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Abstract. The simulation of gust responses is a crucial task in the design and certifi-
cation process of a new aircraft. Moreover, if high accuracy is desired, the computational
cost can be overwhelming. Linear frequency-domain methods have previously shown sig-
nificant reduction in computational cost for motion-induced aerodynamics as well as for
gust excitations. Time-domain signals are reconstructed by a superposition of responses
at several discrete frequencies. Rather than using the frequency-domain method directly,
a reduced order model is constructed projecting the time-depending linearised Reynolds-
averaged Navier-Stokes equations on a basis obtained by proper orthogonal decomposition.
The resulting small-sized ordinary differential equations for the modal coefficients are inte-
grated in time. Results are presented for a two-dimensional NACA 0012 aerofoil covering
sub- and transonic conditions including a case with shock-induced separation. Responses
due to 1-cos as well as to sharp-edged gusts are compared between the reduced order model
and its non-linear full order counterpart showing time histories of the lift coefficient and
worst case surface pressure coefficients.
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1 Introduction

Gust load analysis is a key task during design and certification of new aircraft. Simu-
lations have to be performed for a huge number of parameter combinations varying e.g.
Mach number, altitude, load factor and gust length. The industrial process currently re-
lies on linear potential methods, such as doublet lattice, which are commonly corrected by
quasi-steady data either obtained from wind-tunnel experiments or computational fluid
dynamics (CFD) simulations. Since corrections are commonly introduced only at zero
frequency, deviations occur at higher frequencies important for shorter gust lengths and
unsteady transonic effects – such as resonance behaviour and inverse shock motion – and
cannot be captured accurately [1]. Additionally, this approach requires a mapping be-
tween the surface representations of the different methods which can become complicated
for industrial cases.

In the past few years CFD aerodynamics alone have been used to investigate gust
encounter. Examples from simple aerofoils to civil aircraft are available [2, 3, 4]. How-
ever, solving the non-linear Reynolds-averaged Navier-Stokes (RANS) equations in the
time domain is too time-consuming to cover the complete flight envelope. Reduced order
modelling is one alternative to overcome high computational cost. Several approaches are
possible to achieve a reduced order model (ROM) for gust interactions including auto-
regressive methods [3] and eigenvalue realisation [5]. Another model reduction technique
is based on proper orthogonal decomposition (POD) [6], which was, with respect to fluid
dynamics, first introduced to model coherent structures in turbulent flow fields [7]. Snap-
shots are computed with the full order method covering the parameter space of interest
and a small eigenvalue problem is solved subsequently to obtain a reduced linear basis.
The idea of POD using frequency domain sample data was first introduced for the inves-
tigation of a simple twelve-degrees-of-freedom mass-spring-damper system combined with
an incompressible three-dimensional vortex lattice method [8].

Linearised frequency domain (LFD) methods have also proven to retain the RANS
accuracy at significantly reduced computational cost for forced motion simulations [9].
The RANS equations are linearised around a steady state and then solved in the frequency-
domain. Moreover, this method was combined with the POD technique for a pitch-
plunge aerofoil [10]. An extension to three-dimensional cases, generating snapshots for
all structural modes of interest, has also been presented [11]. Recently, this approach
was extended towards gust responses and a ROM is presented [12]. The LFD method is
first used to generate snapshots of sinusoidal gusts while varying the reduced frequency.
Afterwards, a reduced basis is computed using the POD approach and the linearised
RANS equations are projected onto the subspace resulting in a small linear system per
gust frequency.

