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Abstract. Predicting loads due to atmospheric turbulence is crucial in the aircraft design and
certification process. Efficient methods are important regarding the large number of simula-
tions needed to cover the parameter space of e.g. Mach number, flight altitude and gust shape.
Since commercial aircraft operate at transonic flight speeds, applied methods should consider
aerodynamic nonlinearities such as shocks and boundary layer separation. Based on a recently
presented method using frequency domain computational fluid dynamics for gust interaction, an
extension towards industry-relevant three-dimensional cases is proposed. Results are shown for
a large civil aircraft solving the Reynolds-averaged Navier-Stokes equations. Complex-valued
surface pressures from time-linearised simulations are compared to nonlinear unsteady time-
marching investigations. Responses to 1-cos gusts are obtained to discuss time histories of load
factors and worst case surface pressure distributions.
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1 INTRODUCTION

Various dynamic response simulations need to be performed in order to achieve aircraft
certification. Fast and reliable prediction tools are required to analyse several different gust
parameters and flight conditions. Furthermore, aerodynamic nonlinearities, e.g. recompression
shocks and shock induced boundary layer separation, should be considered to accurately predict
loads. Current industrial practice is based on potential flow equations, mostly the doublet lattice
method (DLM) [1], which predicts unsteady aerodynamic loads uncoupled from the steady
flowfield. Gust loads are included using a frequency domain sampling and projecting surface
forces on structural modes. While this offers fast predictions throughout the flight envelope,
aerodynamic nonlinearities are neglected. At transonic flow conditions in particular, DLM is
not predicting loads conservatively and thus DLM correction methods or more accurate tools
need to be applied.

Recently computational fluid dynamics (CFD) has become more interesting for loads pre-
diction, offering accurate results also at aforementioned nonlinear conditions. While unsteady
time-marching gust simulations are technically possible also for large configurations [2], they
are currently not feasible in an industrial environment due to overwhelming computational cost.
However, linear frequency domain based methods, also known as time-linearised methods, have
shown large runtime improvements while maintaining the accuracy of the underlying nonlinear
CFD model [3]. More commonly used for forced-motion simulations, an extension towards
gust excitation has been presented recently for the Reynolds-averaged Navier-Stokes (RANS)
equations [4]. Results are shown for an aerofoil at subsonic and transonic flight conditions.
Aerodynamic responses to 1-cos gusts are obtained by superposing several frequency domain
results at discrete frequencies deploying a real-valued weighting function.

First applications for time-linearised methods were demonstrated in the field of turboma-
chinery [5, 6, 7]. Assuming harmonic blade motion of small amplitude, the Euler equations
are linearised around a nonlinear steady-state solution. Solving then for the first harmonic is
offering huge time savings compared to a time-marching approach [8, 9]. Considering external
flows, initial results for an aerofoil are presented in [10]. Forced motion responses are shown
for an aerofoil, wing and an aircraft in [11], while a delta wing under small harmonic oscil-
lations of elastic modes as well as control surfaces is discussed in [12]. Compared to solving
the unsteady nonlinear Euler equations in a time-marching approach, a significant speed-up is
reported throughout, independent of the techniques applied to solve the resulting linear systems
of equations.

Considering the RANS equations, initial work has again been published for turbomachinery
applications [13]. Stall flutter including large separation regions inside a blade cascade is inves-
tigated with good agreement to experimental data. For external flows, analysing forced-motion
responses, time-saving factors between one and two orders of magnitude have been demon-
strated for aerofoils and wings [14, 15]. Regarding a full civil aircraft at cruise conditions
speed-up of nearly two orders of magnitude has been reported [16].

In this paper an application of the linear frequency domain method for gust solving the
RANS equations is demonstrated for a full aircraft configuration including fuselage, wing, tail
and nacelles. Unsteady results are presented for a transonic Mach number after a steady elastic
trimming process. Aerodynamic responses to sinusoidal gusts are compared to their time do-
main counterparts while discussing accuracy and efficiency of both methods. Finally, responses
to several 1-cos gusts, based on international certification requirements, are evaluated in a very
efficient way by exploiting the consolidated frequency domain technique.
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2 METHODS

The nonlinear governing equation in semi-discrete form is written as

ẇ = R(w, vg) (1)

where w is the state-space vector of unknowns, R denotes the nonlinear residual corresponding
to the unknowns and vg describes external disturbances due to gusts.

