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Abstract. This paper is part of a study investigating the predictiothef aeroelastic behavior
of aircraft subjected to transonic aerodynamic forces. miaén objective of the work is the
creation of Reduced Order Models from coupled Computatiohad Bynamic and Finite El-
ement calculations. The novelty of the approach lies in deaitification of different types of
Reduced Order Model in different flight regimes. Linear madaldels are used in the Mach
range range where the full CFD/CSD system is linear and nanlimeodal models in the tran-
sonic flight regime where the CFD/CSD system undergoes LimiteC@scillations. Static
solutions of the CFD/CSD system are used in order to deterrhimettent of the nonlinear
Mach number range. The model treated in this work is a threeasional wing in a transonic
flowfield.

1 INTRODUCTION

The influence of nonlinearities on modern aircraft and tlggirement for more accurate tools
for the prediction of their effects are becoming increalsinmportant. These nonlinearities
occur due to structural (freeplay, hysteresis, cubicratgt), aerodynamic (transonic effects) or
control system (control laws, control surface deflectiod eate limits) phenomena. Of partic-
ular interest is the prediction of Limit Cycle OscillationsgO) which cannot be performed if
a linear structural and/or aerodynamic model is used folyaisgpurposes.

Although not destructive in the same sense as flutter, LCOezmhtb fatigue and pilot control
problems. A further difficulty is the case of an unpredict€zid occurring during the flight flut-
ter test programme, as the question then arises as to whieéheibration is flutter or LCO1].

A significant amount of expensive testing is currently regdito resolve this type of problem.

There has been much work determining the effects of stralchan-linearities on low order
simulated aeroelastic systemg, B] and also experimental studie$]] Recent studies have
investigated the use of mathematical techniques to préaécamplitude of the LCO without
recourse to numerical integration e.g. using Normal FasimHligher Order Harmonic Bal-
ance b, 7] and other methods3[ 9].

A substantial amount of research has been directed re¢enidyds modelling the effect of non-
linear aerodynamics on aeroelastic systems in the transegime. Such coupled CFD/CSD
calculations are expensive and therefore there is a needttuge Reduced Order Models
(ROM) [10)] of aeroelastic systems that can be used to determine amdotéase the dynamic

behaviour and stability boundaries. The CFD/CSD can thenrbetdd towards the most critical
flight regions of interest.



One means of obtaining Reduced Order Models is to curve-fid#te obtained from coupled
CFD/CSD models. Recent work in this area has included the usgloéihorder spectral meth-
ods [L1] and Volterra Seriesl|?, 13, 14]. Another means of obtaining ROMs is directly from
the CFD/CSD system using Proper Orthogonal Decompositionlf]. In fact, ROM creation
is currently a very active area of research in Aeroelagticit

One aspect of the analysis of aeroelastic systems corgagtinctural non-linearities is that
these non-linearities are always present and are relatededain point of the structure. How-
ever, aerodynamic non-linearities only occur during toems flight speeds and are not related
to specific parts of the lifting surfaces as the shocks moweeiiadin the structure. Vio et al ]
showed that aeroelastic systems are intermittently neatirbeing completely linear in most of
the flight envelope and nonlinear in a narrow range of Machbemn

In this paper, the dependence of nonlinear aerodynamicgbihdbndition is exploited in order
to derive two different types of Reduced Order Models. A sarplear modal model is used at
flight conditions where the full aeroelastic system is lim@ad a nonlinear modal model is used
in order to characterize the LCO behaviour in the nonlineactMaumber range. The nonlinear
dynamics of the Goland Wing CFD/CSD model at different fliglreexs are analysed in order
to determine their complexity. Static aerodynamic sohgiof the Goland Wing are used to
predict the Mach range in which nonlinear phenomena areitapb

2 AERODYNAMIC AND STRUCTURAL MODELLING
2.1 Aerodynamics

The three-dimensional Euler equations can be written iseative form and Cartesian coor-
dinates as
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wherew; = (p; pu; pv; pw; pE)T denotes the vector of conserved variables. The flux vectors
F',G'andH" are
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wherep, u, v, w, p and £ denote the density, the three Cartesian components of theityel
the pressure and the specific total energy respectively,Uand’ =, W* the three Cartesian
components of the velocity relative to the moving coordergtstem which has local velocity
components:, y and:z i.e.



