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Abstract. The Linear Frequency Domain (LFD) solver has found wide-spread use for flut-
ter and flight dynamics studies. The LFD solver was available in the DLR (German Aerospace
Center) TAU-code using an explicit Runge-Kutta approach or a semi-implicit LU-SGS approach
for solving the linear system arising in the formulation. This work presents an alternative using
a Krylov subspace solver with Incomplete Lower-Upper (ILU) preconditioning. The alterna-
tive option is tested for an inviscid NACA 0012 and a viscous NACA 64A010 two-dimensional
aerofoil case, along with an inviscid and a viscous Goland wing case. It is shown that the new
approach provides an order of magnitude improvement in solution time over the current meth-
ods. Preconditioners based on approximate Jacobians are also considered using a combination
of Jacobian matrix terms from both the first and second-order spatial schemes. This is shown to
improve the convergence of the linear solver by up to a factor of five compared to the precon-
ditioner based on the Jacobian of the first-order spatial scheme. The optimum weighting of the
preconditioner terms is case independent.
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1 INTRODUCTION

Unsteady aerodynamic problems often involve a periodic oscillation which, using time-
accurate computational fluid dynamics (CFD) solvers, requires iterating through an initial tran-
sient before the periodic response is obtained. Frequency domain methods have become more
prominent as they allow direct calculation of the periodic state. One such method is the Lin-
ear Frequency Domain (LFD) method. LFD was originally developed from the linearised Eu-
ler method in [6] for use in turbomachinery problems and was implemented in the DLR-TAU
code [5] by Widhalm et al. in [11] which is the version used in this work.

Fully-implicit solution methods can offer improved convergence properties compared to ex-
plicit or semi-implicit methods. The motivation for this work was to accelerate the time to
solution of the LFD solver in TAU. The problem arising from the fully-implicit formulation is
the need to have an efficient linear solver and, demanding an effective preconditioner if Krylov
methods are used. The Jacobian matrices encountered in an exact second-order spatial discreti-
sation scheme along with unstructured meshes are usually very poorly conditioned and are very
stiff. This increases the importance of the preconditioner in the solve. A preconditioner is pre-
sented that fulfills this need, improving the conditioning of the system whilst remaining robust
across a vast number of test cases and conditions.

This paper continues with a description of the LFD method and the preconditioning used.
Results are then presented for a number of cases showing the speed up achieved with the fully-
implicit solver and a brief analysis of the preconditioner in both serial and parallel.

2 FORMULATION

2.1 Linear Frequency Domain

The LFD solver is based upon the assumptions of periodicity and small amplitude oscilla-
tions in order to linearise an unsteady motion about a steady mean state. Firstly, the governing
flow equations are written in semi-discrete form as

∂w
∂t

+ R(w, u, u̇) = 0. (1)

The conservative flow variables w and grid positions u, are then modelled as a steady mean
component plus a small perturbation based on the small amplitude assumption as

w(t) = w̄ + w̃(t), u(t) = ū + ũ(t). (2)

The perturbations are then assumed periodic in order to expand these as a Fourier series in terms
of the circular frequency ω. Combining this with Eqs. 1 and 2, gives the complex valued system{

ikωI +
∂R
∂w

}
ŵk = −∂R

∂u
ûk − ikω

∂R
∂u̇

ûk, (3)

where theˆaccent indicates a vector of Fourier coefficients. Limiting interest to the perturbations
which are harmonic in the forced frequency, k is taken to be 1, and hence the non-linear Eq.1 has
been reduced to a single linear equation. The right hand side is obtained from a finite difference
calculation of the residuals at the extremes of the small amplitude oscillation.