The difference between an equilibrium solution w0 and the instantaneous state-space vector
w is introduced as

∆w = w− w0 (2)

and accordingly for external disturbances. A first order Taylor expansion is used to express the
residual in Eq. (1) around the equilibrium point assuming small pertubations

∆ẇ = R(w0, vg0) +
∂R
∂w

∆w +
∂R
∂vg

∆vg (3)

where A = ∂R
∂w denotes the Jacobian matrix. The first term on the right-hand side of the latter

equation is by definition zero and equivalent to the nonlinear steady flow solution that accounts
for aerodynamic nonlinearities.

Subsequently, the system is transferred into frequency domain assuming the disturbance
vector ∆w and external excitation vector ∆vg change harmonically in time. After rearranging,
Eq. (3) becomes

(A− iωI) ŵ = −Ξ(ω)
∂R
∂vg

v̂g (4)

with ŵ and v̂g as complex-valued Fourier coefficients.
The response to an arbitrary time domain signal is obtained by superposing frequency do-

main responses with the complex-valued weights denoted Ξ(ω) 1. In Fig. 1 the time and fre-
quency domain representations for three different excitation types are shown. While the sinu-
soidal excitation only needs one single frequency domain solve, the two other signals affect
an infinite range of frequencies. Comparing the 1-cos and pulse excitation it can be seen that
the pulse omits zero amplitudes, making it possible to excite all frequencies of interest with a
single unsteady time-marching simulation. Obtained frequency domain results are then used to
reconstruct the time history of the loads by applying an incomplete inverse Fourier transform.
Furthermore, it is also possible to get the time history of the complete flowfield.

The right-hand side in Eq. (4) can be modified by applying the chain rule. Neglecting the
weighting factor Ξ(ω) it becomes

∂R
∂vg

v̂g =
∂R
∂ẋ

∂ẋ
∂vg

v̂g (5)

where ẋ denotes artificial mesh velocities applied to model the gust during the CFD calculation
using the field velocity approach [17]. Since the relation between gust disturbance vg and
artificial mesh velocity ẋ is simply

ẋ = −vg (6)

1Compared to previously presented work in [4] this paper applies complex-valued weighting functions. While
resulting in a slightly different analytical gust expression, this offers a further improvement in terms of computa-
tional efficiency since samples at discrete frequencies can be re-used to reconstruct an arbitrary time signal.
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(a) Time domain (b) Frequency domain

Figure 1: Excitation representation in time and frequency domain

Eq. (5) becomes
∂R
∂vg

v̂g = −∂R
∂ẋ

v̂g (7)

The derivative in Eq. (7) is computed using a finite difference evaluation, applied around the
equilibrium point, with a known gust shape vector v̂g. Thus Eq. (7) becomes

∂R
∂vg

v̂g =
R(+εvg)− R(−εvg)

2ε
(8)

with ε denoting the finite difference step size. Two additional residual solves are necessary to
construct the right-hand side before solving the linear system, while forming and storing the
matrix ∂R

∂ẋ explicitly can be avoided.
Furthermore, an analytical description for the gust vector is introduced as

v̂g(x, ω) = vgze
iϕ(x,ω) (9)

where vgz and ϕ(x, ω) are the constant gust amplitude in z-direction and the phase shift at every
mesh point, respectively. The phase shift can either be obtained from a Fourier analysis of the
time domain signal or more elegantly using the analytical expression

ϕ(x, ω) = (x + x0)ω (10)

where x0 represents the distance between gust and aircraft. The relation between the angular
frequency ω and gust length of interest Lg is simply

ω =
2πU∞
Lg

(11)

with U∞ as freestream velocity. Similar expressions can be derived for horizontal gusts by
considering the corresponding amplitude and modifying the phase shift accordingly.