In this paper, the approach is modified to solve the projected equations in the time
domain to simulate non-periodic excitation, such as 1-cos and sharp-edged gusts more
efficiently. Moreover, a time-domain ROM offers the additional advantage to couple
the system with a controller for gust load allevation. Viscous results are shown for the
NACA0012 aerofoil including non-linearities such as transonic shock waves and boundary
layer separation. Responses are compared between the reduced order model and its non-
linear full order counterpart showing time histories of the lift coefficient and worst case
surface pressure coefficients.
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2 Methods

The RANS equations in semi-discrete form read:

dW
dt (t) = R(W(t),vg(t)) (1)

with W denoting the vector of fluid unknowns, vg the external excitation due to a gust
encounter and R the non-linear residual function. Separating the variables into a steady
and a time-dependent part:

W(t) = W + W̃(t)

and expanding eq. (1) around this steady state in a Taylor series yields:

dW̃
dt (t) = R(W, 0) + ∂R

∂W
W̃(t) + ∂R

∂vg

ṽg(t) + H.O.T.

Since W is the steady state, R(W, 0) is very small and can be omitted. The linear
equation for the perturbations is obtained by neglecting all non-linear terms:

dW̃
dt (t) = ∂R

∂W
W̃(t) + ∂R

∂vg

ṽg(t) (2)

Assuming a harmonic excitation at frequency ω, eq. (2) can be transferred into the fre-
quency domain, yielding the governing equations for the LFD method:[

∂R
∂W

− jωI
]

Ŵ = − ∂R
∂vg

v̂g (3)

Thus a huge, but sparse system of linear equations is obtained relating the Fourier coef-
ficient of the gust excitation v̂g to the Fourier coefficient of the fluid unknowns Ŵ. The
right-hand side vector is computed applying the chain rule:

∂R
∂vg

v̂g = ∂R
∂ẋ

∂ ẋ
∂vg

v̂g

where ẋ is the vector of mesh velocities since the gust is simulated applying the field veloc-
ity method [13]. The equation can be further simplified by the simple relation ẋ = −v̂g.
As for the LFD method for forced motion, the fluid Jacobian matrix ∂R

∂W is computed
analytically, while the influence of the grid velocities in term ∂R

∂ẋ is computed using cen-
tral finite differences. The complex-valued vector v̂g can be calculated by the analytical
expression

v̂g(x, ω) = vgze
jω(x−x0)

with vgz denoting the gust amplitude, x the grid coordinate and x0 a reference point. The
frequency of excitation is defined by

ω = U∞
2π
Lg

with Lg as the gust length and U∞ as the freestream velocity.
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2.1 Proper Orthogonal Decomposition

Snapshots are generated at discrete frequencies with sinusoidal excitation solving the
linearised frequency-domain system given in eq. (3). Solutions Ŵk are stored as columns
in the snapshot matrix S. The POD basis Φ is obtained as a linear combination of
snapshots

Φ = Sνk (4)

where the vector νk is scaled so that vectors in Φ are unit length. The eigenvalue problem

SHSνk = λkνk, (5)

with SHS a symmetric, positive definite matrix, is solved to ensure the best possible
approximation in eq. (4). The relative information content a certain mode λk contributes
to the system, also often referred to as energy, is given by

rk = λk

∑
i

λi

−1

(6)

and can be used to decrease the number of modes further by only considering those with
a high relative information content.

In order to use the POD basis also for a time-domain ROM the POD basis can either
be enhanced by its complex-conjugate or alternatively the complex-conjugate snapshots
are included before calculating the POD basis. The time-dependent expression for the
perturbations in eq. (2) can be reduced to an ordinary differential equation with the
number of degrees of freedom corresponding to the POD subspace:

dq̃
dt (t) = ΦH ∂R

∂W
Φq̃(t) + ΦH ∂R

∂ẋ
ṽg(t). (7)

with q̃ denoting the POD or modal coefficients used to reconstruct the flow solution as

W̃ = Φ q̃.

A backward Euler scheme combined with Newton’s method is used to integrate eq. (7) in
time. The small-sized differential equation is stiff and an explicit time integration scheme
was thus unstable for suitable time step sizes.

