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Abstract. A Reduced-Order Model (ROM) for the prediction of aeroelastic instabilities
is presented. The unsteady nonlinear aerodynamic system is characterised by an Artificial
Neural Network (ANN) to a set of network weights. The system is trained on a time
history of simultaneous forced oscillation of the normal modes as input and generalised
forces as output. Network weights are then used to approximate the aerodynamic force
in the structural equation of motion to obtain the structural response. Results from the
3D Goland wing are presented and compared against full order CFD. It is shown that the
ROM can predict aeroelastic instabilities with reasonable accuracy at a cost of less than
one typical unsteady aeroelastic computation.

NOMENCLATURE

J Jacobian
W network weights
e network error vector
l number of hidden layers∏

network activation function
f generalised forces
ω reduced natural structural frequencies
Φ mode shapes
U = [η1, η̇1, η2, η̇2, ..ηm, ˙ηm] system input
η, η̇ generalised coordinate,generalised velocity
m number of structural modes
A amplitude of forced oscillations

Superscripts
n time index
o output layer
h hidden layer

Subscripts
i input layer index
j hidden layer index
k output layer index

1 INTRODUCTION

High fidelity dynamically coupled CFD/CSM methods have been demonstrated for the
prediction of transonic aeroelastic instabilities. However there is a cost to be paid in
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terms of computational effort due to the large number of degrees of freedom involved in
coupled CFD/CSM dynamic simulations. Inspite of increases in computational resources
available in recent times, wider application of high fidelity coupled simulations remains
elusive in a production environment. There is clearly a need to reduce the overall size of
the computational problem while retaining the physical complexities of the model. Over
the last few years one of the approaches being widely researched is the use of aerodynamic
Reduced Order Models (ROMs) for aeroelasticity. ROMs are simplified models of usually
nonlinear unsteady aerodynamics that attempt to reproduce flow nonlinearities of the
original model at a much reduced computational cost. The CFD can be replaced with
a ROM in a coupled CFD/CSM analysis to obtain an aeroelastic response. A review of
some of the ROM approaches can be found in references [1–3].

In this paper the inputs to the system identification dataset are the modal displacements
and velocity and the outputs are the generalised forces. The dataset consists of modal
input-output time histories which are used to train the ANN. The training dataset consists
of multiple modal inputs and multiple force outputs at each time step. The generalised
force output at any instance of time due to modal displacements is dependent on the
displacements from other modes at that instance. The system relates the generalised
forces to the modal displacements and velocity.

The simultaneous excitation of mutiple modal degrees of freedom allows the ROM to
capture the nonlinear cross coupling of the degrees of freedom. As opposed to linearised
ROMs the assumption of superposition of responses from perturbation of individual de-
grees of freedom in not made and hence the presented ROM is able to capture coupling
nonlinearities of the dynamic system. Flutter predictions using the proposed ROM has
yielded good comparison with time marching predictions. An order of magnitude reduc-
tion in computational effort has been achieved.

A Time Delay Neural Network (TDNN) based ROM approach was followed in [4] to form
the network weights. The TDNN uses past values of the input-mapping for each instance
of network training data.

f(i) = Λ(ηi, ηi−1..ηi−T , fi−1, fi−2, ..fi−T )

where, fi is the output at the current time level, η is the system input and T is the
maximum user defined time interval, within which the input and output data are included
in each training data instance. By including data from previous time steps to predict
output at the latest time level a degree of time dependency is built in the training.
In the current approach a TDNN is not required as we make use of the assumption
that the aerodynamic response at any instance in time is a function of both the modal
displacements and the modal velocities from previous time steps.

2 METHOD

A Reduced Order Model based on Artificial Neural Network is presented for identifying the
flutter point at a given Mach number. The proposed ROM consists of 3 main parts. The
first is the unsteady CFD computation for calculating the time history of the aerodynamic
reponses f due to sysem inputs. The second is the training of the neural network on the
time history and final step is the calculation of the structural response at varying dynamic
pressures. The CFD computation is the most expensive step of the ROM whereas the
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calculation of the structural response takes a few seconds. An order of magnitude saving
in computational time compared to time marching calculations can be achieved.