U = u—1 3)
Vo= w—j (4)
W* = w—z2 (5)

The flow solution in the current work is obtained using the P{pBrallel multi-block) code,
and a summary of some applications examined using the cadeectund in reference f].

A fully implicit steady solution of the Euler equations istalmed by advancing the solution
forward in time by solving the discrete nonlinear systemapfaions
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The term on the right hand side, called the residual, is thereliization of the convective terms,
given here by Osher’s approximate Riemann solvét,[MUSCL interpolation P0] and Van
Albada’s limiter. The sign of the definition of the residualdpposite to convention in CFD
but this is to provide a set of ordinary differential equatiavhich follows the convention of
dynamical systems theory, as will be discussed in the nettose Equations is a nonlinear
system of algebraic equations. These are solved by an itpiethod P 1], the main features
of which are an approximate linearization to reduce the amecondition number of the linear
system, and the use of a preconditioned Krylov subspaceatiéthcalculate the updates. The
steady state solver is applied to unsteady problems withseado time stepping iteratiois).

2.2 Structural Dynamics, Inter-grid Transformation and M esh M ovement

The wing deflectiongx, are defined at a set of points by

ox, = Zm@ (7)

whereg; are the mode shapes calculated from a full finite element haidle structure and
«; are the generalised coordinates. By projecting the finitmel# equations onto the mode
shapes, the scalar equations

dQOéi
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are obtained wher¢, is the vector of aerodynamic forces at the structural grithigsaandy
is a coefficient related to the fluid free stream dynamic pnessgvhich redimensionalises the
aerodynamic forces. These equations are rewritten asensystthe form

dw,
dt

with w, = ( e Oy Ol .)T andR, = ( .. 7OZZ,M¢ZTfS — w2ai, .. .)T

The aerodynamic forces are calculated at cell centres oadhedynamic surface grid. The
problem of communicating these forces to the structural gricomplicated in the common
situation where these grids not only do not match, but alsmat defined on the same surface.



This problem, and the influence it can have on the aeroel&sionse, was considered #1],
where a method was developed called the constant volunaéstron (CVT) transformation.
This method uses a combination of projection of fluid poimdhe structural grid, transfor-
mation of the projected point and recovery of the out-ofaplaomponent to obtain a cheap, but
effective, relation between deformations on the stru¢gnid and those on the fluid grid.

Denoting the fluid grid locations and aerodynamic forces aand f,, then

dx, = S(x,, s, 05) (20)

whereS denotes the relationship defined by CVT. In practice this gouds linearised to give

dx, = Sy, xs)0xs (12)

and then by the principle of virtual work, = ST f,

The grid speeds on the wing surface are also needed and tleesppaioximated directly from
the linearised transformation as

0, = Sy, xs)0&s (12)

where the structural grid speeds are given by

The geometries of interest deform during the motion. Thismse unlike the rigid aerofoil

problem, that the aerodynamic mesh must be deformed rdtharrigidly translated and ro-

tated. This is achieved using transfinite interpolation ispldcements (TFI) as described in
reference 24]. The grid speeds are also interpolated from known bounsiaegds. In this way

the grid locations depend ar and the speeds ai.

2.3 Time Domain Solver

For coupled CFD/CSD calculations the aerodynamic and staictalutions must be sequenced.
For steady solutions, taking one step of the CFD solver falbly one step of the structural
solver will result in the correct equilibrium. However, flame accurate calculations more care
must be taken to avoid introducing additional errors. Thaecekormulation used to avoid this
is discussed by Goura et alf].