For solution with an implicit linear solver, Eq. 3 must be written as a linear system of the
form Ax = b. To allow this, the real and imaginary parts in Eq. 3 are taken to form two coupled
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real systems:

− ωŵIm +
∂R
∂w

ŵRe = −∂R
∂u

ûRe + ω
∂R
∂u̇

ûIm,

ωŵRe +
∂R
∂w

ŵIm = −∂R
∂u

ûIm − ω
∂R
∂u̇

ûRe. (4)

The linear system components are then written as

A =

[
∂R
∂w −ωI

ωI ∂R
∂w

]
, x =

(
ŵRe

ŵIm

)
, and b =

[
−∂R

∂u ω ∂R
∂u̇

−ω ∂R
∂u̇ −∂R

∂u

](
ûRe

ûIm

)
. (5)

2.2 Solver Options

There are a few options available in TAU for the solution of the linear system in LFD. The
first is termed Facemat and is the default option. This is a face-based approach for the formation
of the matrices where the flow variables are stored at each face of the grid rather than at the
vertices. The linear system is recast as

Ãx = Ax − b, (6)

where Ã is an approximation of A and the matrix-vector product Ãx is driven to an L2 norm
of zero using either the semi-implicit LU-SGS iterative solver [3] or an explicit Runge-Kutta
scheme with Multigrid [7] to accelerate the convergence. The Facemat option can also use a
GMRes [10] Krylov solver.

This method only operates on the matrix-vector product and never stores the full Jacobian
matrix explicitly in memory. This minimises the memory requirement to enable very large grids
to be run on relatively inexpensive machines and gives this approach a competitive edge over
other linear solvers in this sense.

The solver introduced in this work makes use of a Generalised Conjugate Residual (GCR)
Krylov subspace solver [4]. The implementation works with a block matrix structure rather than
element-wise so that the memory required for matrix storage is minimised. The solver uses a
blocked version of the Incomplete Lower-Upper (ILU) preconditioner [9].

The GCR solver is a Krylov subspace method whereby the system is projected onto a sub-
space

Km (A, r0) = span{r0, Ar0, A2r0, ..., Am−1r0}, (7)

where m is the number of subspace vectors allocated in advance and the residual r0 is the term
to be minimised. Increasing m leads to a better approximation of the problem in the subspace
and as such, the better the convergence although this comes at a cost of memory.

2.3 Preconditioning

The most important consideration for an effective linear solver with respect to convergence
is the preconditioner employed. Methods of preconditioning have been the focus of a number
of papers summarised in [2]. The majority of the techniques when applied to CFD problems
are primarily focussed on using properties of the given matrix to carry out the permutation of
terms to improve the conditioning. Very few papers make use of properties of the underlying
problem to improve the preconditioner performance. In [8, 12], the preconditioner is based
upon an approximate Jacobian matrix and is shown to accelerate the convergence over using
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the exact Jacobian. This work makes use of approximate Jacobians to significantly accelerate
the solution of linear systems arising from the CFD derived LFD problem.

The purpose of preconditioning is to make a system easier to solve, thus improving the
convergence properties of a solver. For left preconditioning, the linear system, Ax = b, is
recast as

P−1Ax = P−1b. (8)

It can be seen that the ideal preconditioner matrix P would be equal to A and the inverse is
found exactly to allow solution in one step of an iterative solver. However, finding the inverse
of the large sparse matrices encountered in CFD can be very costly in terms of both time and
memory. An ILU factorisation is used to form an approximation to the inverse by limiting the
number of additional non-zero terms beyond the original sparsity pattern introduced during the
factorisation process described in [9]. This is referred to as ILU(k) preconditioning where k
indicates the level of fill-in. In the current work one level of fill-in is used, which generates
around two additional non-zero terms in the matrix for each original non-zero term.

For CFD applications, the Jacobian matrix is usually based on a second order discretisation
A2 with a preconditioner matrix P . This however, is often found to lead to a very poor precon-
ditioner in the sense of bad convergence of the iterative solver. A heuristic fix is sometimes used
to base P on the Jacobian matrix of the first-order spatial scheme A1, which seems to improve
on this situation significantly in practice. A variation on this is proposed in this work whereby
both first and second order Jacobian matrix terms are used to form the preconditioner as

Aα = αA2 + (1− α)A1 (9)

The weighted preconditioner matrix Pα is then formed from the ILU factorisation of the matrix
Aα where the subscript α indicates the percentage of second order Jacobian terms as a decimal
number.

The above preconditioning has been implemented with a GCR iterative Krylov subspace
solver. The effect of the Krylov subspace method chosen is small in comparison to that of the
preconditioning and as such is not tested for other types.