Unsteady CFD computations at a chosen Mach number are performed with all the struc-
tural modes oscillating simultaneously with small amplitude. The length of the unsteady
calculations typically ranges from 5 to 10 cycles of the lowest frequency mode. The num-
ber of cycles is case specific but for the cases studied in this paper 10 cycles were found
adequate to train the Artificial Neural Network (ANN). The usual CFD time marching
best practices are to be followed with respect to time step, flow convergence etc. The
generalised coordinate η, the generalised velocity η̇ and the generalised force f for each
mode at each time step are recorded. The generalised force is the coupling link between
the CFD and he structure. A feed forward error backpropagation/Levenberg-Marquardt
scheme is used for training. The output from the ANN training are network weights
which contain the system characteristics and can be used to reproduce the aerodynamic
response required in the solution of the structural equation. The generalised force is di-
mensionalised with the dynamic pressure at which the aeroelastic response is required
and is obtained from the network weights from the following equation,

fk(t) =
l∑

j=1

HjW
o
j,k (1)

where,

Hj =
∏ 2m∑

i=1

U(t)iW
h
i,j (2)

In equations 1 and 2 the network weights Wo and Wh contain the system characteristics
that reproduces an output response for any combination of system inputs η and η̇.

∏
in

equation 2 is the ANN output activation function used in the network training. In the
following subsections the 3 parts that make up the proposed ROM are discussed.

2.1 Unsteady CFD

All computations were performed using the Parallel Multi-Block (PMB) flow solver [5] of
University of Liverpool, which has been continually revised and updated over a number
of years. The solver has been successfully applied to a variety of problems including
cavity flows, hypersonic film cooling, spiked bodies, flutter and delta wing flows amongst
others. The fluid and structural equations are solved on separate grids. The aerodynamic
force is calculated over the fluid surface grid and is interpolated to the structural grid
using the Constant Volume Tetrahedron (CVT) transformation scheme. [6,7] To prepare
the training data for the ANN full time marching CFD calculation are performed, and
the input-output history recorded. Unsteady CFD calculations are started from steady
state solutions. The Goland wing considered here has symmetric cross sectional profile so
static deformations, if any, are assumed to to have no effect on the dynamic instability.
All the modes are simultaneously oscillated with their natural frequencies of vibration.
The amplitude of oscillations of each mode is scaled with the factor ω2

1/ω
2
i where ω1 is

the lowest frequency mode. The reason for this is that in a full time marching calculation
the amplitude of each mode usually decreases with increasing frequencies. The amplitude
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of each mode has an effect on the generalised force output of every other mode, hence to
train the system for a realistic output the input should be as close to the values observed
in time marching simulations. The lowest frequency mode has the largest amplitude A.
The forced modal inputs are calculated from the following equations,

ηn
i = Asin(ωin∆t)

ω2
1

ω2
i

(3)

η̇n
i =

ηn
i − ηn−1

i

∆t

At every time step the generalised forces fn
i the generalised coordinate ηn

i and the gener-
alised velocity η̇n

i are recorded. The format of a typical training data set with m structural
modes is as follows,

η1

1 η̇1

1 η1

2 η̇1

2 ... η1

m η̇1

m f 1

1 f 1

2 ... f 1

m

η2

1 η̇2

1 η2

2 η̇2

2 ... η2

m η̇2

m f 2

1 f 2

2 ... f 2

m

.

.

.

