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Computational fluid dynamics methods to simulate flows around geometries in relative
motion are important for the aerospace industry. A meshless method to select stencils
from overlapping and moving point distributions, and a corresponding flow solver capable
of solving the Euler and Navier-Stokes equations on those stencils, have been developed
previously. In order for these methods to be useful in real world applications, their com-
putational efficiency needs to be addressed. This paper extends the meshless method from
previous work in an effort to increase the computational efficiency by means of parallel
programming. The flow solver and the original meshless stencil selection method are pre-
sented. Then, the developed parallel algorithm is described in detail and results are shown
for aerofoils in two dimensions, and for a fighter aircraft configuration as well as a transient
store-release case in three dimensions.

I. Introduction

A demanding task in computational fluid dynamics (CFD) applied to complex geometry is mesh gener-
ation. Conventional mesh generation techniques become difficult to apply, or are not applicable, when used
to calculate flows over bodies in relative motion. Several techniques have been developed in the last few
years to tackle the simulation of flow around bodies with parts in relative motion. One such technique is the
overset or Chimera method.1 Chimera is most often associated with finite volume/difference schemes, and
its functionality is based on overlapping different grids belonging to each body or moving part. First, the
method cuts holes in the background grids to accommodate the overlap, then inter-grid stencils are created,
which provide the communication of flow information between grids.

An alternative technique is the meshless method,2,3 which discretises the domain by using a set of points.
Each point in the domain has a sub-domain of neighbouring points, called a stencil or cloud. These clouds are
then used to calculate the spatial derivatives in the partial differential equations to be solved. The meshless
method is attractive for moving-body problems, as points are allowed to move independent of one another
during a time-dependent simulation.4 The method described in this work is referred to as semi-meshless
because it takes overlapping point distributions from underlying component meshes and uses their original
connectivity as a guide to select the appropriate stencils. This method can be divided into two stages: a
preprocessing stage that selects the required stencils, and a flow solver that uses these stencils to perform
the CFD simulation. Serial versions of the flow solver and the stencil selection tool (called preprocessor from
this point on) have been developed and described in Refs. 4 and 5, and a parallel version of the flow solver
has been presented in Ref. 6. For the preprocessor to be competitive with established CFD techniques, the
computational efficiency needs to be improved.

In this work, an automatic, scalable parallel preprocessing tool for the selection of stencils and a corre-
sponding flow solver are described. The meshless flow solver used to solve the Euler equations is summarised
in Section II and its parallel implementation in Section III. The preprocessor method is presented in Sec-
tion IV, while its parallel implementation is discussed in Section V. Finally, results that demonstrate the
capabilities of the method are shown in Section VI.
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II. Meshless Method

The Euler equations governing inviscid fluid flow can be written in conservative form as

∂w

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0 (1)

where w is the vector of conservative variables to be determined, and f, g and h are the inviscid flux vectors
in the x, y and z directions respectively.

The meshless method used in this work evaluates the derivatives of a function φ at each point i by
interpolating scattered data from the points contained in the associated stencil of the point i (called the star
point from now on). This can be written as
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where i denotes the star point, j represents each of the points in the stencil, ni is the number of points in
the stencil with j = 0 being the star point and aj , bj and cj are coefficients independent of the function φ.
These coefficients, called shape functions, are found using the least-squares method over the points in the
stencil.5

Using this discretisation of the flux derivatives, the Euler equations described in Eq. (1) take the form
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where aj− 1
2
, bj− 1

2
and cj− 1

2
are the shape functions calculated from the polynomial least-squares reconstruc-

tion. The shape functions and the inviscid fluxes are evaluated at the mid-point between the star point
and each of its neighbours for stability of the hyperbolic equations. The fluxes are calculated using the
approximate Riemann solver of Roe.7 Second order accuracy is achieved by reconstructing the left (φL) and
right (φR) states of the Riemann problem as