3 RESULTS

3.1 Test Cases

A number of test cases have been chosen to assess the performance of the fully implicit
solver with the preconditioner. Cases chosen include both inviscid and viscous schemes in both
two- and three-dimensions. Each of the cases requires a steady state solution at mean conditions
which has previously been run to a residual of 1× 10−8 which the LFD calculations were then
started from. All cases are run with 20 Krylov vectors.

Two-Dimensions

The most simple of the cases presented here is the two-dimensional NACA 0012 aerofoil
run for an inviscid test case at AGARD CT2 conditions. The computational grid is shown in
Fig. 1(a) and has 12,672 points. The second two-dimensional case is the NACA 64A010 aerofoil
run as a viscous case at AGARD CT8 conditions. The computational grid is shown in Fig. 1(b)
which has 21,454 points, has an unstructured farfield with a regular boundary layer. The tur-
bulence was modelled using a Spalart-Allmaras one equation model with Edwards’ correction.
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(a) NACA 0012 grid (b) NACA 64A010 grid

Figure 1: Aerofoil computational grids

AGARD CT2 CT8
Mach number, M 0.6 0.8
Mean incidence, α0 3.16◦ 0.0◦

Pitch amplitude, αA 4.59◦ 0.5◦

Reduced frequency, k 0.0811 0.1
Reynolds Number Re - 12.5× 10−6

Table 1: AGARD cases

The conditions for the AGARD test cases can be found in [1] and also in Table 1.
The two aerofoils have been run with both the original Facemat formulation for solving the

LFD system and with the GCR solver including the ILU preconditioning. The preconditioner
uses one level of fill-in and for the NACA 0012 case is converged 8 orders of magnitude. For
the NACA 64A010 the residual is converged 6 orders. The convergence for the two cases is
shown in Figs. 2(a) and 2(b).

As expected, the fully-implicit implementation is considerably quicker than the Facemat
formulation with a speed up in iterations of around 20 which corresponds to a speed up in time
of around 15 due to the longer time per iteration for the implicit approach. The fully-implicit
solver makes use of the ILUα preconditioner at a value of α = 0.90 which has been set as the
default value within the solver.

In order to analyse the effect of the weighting on the performance of the solver, both cases
were run for various weightings in the preconditioner with one level of fill-in, along with left
and right preconditioning. The results of this are shown in Figs. 3(a) and 3(b).

The use of a weighted preconditioner clearly shows a substantial benefit in the performance
of the preconditioned Krylov solver over using the first-order preconditioner (far left) and the
failure of the second-order preconditioner is seen with the maximum number of iterations
reached for this case (far right). The shape of the graph is consistent for the left and right
preconditioning options and for both of the aerofoil test cases. This suggests some degree of
generality in the weighting. There is up to a factor of 5 improvement in the required number of
iterations for convergence, as each iteration requires the same amount of time, this corresponds
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Figure 2: Solver convergence
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Figure 3: Preconditioner weight convergence

to a speed up of up to 5 in time.

Three-Dimensions

The three-dimensional cases increase the complexity for the linear solver through the in-
creased bandwidth in the Jacobian matrix from the larger stencils. The simplest used here is the
Goland wing inviscid test case. This is an academic case typically used for aeroelastics anal-
ysis. The computational grid is shown in Fig. 4(a) and has 201,909 points. The Goland wing
RANS case is the most complex reviewed here. The three-dimensional nature along with being
a viscous computation (i.e. larger block size in the Jacobian matrix) leads to a Jacobian ma-
trix which is very poorly conditioned and will test the effectiveness of the preconditioner. The
computational grid is shown in Fig. 4(b) and has 991,075 points. As with the NACA 64A010
case, the turbulence is modelled with a Spalart-Allmaras one equation model with Edwards’
correction.
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(a) Goland wing Euler grid (b) Goland wing RANS grid

Figure 4: Three-dimensional computational grids

The conditions run for the two three-dimensional cases are given in Table 2.