Results are produced using the DLR-TAU code [18] solving the RANS equations in con-
junction with the Spalart-Allmaras turbulence model [19]. Fluxes are discretised applying the
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Jameson-Schmidt-Turkel scalar artificial dissipation scheme [20]. Steady-state solutions are ob-
tained utilising the backward Euler method with LU-SGS iteration [21]. For steady-state as well
as unsteady simulations a 2v multigrid scheme is employed. Nonlinear time-marching solutions
are computed using dual time-stepping of second order accuracy considering 128 steps per pe-
riod. In addition, a Cauchy convergence criterion with an abort value of 10−8 for the relative
error on drag coefficient is used to speed-up nonlinear time domain simulations. Gusts are intro-
duced by adding an artificial mesh velocity during each time step which is prescribed according
to the investigated gust shape [17]. Convergence for all linearised systems is achieved with a
preconditioned generalised conjugate residual solver with deflated restarting [22]. For precon-
ditioning a block incomplete lower upper factorisation of the approximate Jacobian matrix A
with zero level of fill-in is applied [23]. The number of Krylov vectors necessary to solve each
linear system is chosen based on engineering judgement and the guidelines published in [22],
resulting in 100 vectors of which 20 are part of the deflated restarting process.

3 RESULTS

Results considering a large civil aircraft encountering either sinusoidal or 1-cos gusts are pre-
sented. First, convergence behaviour of the linear system is analysed and the influence of the
finite difference step size ε is assessed. Then, several frequency domain gust responses at dif-
ferent frequencies are compared to corresponding nonlinear time domain simulations to outline
the capability of the method for complex three-dimensional geometries. Therefore, complex
surface pressure distributions are evaluated as well as representative sections on the wing and
elevator. Finally, different 1-cos gust signals, chosen according to international certification
requirements, are discussed. Besides time histories for the load factor nz, also instantaneous
surface pressure distributions corresponding to maximum load factor are reconstructed.

The investigated test case is a civil aircraft with a wingspan of approximately 60 m including
elevator and fin. The computational mesh comprises nearly 8 million points of which 130,000
are on the surface. During the steady-state simulation at transonic flight conditions an elastic
trimming is performed so that the lift balances the weight and zero pitching moment occurs.
Elastic effects are captured using the first 94 structural modes while rigid-body modes are ne-
glected. The trimming process is based on Broyden’s method and adjusts angle of attack and
elevator deflection iteratively until the desired coefficients are reached. Within each iterative
trimming step, surface loads are calculated and the elastic deformation is updated accordingly.
Subsequently, the density residual is driven to converge seven order of magnitude. The result-
ing surface shape in comparison to the undeformed aircraft is shown in Fig. 2(a). The most
amplified structural modes are first wing bending and first wing twist, causing a decrease in
sectional lift towards the wing tip. The corresponding surface pressure distribution is displayed
in Fig. 2(b) with a strong shock visible along the wing span at roughly 70% chord length. On
the elevator a suction area around the leading edge, but no shock formation, is present.

3.1 Investigation of Numerical Accuracy and Computational Cost

The convergence behaviour of the frequency domain solve is investigated first. A gust length
of Lg = 100 m and an amplitude of 0.01% of the freestream velocity is chosen to ensure a
dynamically linear response. While the linearity criterion can be relaxed as shown in Sec. 3.2,
it is selected here to demonstrate the exact reproduction between time and frequency domain
results. The convergence of the density residual, shown in Fig. 3(a), together with the magnitude
of the lift coefficient normalised by its final value, confirms that even for this complex geometry
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(a) Deformed and undeformed surface (b) Steady surface pressure distribution

Figure 2: Deformed surface and steady-state surface pressure coefficient for civil aircraft

(a) Density residual and |CL| over iterations (b) Influence of finite difference step size ε

Figure 3: Numerical investigation of frequency domain gust approach

it is possible to converge to machine precision. The lift coefficient remains unchanged once the
residual has converged four orders of magnitude. If only integrated loads are of interest, this
offers time savings of additional 50% compared to aiming for full convergence. Subsequently,
the abort criteria of six orders of magnitude based on the density residual is used, resulting in
converged solutions for integrated loads as well as surface pressures.