φL = φi + ψi lij · ∇φi , φR = φj − ψj lij · ∇φj

where lij = 1
2 (xj − xi) is the vector formed half way between the star and neighbouring point, ψ is the slope

limiter of Barth and Jespersen,8 x is the location of the points, and ∇φ denotes the gradient of φ.
Once the right-hand side of Eq. (3) is calculated, the time integration is performed. This is done first by

using an explicit scheme to smooth out the initial flow field

wm+1 = wm −∆τRm (4)

where R is the residual vector, consisting of the right-hand side of Eq. (3) and the superscript m denotes
the time level in pseudo-time τ . Then, a fully implicit method is used to obtain a converged solution

dw

dτ
= −Rm+1 (5)

After linearising the flux residual Rm+1 in pseudo-time, Eq. (5) becomes a system of linear equations to be
solved for the primitive variables p (

1

∆τ

∂w

∂p
+
∂R

∂p

)
∆p = −Rm (6)

where ∆p = pm+1 − pm is the difference between these variables after each pseudo-time step, ∂R
∂p is the

Jacobian matrix of the system and ∂w
∂p is the transformation matrix between conservative and primitive

variables. For the solution of this system to steady-state an approximate form of the Jacobian matrix is
formed, and the generalized conjugate residual method,9 preconditioned with a block incomplete lower-upper
(BILU) factorisation, is used.10 The size of ∆τ is determined by a local time-step estimate.11
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Figure 1. Classification of points across the domain boundary between two processes, P0 and P1.

For time-accurate, unsteady simulations, Eq. (5) must be solved in real-time t, such that

dw

dt
= −Rn+1 (7)

where the superscript n denotes the time level in real-time t. The time integration is the done using a dual
time-stepping method,12 in which Eq. (7) becomes

R∗ =
3wn+1 − 4wn + wn−1

2∆t
+ Rn+1 = 0 (8)

where R∗ is defined as the unsteady residual. This is a non-linear system of equations that cannot be solved
directly. Instead we can view Eq. (8) as a modified pseudo-time steady state problem, which can be solved
iteratively for wn+1 by introducing a derivative with respect to the fictitious pseudo-time τ , as explained in
Ref. 5. Finally, we obtain the following system for the updates((

1

∆τ
+

3

2∆t

)
∂w

∂p
+
∂R

∂p

)
∆p = −

(
3wm − 4wn + wn−1

2∆t
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)
(9)

Further details on the numerical implementation of this meshless method can be found in Ref. 5.

III. Parallel Flow Solver

The parallel implementation of the solver uses single-process-multiple-data (SPMD) programming tech-
niques, in which different processes execute the same instructions on different sets of data. The parallel code
is aimed at achieving a homogeneous domain decomposition, with asynchronous point-to-point communica-
tion between neighbouring processes. Asynchronous communication means that each process can continue
its operations while the parallel communication is being performed. On the other hand, synchronous or
blocking communications pause the program until the parallel communication is complete.

Partitioning of the domain is done using the METIS library.13 Before performing the domain decompo-
sition, connecting edges are formed between all of the points in the domain and their neighbouring points;
the connectivities within each stencil are used to do this. The criteria for the domain decomposition are
to balance the number of points among partitions and to have the least number of edges cut to decrease
communication time.

We classify the points on each process as either interior (which include points on boundaries) or halo
points, as shown in Fig. 1. Halo points are not local to the process but are included in local stencils. These
points are needed to communicate between processes across communication boundaries. They are ordered
so that their variables are updated first and the parallel exchange takes place while the rest of the domain
is being updated.
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Explicit message-passing-interface (MPI) instructions are used for communication between processes to
provide portable parallel execution on distributed, shared, or shared/distributed machines. Non-blocking
commands are used to avoid possible deadlocks, to reduce the overhead associated with buffering and to
allow for asynchronous operation of the code.