Goland (Euler) Goland (RANS)
Mach number, M 0.8 0.925
Mean incidence, α0 0.0◦ 0.0◦

Pitch amplitude, αA 1.0◦ 1.0◦

Reduced frequency, k 0.025 0.025
Reynolds Number Re - 15× 10−6

Table 2: 3D test case conditions

The two cases have been run with both the Facemat and GCR solver options and are shown
in Fig. 5.
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Figure 5: Solver convergence
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The GCR solver requires far fewer iterations to reach a converged state compared to the
Facemat option. This is shown for both cases where a speed up of 50 is achieved for the Euler
problem and a speed up of 20 is achieved for the RANS problem with respect to number of
iterations. This corresponds to a speed up in time of around 28 and 14 respectively.

The next consideration is the effect of the preconditioner weighting on the number of itera-
tions required for convergence. Fig. 6 shows this for the two cases.

2nd Order Weight

C
o

n
ve

rg
ed

 It
er

at
io

n

0 0.2 0.4 0.6 0.8 1
0

500

1000

Left ILU(1)
Right ILU(1)

(a) Goland wing Euler

2nd Order Weight

C
o

n
ve

rg
ed

 It
er

at
io

n

0 0.2 0.4 0.6 0.8 1

500

1000

1500

2000

Left ILU(1)

(b) Goland wing RANS

Figure 6: Preconditioner weight convergence

As with the two-dimensional cases, the three-dimensional Euler problem has the same graph
shape indicating that increasing the amount of second-order terms in the preconditioner, im-
proves the solver performance up to a value of α = 0.90. On this occasion, the pure second-
order preconditioner does converge but it does require more iterations than the optimum weight.
For the RANS problem, this was run on a single processor, and it is seen that changing the
weight improves the solver performance in line with previous results but the optimum lies at a
slightly lower value of α = 0.80.

3.2 Parallel Performance

The implementation of the ILU preconditioner has been such that it only works on the matrix
local to the processor and does not communicate in the factorisation process due to complexity
and time lost due to excessive communication. This will degrade the quality of the approxima-
tion of the preconditioner and is something which must be considered when running on a large
test case across many processors.

The parallel performance of the preconditioner is tested on the Goland Euler case described
previously with the iterations to convergence shown in Fig. 7(a) and the efficiency being shown
in Fig. 7(b). The figure also contains the parallel efficiency of the Facemat option and a line
indicating a 100% efficient process. It can be seen that the fully implicit method does not have
the same efficiency when running in parallel compared to the Facemat option although the run
times are still favourable for the fully implicit approach when running across a large number of
processors.

The Goland RANS case has been tested for the effect of the number of processors on the
optimum weight. This is shown in Fig. 8
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Figure 7: Effect of parallelisation

2nd Order Weight

C
o

n
ve

rg
ed

 It
er

at
io

n

0 0.2 0.4 0.6 0.8 1

2000

4000

6000

8000

10000

4 procs
16 procs

Figure 8: Effect of parallelisation on optimum weight

It is seen that increasing the number of processors used appears to move the optimum weight
to the left and closer to the pure first-order preconditioner. This is possibly as a result of there
being very few points on each processor with respect to the number of global points and could
introduce extra effects for which the single processor weighting is not optimal.

This preconditioner has been used for a realistic production transport aircraft running very
effectively across 816 cores using 1.5TB of RAM.

4 CONCLUSIONS

An alternative method for solving the CFD derived Linear Frequency Domain problem has
been presented making use of an implicit linear solver. This has shown to have a speed up of
more than one order of magnitude over the currently implemented methods within the TAU
solver.

An alternative approach to preconditioning a GCR Krylov solver with ILU has also been
presented. Mixing the first and second-order Jacobian matrix terms can have a beneficial effect
on the rate of convergence of the linear solver. This has shown for serial calculations to prove
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robust across several test cases in both two and three dimensions for both inviscid and viscous
flows, where a speed up of up to 5 has been seen over the traditionally first-order preconditioner.

The performance of the preconditioner in parallel has also been reviewed where it has been
shown that the linear solver is not perfectly scalable as expected. However, it has also been seen
that the optimum weight in the preconditioner changes with the number of processors used,
tending toward a pure first-order based preconditioner.
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