ηn
1 η̇n

1 ηn
2 η̇n

2 ... ηn
m η̇n

m fn
1 fn

2 ... fn
m

2.2 ANN

A neural network is a collection of interconnected neurons or nodes with each node re-
ceiving a number of inputs either from the original input data, or from the output of
other neurons in the network. The transfer of input to the node is weighted. Each node
also has a single threshold value. The weighted sum of the inputs is formed, and the
threshold subtracted, to compose the activation of the neuron. The activation signal is
passed through an activation function to produce the output of the neuron (Fig. 1) shows
a typical neural network with a layer of inputs, a hidden layer and an output layer. The
input weights are summed and passed through an activation function, usually a nonlinear
function like the hyperbolic tangent or exponential sigmoid. The output from the hidden
layer forms the input to the output layer. The weighted sum of the outputs from the
hidden layer is once again passed through a linear or nonlinear function to obtain the
output. If the activation function in the hidden layers is nonlinear then the network has
the capability to map the linear combination of system inputs to a nonlinear output. The
most commonly used activation function is the sigmoid. The layers of nodes between the
input and output are referred to as hidden layers. A network can have as many hidden
layers as required. For smooth functions a few number of hidden units are needed, for
wildly fluctuating functions more hidden units may be required [8]. A standard feedfor-
ward backpropogation method has been implemented [8,9]. The network weights update
switches between error backpropagation and a second order (LMA) Levenberg-Marquardt
algorithm. The switching is done after a prescribed number of backpropagation epochs
(M) have been completed or the network error has reduced to a level where LMA is stable
(E) (Fig. 2).
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Figure 1: A typical ANN topology

Figure 2: Switching from backpropagation to LMA error minimisation

2.2.1 Error Backpropagation

The standard feedforward error backpropagation is one of the popular network weight
update schemes. The central idea is that the error of hidden layer units is determined by
the backpropagation of error from the output layer. Reproducing Equations 1 and 2 the
output from the hidden layer is given by,

Hj =
∏ 2m∑

i=1

UiW
h
i,j (4)

∏
is the activation function of the hidden layer. In the current work this function is a

sigmoid. ∏
(x) =

1

1 + e−x
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The output from the output layer is obtained from,

fk =
l∑

j=1

HjW
o
j,k (5)

The mean square error of the predicted and target output is calculated,

e =
m∑

k=1

(f target

k − fk)
2 (6)

The error gradient with respect to change in network weights is calculated. The network
weights are updated with the error gradient contribution and a momentum term. The
change in weight should be proportional to the error gradient and the proportionality
constant is known as the learning rate (β). To avoid oscillations the weight update is
made dependant on the previous value by a factor α. Suitable values of α and β are case
dependant.

∆W = β(
∂e

∂W
) + α∆W (7)

W = W + ∆W (8)

2.2.2 Levenberg-Marquardt Algorithm (LMA)

The LMA is an efficient method for minimising the sum square error of nonlinear functions.
In an ANN the error e is to be minimised given the network weights as function parameters.
The first derivative of the network errors is used to update the network weights. The
performance index to be minimised is,

F (W) = eTe (9)

where, W = [W h
1,1, W

h
2,1, ...W

h
2m,l, W

o
1,1, W

o
2,1, ...W

o
l,m] is a vector of all the weights of the

system and e is the error vector comprising of all the errors in a training example. The
LMA is written as,

Wi+1 = Wi − [JT (Wi)J(Wi) + µI]−1JT (Wi)e(Wi) (10)

where µ is a weighting factor < 1 that decreases as e approaches minimum. Implementa-
tion of LMA in form of C libraries from [10] has been used in the current work.

2.3 Structural Response

Finite element methods allow for the static and dynamic response of a structure to be
determined. Stiffness (K) and mass (M) matrices are used to determine the equation of
motion of an elastic structure subjected to an external force f as

M ¨δxs + Kδxs = f (11)

where δxs is a vector of displacements on a grid of points xs. Because the structural
system under consideration is assumed to be linear, its characteristics are determined
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once and for all prior to making the flutter calculations, so that M and K are constant
matrices generated, in this case, by the commercial package NASTRAN.