3 AEROELASTIC RESULTS

In this study the Goland wing aeroelastic mod&s,[27] was used. It is a straight rectangular
wing with a symmetric wing section. The finite element modgbiesented in figuré. This
was built using CQUAD4 and CROD elements. A tip store rigidhaeled to the wing is also
included. The tip store does not participate in the aeroayos Figure2 depicts the mode
shapes of the first four modes. Mode 1 is pure bending, modee2tpision and modes 3 and 4
are combinations of bending and torsion. The wind-off relttrequencies vary between 1.71
Hz and 11.49 Hz, as shown in teh figure captions of figlre

Two types of tests were performed: static and dynamic. Tdigcdests concerned the solution
of the steady flowfield for an immobile wing at different Machnmbers and angles of attack.
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Figure 1: Goland wing finite element model
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(a) Mode 1.w,=1.71Hz (b) Mode 2.w,=3.05Hz (c) Mode 3.w,=9.18 Hz (d) Mode 4.w,,=11.39 Hz

Figure 2: Goland wing mode shapes

The dynamic results concerned the calculation of the ingputsponse of the Goland wing
given initial velocity excitation at different Mach numiser

3.1 Static Results

The object of the static results was to study the shape ofifthrairve for the Goland wing at
different Mach numbers and to identify Mach numbers at whibbck waves can lie on the
wing’s surface. Static solutions were obtained for anglieattack of —10° to 10° at Mach
numbers from 0.8 to 0.995. The resulting lift curves aretpbbin the form of surface graphs
in figure 3(a). The gaps in the data occurred because the solution failedreerge at those
particular conditions.

Figure 3(a) shows that the shape of the lift curve is very nonlinear atiMaembers from 0.8
to 0.95 and becomes approximately linear as the Mach nungpeoaches 1. The maximum
nonlinearity occurs at around = 0.85.

Figure3(b) shows just five of the lift curves, calculateddt= 0.8, 0.85,0.9,0.945,0.995. The
main nonlinear feature is a sudden change in slope, ocguatin-5° at M/ = 0.8 and which
moves to lower angles of attack as the Mach number incredses.change in slope is most
abrupt atM = 0.85. At M = 0.995 the lift curve appears completely linear. Figyrshows
the values of the lift curve slope at different angles of@ttand Mach numbers. It can be seen
that there is a clear wedge-shaped area where there is adoigntinuity in lift curve slope,
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Figure 3: Lift curve variation with Mach number

starting at+=5° at low Mach numbers and reaching its apexat= 0.95. Up to M = 0.87 the
increase in slope as the angle of attack decreases is ptebgdebig decrease in slope. This
phenomenon disappears/idt = 0.88. The biggest change in slope occurs\at= 0.85.

Mach Number

a (deg)

Figure 4: Lift curve slope at different angles of attack and Mach nusbe

The reason for the occurrence of this slope change is, okegtine creation of a shock wave.
At low Mach numbers a shock wave appears at high values ofrtgke attack, changing the
behaviour of the flowfield and, consequently, the lift curiagps. At higher Mach numbers, the
curvature of the airfoil is enough to accelerate the flow Ineymach 1 locally so the shock
wave appears at zero angle of attack.

Figure 5 plots the supersonic flow areas over the upper surface of thg at 0° angle of
attack and four different Mach numbers. The blue dots degiatepoints at which the flow is
calculated while the red circles denote areas where the dlewpersonic. It can be seen that the
supersonic flow area appears as a very small area just bétanditd-chord point (which, for
this airfoil, also happens to be the point of maximum thids)eand grows until at/ = 0.95

it extends to the trailing edge. This means that the shoclevimitially lies near the wing’s
centerline but at higher Mach numbers reaches the traitiigg e

In order to better understand the source of nonlinearity,gbsition of the shock wave was
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Figure 5: Areas of supersonic flow over Goland win@aangle of attack

calculated for each free stream Mach number and angle akattégure6(a)shows the furthest
aft position of the shock wave over the entire wing for eadhtlicase. It can be seen that the
shock wave can lie at the leading edge for low but non-zeréeargj attack and Mach numbers.
The figure suggests that a wing oscillating betwedr)® and 10° angle of attack in a quasi-
steady fashion at Mach numbers from 0.8 to 0.85 will see aksivawe whose position will be
oscillating between the leading edge and the trailing eddgel/ = 0.86 the shock oscillates
betweenr/c = 0.6 and the trailing edge.