The same basis can be used to project the LFD system in eq. (3) onto the POD
subspace as shown in [12]. However, there are two advantages of the time-domain ROM
over the frequency-domain method. First, maximum loads cannot be computed within the
frequency-domain and an additional inverse Fourier transformation has to be performed
to reconstruct the flow field. Secondly, the magnitudes at high frequencies for a 1-cos
gust excitation are negligibly small as seen in Figure 1(b). Therefore, the responses of a
limited number of sinusoidal gust can be computed with a frequency-domain ROM and
superposed according to their participation on a 1-cos gust. High freqencies cannot be
neglected if a sharp-edged gust is considered on the other hand. A frequency-domain
ROM must compute the response for all Fourier coefficients reducing significantly the
efficiency of the method compared to its time-domain couterpart.
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(a) time-domain (b) frequency-domain

Figure 1: Time- and frequency-domain signals of 1-cos (Lg = 10 m) and sharp-edged gust

2.2 Computational Fluid Dynamics Solver

The generation of snapshots to obtain the POD basis as well as the computation of
the full-order reference solution is done with an in-house, semi-meshless Navier-Stokes
flow solver [14, 15] coupled with the Spalart-Allmaras turbulence model [16]. Convective
fluxes are discretised using upwind schemes, specifically the Osher solver for the mean
flow equations [17]. A weighted least squares procedure calculates the gradients of the
flow variables, required for viscous fluxes as well as source terms in the turbulence model.
The steady-state solution is obtained applying a fully implicit backward Euler method
with local time-stepping, while additionally a second order dual-time stepping is utilised
in unsteady time-domain simulations. Linear equations arising from the implicit time
integration and from the full-order LFD system are solved throughout using a restarted
generalised conjugate residual method preconditioned with an incomplete lower-upper
factorisation [18].

3 Results

Results are presented for the NACA 0012 aerofoil using a computational domain dis-
cretised with about 30× 103 points. The point distribution has a structured layer near
the wall to ensure a sufficient boundary layer resolution, seen in Figure 2, while the
farfield distance is set to 50 chord lengths. Comparisons are shown for three different flow
conditions to demonstrate the capability of the ROM for a variety of problems including
sub- (S1) and transonic (T1) cases and an additional case exhibiting a shock-induced flow
separation (T2). Comparisons of the full order model with a frequency-domain ROM are
presented for S1 and T1 in [12]. The Reynolds number based on the chord length is 10
million, while the remaining flow parameters are summarised in Table 1.

The steady pressure coefficients on the surface are shown in Figure 3(a). A recompres-
sion shock can be observed for the transonic test cases T1 and T2. The shock position of
T2 with a higher angle of attack is more upstream than in case T1. Since the shock posi-
tion in attached flow moves downstream with increasing angle of attack, this reverse shock
motion indicates flow separation. In Figure 3(b) the corresponding non-dimensional x-
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Table 1: Main flow parameters of three considered test cases

Case Mach number Angle of attack [deg.]
S1 0.3 0.0
T1 0.8 0.0
T2 0.8 3.0

(a) computational domain (b) computational domain, zoomed-in

Figure 2: Computational domain of NACA 0012

velocity component is visualised. Besides the large supersonic zone, a region with negative
velocities, as expected, can be observed behind the shock.

The ROM is generated using 40 snapshots of sinusoidal gust excitations computed at
reduced frequencies in the interval (0, 2π]. The frequencies are distributed following the
formula given in [12]:

ωk = ω0 + e−k∆ω (8)

with suggested parameters ω0 = 0.0 and ∆ω = 0.25π. The responses to these sinusoidal
gusts are computed with the LFD solver. The relative information content of the POD
modes, i.e. the influence of each mode, and the dominant mode for case T2 are shown in
Figure 4.

A drop of two orders of magnitude within the first 5 modes can be observed in Fig-
ure 4(a) for all test cases. A linear decrease until about the 50th mode can then be found
for both attached-flow cases with a larger gradient in transonic flow. It is interesting
to note, that the slope for the detached-flow case T2 shows a bump between the 10th
and 15th mode and a linear decrease thereafter. This reflects a richer physical content
close to the buffet onset. Since the ordinate is presented in logarithmic scale the linear
decrease indicates the exponential decay of the relative information content. A criteria of∑

k rk = 0.9999 is used for the POD reduction throughout resulting in 29 basis vectors
for case S1, 16 for T1 and 18 for T2.