The structural deflections δxs are defined at a set of grid points xs by

δxs =
∑

ηiφi (12)

where φi are the mode shapes and ηi the generalised displacements. Here the ηi depend
on time but the mode shapes do not. The values of φi and ωi are calculated by solving
the eigenvalue problem

[M − ω2

i K]φi = 0. (13)

The eigenvectors are scaled so that

[φi]
TM[φi] = 1. (14)

Projecting the finite element equations onto the mode shapes results in the equations

dη̇i

dt
+ ω2

i ηi = φT
i f (15)

This equation is solved by a two stage Runge-Kutta method, with the latest estimate of
the f obtained from equation 1 given the inputs Un at the latest time level. The structural
equations are decoupled from the ROM and the structural timestep is independent of the
timestep used in the ANN training.

3 RESULTS

Aeroelastic instabilities on the Goland wing were predicted using the proposed ROM.
Results for all cases are compared with full time marching simulations.

3.1 Goland Wing

The Goland wing has a chord of 6 feet and a span of 20 feet. It is a rectangular cantilever
with a 4% thick parabolic cross section. The structural model follows the description
given in [11]. The CFD grid is block structured and uses an O-O topology. This allows
the grid points to be clustered on the tip region which is critical for accurate aerodynamic
contribution to the aerodynamic response. The fine grid has 236 thousand points and
the extracted coarse grid has 35 thousand points. The first four structural modes were
retained for the aeroelastic computations (Table 1).

Mode 1 Mode 2 Mode 3 Mode 4
Frequency (Hz) 1.981449 4.048638 9.687665 13.49333

Table 1: Natural frequencies of Goland clean wing
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Mode 1 Mode 2 Mode 3 Mode 4
Frequency (Hz) 1.72 3.05 9.18 11.10

Table 2: Natural frequencies of Goland wing with store

3.1.1 Reproducing a Free Response

The ROM is trained on an output from a typical time marching aeroelastic computation.
The aeroelastic response is then reproduced by the ROM and compared with the original
computation. This is a basic check on the ROM to verify that it can exactly reproduce
the response it was trained on. Two unsteady time marching aeroelastic computations
are performed at Mach 0.85, velocity 323.5 ft/s and densities 2.3771 × 10−3 and 4 ×

10−3 slugs/ft3. A timestep of 0.5 was used. The η, η̇ and f at each timestep are recorded
for the first 400 steps and used for training. The ANN is trained till the global error
dropped to 1×10−4. The initial perturbation of 0.01 to the generalised velocity is applied
for all ROM and CFD simulations. Figures 3 and 4 show the comparison of full CFD and
ROM responses.
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Figure 3: Aeroelastic response at Mach 0.85 and density 2.3771× 10−3 slugs/ft3

3.1.2 Flutter Prediction

Having confirmed the ability of the ROM trained on a particular free response to repro-
duce exactly the same response, the next step is to generate a general ROM capable of
predicting the flutter point at a given Mach number. The ROM process to identify the
dynamic pressure at which flutter occurs is as follows,

• Starting from a steady solution begin unsteady CFD computation with simultaneous
forced oscillation of all the modes with their natural frequency (Section 2.1). The
simulation is allowed to run for about 10 cycles of the lowest frequency mode. Figure
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Figure 4: Aeroelastic response at Mach 0.85 and density 4 × 10−3 slugs/ft3

5 shows the oscillations of a typical forced unsteady calculation.
• The training data for the ANN is the time history of η, η̇andf from the forced un-

steady simulations. The ANN is trained until the global error drops to an acceptable
level, usually 1 × 10−4.

• Successful completion of ANN training outputs a set of network weights contain
the system characteristics and will be able to generate a meaningful aerodynamic
response to system inputs. The modal equation 15 is solved using the a 2 step
Runge-Kutta method with the generalised force calculated from equation 1 and
dimensionalised with the dynamic pressure at which the response is sought.

• Aeroelastic responses at a range of dynamic pressures is calculated to identify the
flutter point.