The strongest nonlinearity occurs/at = 0.85 because it is the last Mach value at which the
shock can lie at the leading edge and at the same time the stredigth is higher than at lower
Mach numbers. Figuré(b) shows the value of the maximum local Mach number for all free
stream Mach numbers and angles of attack. There is a cleaasing tendency for all the local
Mach numbers as the free stream Mach value is increased. &joe oonclusion to be drawn
from the static results is that the nonlinearity depends on

e The distance that the shock wave can travel over the wingfaca!

e The strength of the shock

The dynamic results to be presented in the next section waeened for the case where the
wing is fixed at zero angle of attack and is free to oscillatbending and torsion. For this
particular angle of attack figu&a) shows that shock waves can only exist on the wing surface
between Mach numbers of 0.885 and 0.955MAE> 0.955, the shock wave lies on the trailing
edge.
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Figure 6: Shock position and maximum local Mach number at various freamstMach numbers and
angles of attack

3.2 Dynamic Results

Full dynamic solutions of the Goland wing model were obtdinsing time marching for var-
ious Mach numbers and various initial conditions. The spEfesbund was set at an arbitrary
value of 647 ft/s. It was found that the Goland wing’ respoissgecaying at most Mach num-
bers but there is a narrow Mach number range at which the mespoecomes a Limit Cycle
Oscillation (LCO). Figure/(a) shows the LCO amplitude for each mode, in the form of a bi-
furcation plot. Up to a Mach number of 0.91 the LCO amplitudeaso, i.e. the response is
decaying. AtM = 0.915 however, the wing begins to undergo LCOs, as evidenced by the
non-zero LCO amplitude in all modes. The LCO amplitude iditiglrows quickly, but then
drops back towards zero as the Mach number is increasedystensreverts to a stable decay-
ing behaviour after M=0.95. This type of bifurcation thatisas LCOs to first appear and then
disappear as a parameter is increased is usually calledyguical bifurcation’ in aeroelasticity
circles. Figure/(a)shows that modes 1 and 2 are the main contributors to the LC@matith
modes 3 and 4 having very low amplitudes. Therefore, the LC&2ed here is an apparent
bending-torsion phenomenon.
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Figure 7: Bifurcation behaviour of Goland wing



Figure7(b) shows the variation of the response frequency of modes 1 aiith21ach number.
For clarity, only the first two modes are shown. The frequeraryes smoothly until the LCO
Mach range is reached, at which point it jumps abruptly toghéi value. It stays at this
increased value throughout the LCO region; it jumps back dovits pre-critical neighborhood
at M = 0.95. Notice that the frequency of mode 2 jumps uplat= 0.91 i.e. earlier than that
of mode 1; it also jumps down &t/ = 0.955, i.e. later than that of mode 1. This discrepancy
suggests that nonlinear phenomena also occur outside therégi@n but their effect is not
very dramatic.

With respect to the static results, the LCOs occur at the Maaher range at which the highest
lift curve slopes are obtained at a zero angle of attack. &fbeg, LCOs in the unsteady case are
obtained at Mach numbers where the steady lift curve is maslimear. As mentioned in the
previous section, the Mach number range at which shock wesedie on the wing’s surface
at zero angle of attack 8885 — 0.955. The Mach range over which LCOs can be obtained in
the steady case is smallerta®15 — 0.945. This fact signifies that nonlinearity does not always
cause Limit Cycle Oscillations.

