip Store

Next we consider a transonic case at Mach 0.9 and 1 degree of incidence for the Goland
wing with tip store. These calculations were started at 40 thousand feet since for the mean
structural parameter case the wing is unstable below 30000 feet for the wing with the rigid
steady state. The aaerostatic solution tends to make the shock wave weaker, as shown
in figure 4, and this has a stabilising effect for the flutter, shifting the flutter altitude
to around 23000 ft. The comparison of the mode tracking for the rigid and aerostatic
steady states is shown in figure 5 and beneficial effect of the static deflection on the mean
parameter eigenvalues is clear. The real part eigenvalue PDF for the unstable mode is
shown in figure 6 together with the speard of samples. There are two comments on this
figure. First, the influence of the static deflection can be seen as a translation in the PDF.
This indiciates that the difference in the flow solutions is not large from the deflection.
Secondly, the route 1 PDF (taking account of the normal mode frequency variation and
not the mode shape variation) is narrower than the route 1-3 PDF. This is in contrast to
the case shown above for the clean wing where the two were in almost perfect agreement.
This indicates that in the present case the influence of the mode shape variation is also
important, and this could be because the mean parameter aeroelastic imaginary parts are
not so close together as before. Also, note that the variation is smaller in this case.

3.3 MDO Wing

The final case we consider is the MDO wing which is representative of a commercial
transport wing with a span of 36m. The wing has a thick supercritical section. The
structure is modelled by a wing box. Eight modes were retained for the current analysis
in the range 0.6 to 4 Hz. Previous results have been shown in reference [4]. The section is
not symmetric and static deflections have been seen to be significant. Calculations were
run at Mach 0.8 and 3 degrees of incidence. The static deflection resulting at sea level
is shown in figure 7. Pressure contours are shown in figure 8 and show that again the
static solutions are similar. There are small modifications to the location and strength
of the shock wave. The wing structure is supported by spring elements at the root and
these elements are the most important for determining flutter. The values of the spring
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Figure 4: Pressure contours for the Goland Wing with tip store, α = 1o, M=0.9.

constants are varied by three orders of magnitude for the Monte Carlo simulation [8].

The mean structural parameter aeroelastic eigenvalue tracking is shown in figure 9. No
flutter is experienced in the altitude range which extends to 5000m below sea level, as
might seem reasonable for a case which is meant to be representative of a transport wing.
Modes 6 and 7 are interacting at the lowest altitude although they remain damped. The
aeroelastic eigenvalue imaginary parts for the interacting modes are much further apart
than for both of the Goland cases. Based on the aerostatic equilibrium, the spread and
PDF of 100 samples including routes 1 and 1-3 is shown in figure 10. There is a slight
discrepancy in the location of the mean, probably due to the systematic error introduced
by the series solution. Apart from this the width of the distribution is almost identical
between routes 1 and 1-3. This could indicate that the flow solution is not sensitive to
small changes in the important modes.

4 CONCLUSIONS

This paper has considered the routes through which structural variability can impact on
aeroelastic stability. An aeroelastic eigenvalue solver that can separate out the differ-
ent routes was used. In the first set of results, for the clean Goland wing at subsonic
considitions, the key route seemed to be through the variation in normal mode frequen-
cies. Comparison of the real part aeroelastic eigenvalue PDF’s showed little additional
influence from the mode shape variation and the aerostatic equilibrium. This behaviour
was explained by how close the aeroelastic eigenvalue imaginary parts are at flutter. In
contrast, a transonic case with a tip store showed some influence of the mode shape vari-
ation, possibly because the imaginary parts at flutter were further apart on this case, and
also because the shock is sensitive to the mode shape variations. Finally, the spread of
results for the MDO wing, prior to flutter in this case, showed that the variation due to
the variation in frequencies could account for the flutter variability, possibly in this case
because small changes in the mode shapes do not significantl impact on the aerodynamics.

The conclusion from these results is that route 1 accounts for most of the variability
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α = 3o, M=0.8.
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Figure 8: Views of the pressure contours for the MDO Wing at the mean structural parameters and
α = 3o, M=0.8.

in the flutter behaviour. This is a practically useful conclusion since route 1 can be
analysed using the series approximation which significantly reduces the computational
cost. The variation of mode shapes can however modify the PDF of the aeroelastic real
part eigenvalue when the aerodynamics is sensitive to this variation, perhaps when shock
waves are important. This may not be very important however since there is likely to be
significant uncertainty in the structural variability itself.

Future work will focus on how to account for the dependence of the series approximation to
the Schur matrix on its variables. This will allow a systematic investigation for instability
across the flight envelope.
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