The above ROM process was used to trace the flutter boundary of the clean goland wing.
The ROM aeroelastic response at Mach 0.7, velocity 323.5 ft/s and densities 4.6 × 10−3

and 4.8 × 10−3 slugs/ft3 is compared with full CFD results in Figures 6 and 7. Figure 8
shows the flutter boundary traced with full CFD and ROM. It can be seen that the ROM
is able to predict a transonic dip although the match with the CFD is not exact. Further
refinement to the ROM method is needed, specifically in the generation of the unsteady
CFD training data. In a CFD based aeroelastic simulation the frequencies of the modes
change due to aerodynamic damping. This has an effect on the unsteady force distribution
and this not currently captured as the modes are oscillated with their natural frequencies.
A possible enhancement would be to incorporate a bidirectional chirp function to modify
the natural frequencies in the forced oscillations.

3.1.3 LCO Prediction

The ROM methodology is tested for its ability to predict Limit Cycle Oscillation (LCO)
type of instability. The heavy version of the Goland wing was chosen for this. It has a
wing tip store installed and undergoes a LCO at Mach 0.92. This was shown using Euler
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Figure 5: Simultaneous forced oscillation of all the modes in the unsteady CFD simulation
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Figure 6: Aeroelastic response at Mach 0.7 and density 4.6 × 10−3 slugs/ft3

equations in [12] and transonic small disturbance in [11]. Recently LCO prediction on
this test case was shown using a reduce order model based on the Hopf bifurcation theory
in [13]. The steps as described in section are performed. The first 4 natural modes of
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Figure 7: Aeroelastic response at Mach 0.7 and density 4.8 × 10−3 slugs/ft3
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Figure 8: Flutter boundaries from ROM and CFD

vibration are included in the computation (Table ). Unsteady time marching calculations
are performed at sea level density and a range of velocities to measure the growth of the
LCO amplitude. The ROM is constructed by training the ANN with oscillation of the
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modes at natural frequencies. Figure show the comparison between full CFD and ROM
for the first and second modes at velocity of 600 ft/sec and density of 0.00273 slugs/ft3

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4
Figure 9: LCO prediction at Mach 0.92 and density 2.73 × 10−3 slugs/ft3
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Figure 10: LCO growth prediction at Mach 0.92 using CFD and ROM
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4 LIMITATIONS

The accuracy of the ROM prediction is dependant on the quality of the training data.
Provided the training data represents the aerodynamics of the coupled full time marching
calculations, the ROM results will follow the full CFD closely as shown in Figures 6 and
7. In a coupled system the aerodynamics is dependant on the structural contributions
namely the mode shapes, the frequencies and the amplitudes. The frequencies and the
modal amplitudes of the individual modes in turn depend on the aerodynamic forces and
will vary with dynamic pressure. Modal frequencies and amplitudes will increase for some
modes and decrease in others. Currently the training data is obtained with the forced
oscillations of the modes at fixed natural frequencies and nominal amplitudes hence is not
an exact representation of the aerodynamics of a full system. Ideally the training data
should contain the same modal amplitudes and frequencies of the full system, however
this is not possible without performing the actual time marching calculations or losing
the generality of the ROM. A solution to this is to obtain the training data at a range
of frequencies and amplitudes. This will offcourse add extra cost in the training effort.
NEED TO ADD OBTAIN RESULTS FOR THIS BEFORE 17th

5 CONCLUSIONS

A ANN based ROM approach for prediction of nonlinear aeroelastic instabilities has
been presented. Simultaneous excitation of the modal degrees of freedom in the training
data accounts for the nonlinear cross coupling of degrees of freedom within the system.
The proposed ROM is able to predict the aeroelastic instabilities with a reasonable level
of accuracy compared to full CFD predictions. Considerable savings in computational
effort is achieved as the unsteady simulation for a few cycles of the structureal modes,
is performed only once for prediction of a flutter point. A further enhancement of the
method is required to account for the change in structural frequencies in the flow, possibly
by modifying the input frequencies in the training data with a bidirectional chirp.
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