By making use of Short-Time Fourier Transform (STFT) and &tlilbrasform P&, the degree

of nonlinearity that the shockwave presence has on the wic gesponse at® angle of
attack, can be estimated. Figueshows the STFT of mode 1 responses iér= 0.9 and

M = 0.92 respectively. The STFT fal/ = 0.9 contains a single constant frequency throughout
the duration of the response (figu8éa)). There is no indication of nonlinearity as there are
no higher harmonics and the single peak at 0.018 nondimesisicequency does not change
frequency over time. At the same Mach number, the backboneswerived via the Hilbert
transform can be observed in figug€éa) The backbones show the frequency at which the
system oscillates at various vibration amplitude or dampevels. For thelM/ = 0.9 case
the frequency of oscillation remains constant for all atople and damping values, as expected
from a linear system. The STFT &f = 0.92 shows a shift in frequency with time (figugéb)).
Initially, there is a frequency component at 0.018 whichayscand disappears momentarily.
A new frequency component appears at 0.03 which carriesdefimitely. Later on the 0.018
component re-appears. The corresponding amplitude baekhove (figuré®(b)) also displays
three distinct regions. From these plots it can be concludatia nonlinearity is present at
M = 0.92 and this nonlinearity is stiffening in nature.

3.3 Extent of nonlinear Mach number range

In this section, the extent of the Mach range during whichatheelastic system behaves as a
nonlinear dynamic system will be quantified by means of lirsyatem identification. It is stip-
ulated that if the dynamic responses of the system can betasgehtify a linear mathematical
model with very small errors, then the original responseswbtained from a linear system.

The modal responseg(t), of the system to initial condition excitation are used teritify a

mathematical model of the form
(?)—_A(J)er (14)
q q

where A is an unknown matrix and is an unknown vector, both of which depend on the
flight condition. The modal displacements and velocities @stained directly from the time
marching solution of the CFD/CSD system. The modal acceteratire obtained by numerical
differentiation of the modal velocities. A differemd matrix is obtained at each test Mach
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number.

The modal responses are obtained as discrete realisationgiae instances, denoted gy,

fork=1,..., N. Equationl4is written as

@ a @ ai b
o= AT (15)
n an av an b

where the superscrifit denotes the matrix or vector transpose, and is solved insa $gaares
sense forA andb. This system identification procedure gives rise to a ma#tigal model of
the CFD/CSD system of the form

(16)



wherex(t) are the displacements of the identified model. Equatidghsan be integrated nu-
merically in time using a Runge-Kutta scheme or can be solmatyaically. The latter approach
is used here; the solution(t), is obtained from

L
z = I_{_lb + Z a;vV; exXp Alt (17)
=1
whereL is the number of modes (in this cage= 4), z = [#7 2”]”, v; is theith eigenvector
of matrix A, ), is theith eigenvalue of matrixd anda; is theith element of vector

a=V"" (z(O) + ( Kolb ))

matrix V' being the matrix whose columns are the eigenvectrshe matrix K is obtained
by splitting matrixA into
C K
A= (7F)

A model error measure,can be defined as

tracé(X — Q)(X — Q)" (18)

e =100
tracg X X

whereQ is the matrix whose columns are the modal displacemgntsr all vV time instances
and X is the matrix whose columns are the identified model disphesgs at the same time
instancesg;.. The function trace denotes the sum of the diagonal elensé@isquare matrix.
A different value ofz is obtained at each Mach number.
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Figure 10: Linear model error for a range of Mach numbers

The responses of the CFD/CSD system were calculated usingrtanehing at Mach numbers
from 0.4 to 0.995 and curve-fitted by the linear model of eigmai4. The resulting error is
plotted in figurelO. It can be seen that for Mach numbers up to 0.88 the error iseobtder
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of 0.1%. However, in the region/ = 0.88 and M = 0.95 the error is of much higher order,
initially 1% and during the subsequent LCOs up to 100%. At Magimbers higher than 0.95
the error drops to below 0.1% again.