The influence of the finite difference step size ε for forming the right-hand side in Eq. (8) is
analysed next, investigating the same test case. The magnitudes of lift and pitching moment,
presented in Fig. 3(b), are both normalised so that they converge towards one for small ε. Be-
low ε = 10−3 both coefficients are independent of the step size, while larger step sizes cause
magnitudes to increase with a higher impact on the moment. A step size of 10−4 is then used
throughout, ensuring results are independent of the step size.

The proposed method is validated at several frequencies by comparing frequency response
functions of lift coefficient between time domain (TD) and linear frequency domain (LFD).

6



P. Bekemeyer, R. Thormann and S. Timme

(a) Magnitude of lift frequency response function (b) Phase of lift frequency response function

Figure 4: Complex-valued frequency response functions of lift for time and frequency domain

Instead of producing time domain solutions separately for each frequency of interest, a pulse
signal is used to excite all frequencies at once with one unsteady simulation. Then, a Fourier
transform of the unsteady lift coefficient is performed and resulting complex-valued Fourier
coefficients are weighted by the Fourier transform of the input signal. The amplitude of the
excitation during the unsteady simulation is set to 0.01% of the freestream velocity, ensuring a
linear dynamic response. Good agreement between time and frequency domain is observed for
the magnitude normalised using the quasi steady result and phase of lift coefficient as can be
seen in Figs. 4(a) and 4(b).

For a further validation complex-valued surface pressure distributions are compared between
both methods for a gust length of Lg = 100 corresponding to a reduced frequency of about
0.073. While the frequency domain results are readily available after the linear system is solved,
time domain solutions are generated in a similar fashion like the transfer function of lift coeffi-
cient. During the time-marching simulation the instantaneous surface pressure distributions are
stored and then used in a Fourier transform. Results for the starboard wing are visualised in
Figs. 5(a) and 5(b) for magnitude and phase with solid and dashed lines denoting time and fre-
quency domain solutions, respectively. Good agreement between both methods at all locations,
even at severe flow topologies, is obtained. The highest amplified region is around the shock at
70% chord length on the upper surface again with no differences between the simulations. Also
around the wing-pylon junction, causing complex flow topologies due to vortices, excellent
agreement is observed. Some minor discrepancies arise between the wing-fuselage junction in
magnitude as well as phase. In Figs. 5(c) and 5(d) results are compared for the elevator and fin
with similar good agreement. Highest magnitudes are located around the leading edge caused
by the suction area since no shock formation is present. The phase is nearly constant on the
elevator but shows large gradients near the trailing edge and during the transition from elevator
leading edge to fuselage.

Values are extracted from the wing and elevator surface to compare time and frequency
domain results in more detail, the locations of which are indicated by black lines in Fig. 5.
Pressure magnitudes are scaled by the maximum value of the corresponding section while the
x-axis is normalised by the local chord length. The first location is at 75% semi wingspan and
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(a) Magnitude on starboard wing (b) Phase on starboard wing

(c) Magnitude on tail (d) Phase on tail

Figure 5: Complex-valued surface pressure with solid and dashed lines as time and frequency domain solution,
respectively. Black lines show location of extracted sections

contains complex-valued pressures around the strong shock on the upper surface. Results for
magnitude and phase are shown in Figs. 6(a) and 6(b) with good agreement. A small offset
at the shock location is observed for phase with values being slightly overpredicted by the
frequency domain method. For the second section at 32% semi wingspan magnitude and phase
are compared in Figs. 6(c) and 6(d), respectively. Even in such complex flow situation due to the
junction of wing, pylon and nacelle both methods are in excellent agreement. As in the previous
section, similar behaviour can be seen for phase with small differences on the wing around the
shock location. The third slice at 75% semi elevator span is displayed in Figs. 6(e) and 6(f).
In contrast to surface pressures on the main wing, no shock formation is present, resulting in
maximum values around the suction area instead. As before, a nearly perfect agreement for
magnitude between both methods is found, while minor differences for phase occur around the
trailing edge since the time-marching simulation is predicting a slightly steeper gradient.
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(a) Magnitude at 75% semi wingspan (b) Phase at 75% semi wingspan