When integrating in explicit mode, communication between processes occurs once per iteration. For
implicit integration, using the parallel linear solver, the full Jacobian matrix is divided.14 This way each
process only stores Jacobian matrix data for its local points and the halo points. Due to this partitioning
of the Jacobian matrix, the processes need to exchange data during the implicit integration to perform the
matrix-vector operations required by the iterative linear solver. The preconditioner only uses local points
to reduce memory usage and to avoid parallel communication when forming it. The use of this local BILU
preconditioner has an influence on the convergence behaviour of the linear solver in parallel mode. Results
in Section VI, however, show good convergence for the test cases with a good speed-up when using parallel
processing.

IV. Meshless Preprocessor

The preprocessor described in this work selects stencils automatically from overlapping point distribu-
tions; associated with bodies, which may be moving relative to one another. The point distributions are
obtained from structured or unstructured meshes; and the original connectivity of the input grids is used
as an aid to select the best stencils from the points available. This way the tool works well for isotropic
as well as anisotropic regions, which are usually found close to solid boundaries in CFD problems. The
stencils selected by the preprocessor provide a direct input to the flow solver. The preprocessor and the
solver are designed as two separate tools that can work in coupled mode for moving-body problems. For
brevity, the method described here is for geometry in two dimensions; for details of the implementation in
three dimensions please refer to Ref. 6. This work focuses on the efficiency of constructing these stencils,
using the method presented in Ref. 4.

In broad terms, the preprocessor method can be divided into four stages:

1. Check if the surface elements belonging to the solid boundaries of the different input grids intersect in
any way. If so, the boundaries need to be redefined accordingly.

2. Detect points falling inside solid surfaces as a result of the point distributions overlap, and exclude
(blank) them from the calculation in the flow solver.

3. Select the final stencils for all active points.

4. Check that the selected stencils respect the boundaries i.e. to make sure that no stencil contains points
that lie on the opposite side of a solid boundary.

More details are given in the following.

A. Detecting Boundary Overlaps and Redefining Boundaries

A method of detecting solid boundary overlaps, and procedures to redefine the boundaries havae been
developed and is described are Ref. 6, but so far this stage has not been implemented in the parallel version.
In this work, Stage 1 from above is skipped as there is no boundary overlap in the test cases presented.

B. Blanking Points and Checking Final Stencils

Stages 2 and 4 above, which correspond to blanking the points internal to solid walls and to check that
the selected stencils respect the boundaries, are similar in their implementation. They rely on looking for
intersections between the boundary elements and the initial stencils of all the points in the domain. These
operations are based on the use of higher-dimensional search trees as discussed in Ref. 15. These search trees
allow for fast geometry searches by focusing only on regions that will be of interest. The procedure starts
by forming bounding boxes around all initial stencils from the input domains, as in Fig. 2(a), and around
all boundary elements, as in Fig. 2(b). Then, a search tree containing all stencil bounding boxes is formed.
This tree is traversed with the bounding boxes of boundary elements used as a search region. If intersections
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(a) Resolving vector for a grid
stencil

(b) Bounding box for an internal
point stencil.

(c) Blanking points inside bound-
ary elements.

Figure 2. Examples of bounding boxes over stencils and boundary elements.

between bounding boxes are found, then some of the points in the stencil may lie inside solid walls, or in the
case of the final checks, some points in the final stencils might not respect the boundaries. To test for these
possibilities, intersection algorithms are used. Rays are formed between the star point and all neighbouring
points in the stencil. The code then looks for intersections between the rays and the boundary elements as
in Fig. 2(c), to define which of the points in the stencil, if any, are to be blanked. In the case of the final
checks, these points are removed from the final stencils.

C. Selecting Stencils

Most CFD grids contain anisotropic regions to capture the rapidly changing flow behaviour without having
to greatly increase the total number of grid points. The preprocessor method needs to take into account this
topology when selecting the final stencils in Stage 3 above. The method defines a resolving vector v for each
point in the domain to account for the topology of the original stencils. This vector is formed before the
overlap occurs and points in the direction where the original stencil is the finest. An example can be seen in
Fig. 3(a).