For the detached-flow test case T2, the pressure’s magnitude of the first POD mode,
i.e. the mode with highest information content of rk = 0.955, is displayed in Figure 4(b).
In addition to the shock region, which is also present for the transonic attached-flow
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(a) surface pressure coefficients (b) x-velocity component for T2

Figure 3: Steady surface pressure coefficients for all cases and non-dimensional x-velocity for case T2

(a) relative information content (b) isobars of first POD mode for T2

Figure 4: Information content of POD modes and isobars of first POD mode for test case T2

case [12], high magnitudes can be observed around the free shear layer. If the shock is
moving, the detached-flow topology changes as well explaining the similar magnitudes in
both regions.

3.1 Responses due to 1-cos gusts

Comparisons of the lift response due to different 1-cos gusts are presented in Figure 5.
The gust lengths are Lg = 10 m and Lg = 20 m with a reference point 10 m upstream of
the aerofoil. The full order reference solutions (FOM) are computed using the non-linear
time-domain solver with a non-dimensional time step of 0.02. For both cases with attached
flow the non-dimensional gust amplitude wg,z = vg,z/U∞ = 10−2 is chosen throughout.
Overall, good agreement can be found between the time-domain ROM and the full-order
reference. For the subsonic case in Figure 5(a) the maximum is slightly overpredicted by
the ROM because of amplitude non-linearities. The influence of the gust amplitude on
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(a) test case S1 (b) test case T1

(c) test case T2 (d) test case T2 at Lg = 10 m

Figure 5: Change in lift coefficient due to different 1-cos gusts

the lift coefficient is presented in [12] showing a decrease in amplitude of the non-linear
solution compared to a time-linearised solver. The agreement between both methods is
better for the attached-flow transonic case T1. The maximum response in lift coefficient
and the decay afterwards agree well.

The lift response changes significantly for case T2 with shock-induced separated flow as
seen in Figure 5(c) and 5(d), exhibiting a distinct minimum following the global maximum.
This indicates a large influence of an additional frequency, which is known from resonance
peaks in frequency response functions close to buffet onset [19, 20]. Detached-flow cases
are more sensitive concerning the excitation amplitude and its effect is thus analysed in
Figure 5(d). While the global maximum in lift response is almost independent of the
gust amplitude, the subsequent oscillations show a clear influence which diminishes for
non-dimensional amplitudes wg,z ≤ 10−4. At very small amplitudes with wg,z ≤ 10−6, the
solution of the RANS solver becomes inaccurate because of limited machine precision.
In Figure 5(c) the results of the linear ROM are compared to non-linear responses with
a gust amplitude of wg,z = 10−5. The reduced formulation is capable to reproduce the
complex progression of the lift coefficient qualitatively, while underestimating its extrema.
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(a) test case T1 (b) test case T2

Figure 6: Surface pressure coefficients at maximum lift response for Lg = 10 m

In Figure 6, the instantaneous pressure coefficients are presented at the time step
of the maximum lift response for both transonic test cases. For the attached-flow case
T1 an amplitude was chosen yielding visual differences to the steady-state solution in
Figure 3(a). Although amplitude effects can be observed at the shock location, the ROM
prediction agrees well with the corresponding full order solution. The values around the
shock on both surfaces are overpredicted by the linear ROM, caused by the superposition
of the steady-state solution and the POD modes with rather high amplitudes. A smaller
gust amplitude is simulated for the detached-flow case T2 and a plot of instantaneous
pressure coefficients would simply show the steady state. Thus, the normalised difference
to the steady surface pressure coefficient

c̃p = cp(t)− c̄p

wg,z

is displayed in Figure 6(b) instead. Good agreement between both methods is obtained
in the region of separated flow, while the ROM predicts a slightly larger shock peak and
smaller pressure differences around the leading edge.