(c) Magnitude at 32% semi wingspan (d) Phase at 32% semi wingspan

(e) Magnitude at 75% semi elevatorspan (f) Phase at 75% semi elevatorspan

Figure 6: Complex-valued pressure distributions at wing and elevator sections
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(a) Load factor time history (b) Absolute surface pressure difference

Figure 7: Time responses to several 1-cos gusts and absolute pressure differences for Lg = 116 m

In terms of computational cost, obtaining a single frequency domain response is about two
orders of magnitude faster than the corresponding time domain solution. However, the memory
required to solve the linear system increases compared to a time-marching approach. While
an unsteady RANS simulation needs to be performed for each set of parameters separately,
complex-valued frequency domain results can be used in a weighted incomplete inverse Fourier
transform to reconstruct time responses of integrated values as well as the whole flowfield in a
rapid manner. For gust excitation it is advisable to precompute around 15 discrete frequencies
to investigate an arbitrary time domain signal e.g. 1-cos gusts. The resulting computational cost
is still one order of magnitude below a single unsteady investigation while offering results for
all dynamic gust responses at the defined flight condition.

3.2 Application According to Certification Requirements

After the investigation of numerical accuracy and computational efficiency presented above,
the frequency domain gust approach is used to predict dynamic responses to 1-cos gusts in an ef-
ficient way. The linear system is solved at 15 reduced frequencies between 0 and 0.6. Responses
to 1-cos gusts are obtained by applying a complex-valued weighting function as discussed in
Sec. 2. The chosen gust lengths are Lg = 18 m, 116 m and 214 m with amplitudes as defined
by the European Aviation Safety Agency in CS 25.341 [24]. Load factors are reconstructed and
visualised in Fig. 7(a) for all three gust lengths. For the shortest gust length of Lg = 18 m ex-
cellent agreement between both methods is observed. With increasing gust length also the gust
amplitude is growing, causing dynamically nonlinear responses near the maximum load factor.
Since the frequency domain approach assumes a dynamically linear response, reconstructed
load factors are slightly overpredicted for gust lengths of Lg = 116 m and 214 m. The absolute
surface pressure difference for Lg = 116 m at maximum load factor is displayed in Fig. 7(b).
The highest error occurs around the shock foot since nonlinear shock motion and a nonlinear
amplitude decrease arises during the time-marching simulation. Minor differences around the
leading edge at the stagnation line are also caused from the same amplitude mechanism.
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4 CONCLUSIONS

This paper outlines a method for efficiently computing the aerodynamic response to gust
encounter for industry-relevant test cases. The Reynolds-averaged Navier-Stokes equations are
linearised to obtain responses to sinusoidal gust excitation, a method previously presented for
aerofoils. Arbitrary time domain signals such as 1-cos gusts can be simulated using a complex-
valued weighting in combination with superposition of responses at discrete frequencies. Com-
putational cost is reduced by more than two orders of magnitude compared to equivalent un-
steady nonlinear time-marching simulations.

The method is applied to a large civil aircraft including flow through engines, elevator and fin
at transonic cruise conditions. The steady-state 1g flight shape is generated through an iterative
elastic trimming procedure. Responses at various frequencies are compared to a pulse excita-
tion, validating the method at all frequencies of industrial interest. Complex surface pressure
distributions are discussed with good agreement on the wing and tail globally as well as in spe-
cific wing and elevator sections. Finally, characteristic 1-cos gusts are reconstructed and results
are matched to time-marching simulations. Although results are produced for a very complex
geometry including pylon and nacelles, an excellent agreement between the time and frequency
domain methods is obtained. This includes the global lift coefficient as well as surface pressure
distributions, thus demonstrating the maturity of the method.

Work to extend the method to generate a reduced-order model for the three-dimensional test
case is currently in progress. Also, it is desirable to incorporate nonlinear aerodynamic effects to
increase the accuracy of predicted loads further at transonic conditions. In addition, introducing
structural and rigid-body motions in the response simulation is desirable to account for elastic
surface deformation and changes in the flight path during the aircraft gust interaction.
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