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Time domain VS Frequency domain solvers 

• If the solution is required only once periodic steady state is 

reached Frequency domain solvers can be used 

– Boundary conditions force the unsteadiness 

– Unsteadiness due to the flow field 

• Time domain solver can capture arbitrary time histories vs 

Frequency domain periodic steady state 

• Time domain is unsteady vs Frequency domain steady state 

– 32 points per period 15 inner iterations per point for N cycles vs M 

frequencies steady state calculations  
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Time domain Calculation with periodic solutions 

Its possible to use the periodic nature in time domain solutions 

• At each time level store the complete solution 

• After 1 ½ cycles read in the solution from the N-1 time level 

• After few cycles the initial guess is the exact answer 

Possible improvement use a variable convergence tolerance 

• Base it on the change in the unsteady residual? 

Solver is parallel implicit dual time cell centred scheme  (Badcock et al Progress in 

Aerospace Sciences 2000) 

• MUSCL + Osher’s scheme + approximate Jacobian. 

• Krylov Subspace Method with BILU(k) Preconditioning 
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Number of Linear solves per real 

time step for a pitching aerofoil 
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Fourier Series Expansion 
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Transforming to the Frequency Domain 
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Solving the Frequency Domain Equations 
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Calculation of Derivatives 

Assume a vector  
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Computational cost of Method 

For the 3D Euler Equations and the current formulation 

• It is possible to reduce memory requirements with different storage. 

• Three possible initial guesses 

 Free stream for all time levels – Very low cost and low robustness 

 The mean steady state for all time levels – Low cost robust 

 The steady state for each time level – High cost most robust 

• The Matrix is HARDER to solve than the steady state matrix and there are 

also lower convergence tolerances on steady state solves. 

 Systems becomes harder to solve as number of harmonics increases 

Number of Harmonics 0 1 2 3 4 8 

Memory compared to 

steady solver 

1 3.85 7.86 13.0 19.3 55.9 
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Parallel Implementation 

• The parallel implementation is exactly the same as the time 

marching solver 

• The Halo cells are numbered in an analogous way 

– Each halo cell now has             lots of flow data 

• The BILU(k) preconditioner is block across processors 

– Hence the preconditioning deteriorates as processors increase 

 

12 hN

Number of 

Procs 

CPU 

time 

Efficiency 

1 3134 N/A 

2 1588 98.6% 

4 841 93.1% 

8 469 83.5% 

3D Test wing with 200K cells. 

Beowulf cluster of Intel P4’s 

with 100Mbits/sec bandwidth 
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Timing for CT1 test case 

Steady state solve is 3 seconds for 128x32 cell grid for a 

single 3.0Ghz P4 Node 

Steps per cycle CPU time for 6 

cycles 

16 64 

32 117 

64 218 

128 390 

256 683 

512 1205 

1024 2120 

Harmonics  CPU time 

1 15 

2 25 

3 42 

4 75 

0808.06.041.289.2 0   kMm 

15-25 implicit steps to 

reduce the residual 8 orders  

AGARD Report 

No. 702, 1982 
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CT1 Test Case - 1 Harmonic Mode 

5.0 degrees 

down 

0.85 Degrees 

down 

2.97 Degrees 

up 

1 Harmonic 

gives 3  

time slices 
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CT1 Test Case Pressure next to surface 

Forward of 

shock 

Shock passes through this 

point 
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Reconstruction of full lift cycle 
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Reconstruction of full moment cycle 
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Surface grid for F5WTMAC case 

168,000 cells and 290 

blocks 

Research and Technology Organization RTO-TR-26  2000 
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Timings for F5WTMAC Run355 

WTMAC: Wing with tip launcher + missile body + aft fins 

+ canard fins 

275.0896.0117.0004.0 0   kMm 

Steps per 

cycle 

CPU time Minutes 

for 6 cycles 

16 160 

32 246 

64 391 

Harmonics  CPU time 

Minutes 

1 39 

2 15*8 procs 

Efficiency was low due to poor 

partitioning of the blocks 

Impossible to run sequentially 
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Surface Pressure 

Time 

Marching 

1 Mode Harmonic 

Balance up004.0
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Pressure at single points 

83% of span 

35% of 

Chord 

65% of 

Chord 

128 steps per cycle 

enough to converge in 

time. 
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Conclusions & Future Work 

• An implicit parallel frequency domain method has be 

developed from an existing  implicit unsteady solver 

• A few Harmonic modes can be calculated at a cost of less 

than 50 steady state calculations 

 

 • Improvements in solving the linear system? 

• Improvements the parallel efficiency 

• Better partitioning of the blocks - work and communication 

• Renumber of the internal cells 

• Allow the building of aerodynamic tables used in flight 

mechanics 

 