It should be noted that the model error is never zero becdesenbdal accelerations were
obtained using numerical differentiation of the modal egles, not directly from the CFD/CSD
solution. Nevertheless, figurE) clearly shows that the Goland wing is essentially a linear
system outside a specific region Mach range of 0.88-0.95s fEgion also happens to be the
region in which static solutions of the Goland wing predr@ttshock waves can exist on the
surface of the wing at zero angle of attack. It can be extedpdlthat the existence of these
shock waves is the principal source of nonlinearity in thetesm.

3.4 LCO characterization

The modal displacements over a single averaged LCO periodecanrve-fitted using a Fourier

series to obtain an estimate of the position and order of tinimearity. The coefficients of the

Fourier series can be obtained directly from the Fast Fouirensform of the modal displace-
ments. On the basis of these results a nonlinear systenifidatdn procedure was performed
on the modal displacements and velocities from one peridkdeoECO. According to the static

analysis presented earlier, the nonlinearity of the syssemot affected by bending motion but
clearly depends on torsional motion. Therefore, the nealirfunctions in the system cannot
depend on mode 1 and should depend mostly on mode 2. Modes8adsadl feature a certain

amount of torsion so they may also affect the nonlinearity.

For the purposes of the present system identification proeedhonlinear coupling between
modes was ignored and only cubic polynomial basis functeer® used. The terms considered
werezs, 23, 23, 23, 22 andz3. The importance of these terms was estimated using a badkwar
elimination scheme. The final nonlinear model was of the form

3
Z:Az—i—C<z3> (19)

6

where A andC are unknown coefficients.
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Figure 11: Comparison of true and identified modal displacements

The complete identified model was then integrated usingtaofider finite difference scheme to
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obtain the identified model’s responses to initial conditxcitation on the LCO. The compar-
ison between the true and identified modal displacementbe&aren in figurél. Figurell(a)
shows the response of the identified model over 48 periodsarnitbe seen that the shape of
the limit cycle is preserved but its centrepoint changesjingptowards zero. This effect is due
to the fact that the model chosen for the identification dit camtain a constant term. Fig-
urell(b)shows the identified LCO over the last period of the simulatemmpared to the true
LCO re-centred around 0. It can be seen that the two lines ayesirailar.

The identification presented here should not be seen as aeemnmonlinear system identifi-
cation. It should be viewed more as a means of characterisme@CO. There exists only a
narrow range of initial conditions that will allow the idéired model to converge on the true
LCO. Outside this range the model fails. However, the anslgemonstrates that the nonlinear
responses of the full CFD/CSD system can be described by avedydbw order model which

Is valid in the neighbourhood of the limit cycle oscillatgn

4 CONCLUSIONS

This paper attempts to describe and characterize the mamiip of a coupled CFD/CSD solu-
tion of a simple rectangular wing with store, known as theahddlwing. Static aerodynamic
solutions are used to demonstrate that the nonlinearity @rdurs in a narrow range of Mach
numbers at which shock waves can exist on the surface of tig, wihile present a fully linear
behaviour outside this region, even in the transonic regignamic solutions of the wing
showed that nonlinear effects can be observed in exactliyitiah range predicted by the static
results. The nonlinearity affects primarily torsional iabons.

Within the nonlinear Mach range there exists a smaller ravigere Limit Cycle Oscillations can
occur. The LCOs were investigated by means of phase portfaitsier analysis and nonlinear
system identification. It is shown that the wing undergoir@@Qd_motion can be approximated
by a very small order model using four modes and polynomialinearity. While this model
is not a complete description of the true system, it servegetoonstrate that the important
dynamics of the full coupled CFD/CSD model can be describedrbple, low order models.

The nonlinearity of the full CFD/CSD aeroelastic system delgean flight condition and there

are two main flight condition, one of which causes the systivetlinear and one to be non-
linear. Therefore, it is shown that two different types of Reed Order Model can be used to
describe the system, a linear modal model in the linear Machber range and a nonlinear
model in the Mach range where LCOs can occur.
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