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Time domain VS Frequency domain solvers

« |If the solution is required only once periodic steady state is
reached Frequency domain solvers can be used
— Boundary conditions force the unsteadiness
— Unsteadiness due to the flow field
« Time domain solver can capture arbitrary time histories vs
Frequency domain periodic steady state

« Time domain Is unsteady vs Frequency domain steady state
— 32 points per period 15 inner iterations per point for N cycles vs M

frequencies steady state calculations
Sab
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Time domain Calculation with periodic solutions

Solver is parallel implicit dual time cell centred scheme (Badcock et al Progress in
Aerospace Sciences 2000)

« MUSCL + Osher’s scheme + approximate Jacobian.

 Krylov Subspace Method with BILU(k) Preconditioning

Its possible to use the periodic nature in time domain solutions

« At each time level store the complete solution

 After 1 ¥ cycles read in the solution from the N-1 time level
« After few cycles the initial guess is the exact answer
Possible improvement use a variable convergence tolerance

« Base it on the change in the unsteady residual?

)
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Fourier Series Expansion

1 = .
X(t) = ~a+ > [a, cos(w,nt)+b, sin(e,nt)]
n=1
B 27 The nth Harmonic Assume we know
@, =M T of the function the time period
B 2 (2 g Even Fourier
an — ? t X(t) COS(a)nt) { Coefficients
1

2 b : '
“= t X(t)Sln(a)nt)dt Odd Fourier

Coefficients

- &)

b




PR THE UNIVERSITY CFD Lab - Department of Engineering - University of Liverpool
e, ¢ /o of LIVERPOOL

Transforming to the Frequency Domain

Hall et al AIAA
1(t)= av;t(t) +R(t)=0 Journal 2002

Assuming the solution and residual are periodic in time and truncate

Ny . .
R() =R, + "R, cos(e,t)+ R, sin(@,t)]
n=1

N,
W (t) =W, + > M, cos(a,t) +W, sin(a,t)]
n=1

Using Fourier transform on the equation then yields the following

7o)

Ry=0 oW, +R, =0  —aW, +R, =0

Thisis N, =2N, +1 equations for N, harmonics @
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Solving the Frequency Domain Equations

N

It may be impossible to determine explicit expression for W. i In
termsof R

],k

W, (t, +At) R i (t, +At) i

W, jk(tO +2At) 5 Ri,j,k(to + 2At) W =EW
Wiik=| 7 - ik = 5

Wi,j,k(to +T) Ri,j,k(to +T) R=ER

Hence we can rewrite the Frequency domain equations in the
time domain
oW

L L BETAEW, R, =0

- Sab
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Calculation of Derivatives

AsSsume a vector _ _
Use the relationship

X (t, +At)
o _| Xt +24t) X = oETAEX = aDX
: ) Ny
X(t,+T) D, =—ZkSIn(27zk(j—l)/NT)
How do you ] T _
calculate the vector 0 d -d, dy -dy d, -d,
~d, 0 d, -d, d, -d, d,
X(to -I—At) d, -d 0 d -d, d, -d,
- ~d, d, -d, 0 d -d, d,
X = X(t TLZM) d, -d, d, -d, 0 d, -d,
~d, d, -d, d, -d, 0 d,

X(t, +T) 'd, -d, d; -d, d, -d, o_@
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Computational cost of Method

For the 3D Euler Equations and the current formulation

Number of Harmonics 0 1 2 3 4 8

Memory compared to 1 3.85 | 7.86 | 13.0 | 19.3 | 55.9
steady solver

It is possible to reduce memory requirements with different storage.
Three possible initial guesses
> Free stream for all time levels — Very low cost and low robustness
» The mean steady state for all time levels — Low cost robust
» The steady state for each time level — High cost most robust

The Matrix is HARDER to solve than the steady state matrix and there are
also lower convergence tolerances on steady state solves.

» Systems becomes harder to solve as number of harmonics increases (D
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Parallel Implementation

» The parallel implementation is exactly the same as the time
marching solver

« The Halo cells are numbered in an analogous way
— Each halo cell now has 2N, +1 lots of flow data

» The BILU(K) preconditioner is block across processors
— Hence the preconditioning deteriorates as processors increase

Number of | CPU Efficiency
Procs time
1 3134 N/A
2 1588 98.6%
4 841 93.1%
8 469 83.5%

3D Test wing with 200K cells.
Beowulf cluster of Intel P4’s
with 100Mbits/sec bandwidth

S
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Timing for CT1 test case 702 1982

a =289 =241 M_=06 k=0.0808

Steady state solve Is 3 seconds for 128x32 cell grid for a
single 3.0Ghz P4 Node

Steps per cycle | CPU time for 6 Harmonics | CPU time
cycles

16 64 1 15

32 117 2 G

64 218 3 42

128 390 4 I

256 683

15-25 implicit steps to

°12 1205 reduce the residual 8 orders

1024 2120 ?D
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CT1 Test Case - 1 Harmonic Mode

Experiment
1 Mode HB
1024 per cycle
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up

1 Harmonic
gives 3
time slices

Experiment
1 Mode HB
1024 per cycle

Experiment
1 Mode HB
1024 per cycle

L L L L I L I I I L
0.4 0.6 0.8 1

X/c
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down

0.85 Degrees
down

S



ap®de THE UNIVERSITY CFD Lab - Department of Engineering - University of Liverpool
s N of LIVERPOOL

CT1 Test Case Pressure next to surface

Pressure
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S=b
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Reconstruction of full lift cycle
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Reconstruction of full moment cycle
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Timings for FSWTMAC Run355

WTMAC: Wing with tip launcher + missile body + aft fins
+ canard fins

o =0.004 «,=0117 M_=0.896 k=0.275

Steps per CPU time Minutes Harmonics | CPU time
cycle for 6 cycles Minutes
16 160 1 39
32 246
2 15*8 procs
64 391

Efficiency was low due to poor
partitioning of the blocks

Impossible to run sequentially(D
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Surface Pressure

P
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Marching a=0.004 up

S=b
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Pressure at single points

83% of span
0.7122 0.85
| 16 Per Cycle i ——— 16 Per Cycle
2pw ot | —
| 128 Per g;ycle 0.849- ?;Bpg;?églge
0712k [ | 1 Mode E [ ] 1 Mode
% 50.848 E—
£ g0.847'—
07118 o
0.846
0.7116 0.845
T I T B N T R R R | :‘IIIIHI,,,‘,,,,,,‘,,,,,
075 01 005 ,0 7005 01 015 0.844 75 ——54""0.05 Anégle 005 01 015
35% of 128 steps per cycle 65% of
Chord enough to converge in Chord

time. éD
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Conclusions & Future Work

« An implicit parallel frequency domain method has be
developed from an existing implicit unsteady solver

« A few Harmonic modes can be calculated at a cost of less
than 50 steady state calculations

* Improvements in solving the linear system?

« Improvements the parallel efficiency
 Better partitioning of the blocks - work and communication
« Renumber of the internal cells

 Allow the building of aerodynamic tables used in flight
mechanics

)