3.2 Responses due to sharp-edged gust

After simulating responses due to 1-cos gusts, the capabilities of the time-domain
ROM are demonstrated for a gust shape not easily represented by a Fourier series with
a finite number of coefficients. Contrary to a 1-cos gust, a sharp-edged gust excites also
high frequencies, as shown in Figure 1(b). The Fourier series cannot be truncated which
contradicts the application of a ROM in frequency-domain.

Responses to a smoothed sharp-edged gust with a non-dimensional gust amplitude of
10−3 are computed for the three test cases. The step in gust velocity was smoothed with a
linear increase over 1.5 chord length, shown as dotted black line in Figure 7(a), to improve
convergence of the full order model. Results for the same gust shape are then calculated
by the ROM using the same POD basis as for the 1-cos responses. For both attached-
flow cases, the response in lift coefficients shows qualitatively the same progression as
the Küssner function [21]. Excellent agreement can be found between results computed
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(a) attached-flow cases S1 and T1 (b) detached-flow case T2

Figure 7: Change in lift coefficient due to smoothed sharp-edged gust with wg,z = 10−3

by the ROM and the full order model. The response of the subsonic case obtained by
the non-linear flow solver shows minor oscillations which are filtered by the ROM. The
corresponding lift coefficient for the detached-flow case T2, shown in Figure 7(b), differs
significantly exhibiting a maximum and damped oscillations thereafter. This distinct
behaviour can be explained by looking at frequency responses due to pitch motion as
presented in [19, 20] for constant Mach number and increasing angle of attack.

At attached-flow conditions the lift response is similar to predictions by linear potential
theory such as Theodorson [22] starting with a large value at zero frequency and decreasing
monotonically thereafter. However, close to shock buffet onset the quasi-steady derivative
is decreasing significantly, which is the reason for the reduced lift gain after the sharp-
edged gust passed the aerofoil. Moreover, the frequency response function exhibits a local
maximum at the buffet frequency where an eigenvalue of the fluid Jacobian matrix is
weakly damped causing the oscillations in Figure 7(b). The ROM predicts a maximum
at the same time step, but at a smaller value and the lift coefficient oscillates at much
smaller amplitude.

4 Conclusion

The paper describes a time-domain reduced order model based on proper orthogonal
decomposition for gust response analysis. The reduced order model is trained by responses
due to sinusoidal gusts computed with a linear frequency-domain solver. The linearised
Reynolds-averaged Navier-Stokes equations are projected onto the subspace yielding a
small-sized ordinary differential equation for the modal coefficients, subsequently used to
reconstruct the physical solution from the projection basis. Different disturbances such
as 1-cos or sharp-edged gusts can then be predicted at low cost.

Results are presented for the NACA 0012 aerofoil at three different flow conditions
covering sub- and transonic flow without boundary layer separation and a shock-induced,
separated flow. Lift responses of 1-cos gusts with two different wave lengths show an
excellent agreement between the reduced order model and the non-linear, time-domain
full order reference solution for the attached-flow cases. Only a minor difference can be
observed in the subsonic case with the linear reduced order model overpredicting the max-
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imal lift response due to amplitude non-linearities in the full order model. A comparable
good agreement is obtained for the instantaneous surface pressures showing only small
differences around the shock location for the transonic case. The lift responses due to a
sharp edged gust give a progression similar to the Küssner function for both attached-
flow cases demonstrating a good agreement between the considered methods. The lift
response for the test case with shock-induced separation however changes significantly
showing additional oscillations for both gust shapes due to the proximity to an inherent
flow instability. The reduced order model can predict these features qualitatively, while
underestimating amplitudes.

Future work will extend the presented methods to include additional Taylor coefficients
to account for amplitude non-linearities. Moreover, the reduced order model will also be
coupled with a controller for gust load alleviation.
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