The algorithm then performs a search through all of the points in the domain, labelled i, looking for
intersections with the stencils of other points. The stencil bounding boxes in Fig. 2(a) are used as before.
All of the points labelled j, that intersect the stencil of i, are included in a list of possible candidates for
the final meshless stencil of point i. The sum of the resolving vectors is made, including the resolving vector
of point i to give the resultant resolving direction. This is illustrated in Figs. 3(b) and 3(c). Using this
resultant direction, a new coordinate system is defined, as shown in Fig. 4(a). The basis η is chosen so that
the basis vector η1 lies collinearly to the resultant resolving direction, and η2 lies orthogonal. Setting the
origin of the coordinate system to be the star point, the algorithm calculates the quantities a and b as the
projections of the stencils onto the newly created coordinate system, as shown in Fig. 4(b). It also defines
the coefficients ξ1 and ξ2 as the coordinates of each of the candidate points in basis η. With these quantities,
a merit function ψ is defined, which rates each candidate point in terms of the direction and refinement by
balancing the orthogonality of the points chosen (for refinement) and distance. The merit function is given
by

ψ =
ξ1

2

a2
+
ξ2

2

b2
(10)

Finally, the method uses this merit function to rate the candidates, and select the most appropriate to
form the final stencil by locating them across the quadrants shown in Fig. 4(c). In three dimensions the
process is similar, with three-dimensional bounding boxes surrounding the stencils and boundary elements.

For more details on the stencil selection method in two dimensions please refer to Ref. 4, and for details
of the implementation in three dimensions please refer to Ref. 6.

Sorting of Candidates

After the list of candidates is formed for each point in the domain, the stencils are selected according to the
merit function ψ described before in Eq. (10). For each point in the domain, the method assigns a value of ψ
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(a) Resolving vector for a grid stencil (b) Two anisotropic stencils overlap (c) An anisotropic and a regular stencil
overlap

Figure 3. Definition of resolving vectors.

(a) Defining new coordinate system (b) Choosing a and b using stencil pro-
jections

(c) Quadrants around resolving direc-
tion

Figure 4. Definition of new local coordinate system for merit function.

to each of its candidates. It is then required that the list of candidates is ordered according to these values,
so that the two candidates for each quadrant with the lowest value of ψ are selected for the final stencil.
The problem of sorting lists is well known in the field of computer science. Several algorithms have been
developed to tackle the problem but a major issue with all of them is that their efficiency depends on the
size of the lists to be sorted and how they are arranged initially. For all sorting problems, there is no a-priori
information on how expensive the sorting operation will be for a particular sequence of numbers. In the case
of the stencil selection problem this means two things: first, different sorting algorithms need to be tested
to ensure efficient operation of the software; second, the parallel load balancing is difficult to achieve since
we have no information about the cost of the sorting operation.

In an effort to improve the efficiency of the code, different sorting algorithms are tested. The algorithms
to try are all found in Ref. 16:

• Selection Algorithm: The selection sort algorithm works by successively scanning the array to find the
next smallest element and swapping it with the corresponding element in the correct position in the
queue. The computational cost of this algorithm is fixed as it needs to scan the array the same number
of times, regardless of how the array is originally ordered.

• Insertion Algorithm: While forming the array to be sorted, this algorithm finds the correct position
for each element and then shifts all the candidates with bigger values of ψ one step to the right. The
cost of this algorithm depends on how many elements need to be shifted to store each candidate.

• Bubble Sort Algorithm: This algorithm works by comparing pairs of successive elements, swapping
them if necessary and repeating the operation until no more swaps are required. In the worst case
scenario, this algorithm is as expensive as the selection algorithm, but depending on the initial ordering
of the array it can prove more efficient.

• Shell Sort Algorithm: This algorithm in an extension of the insertion algorithm. It differs in the
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fact that it allows the comparison and exchange of elements that are far apart before finishing with
neighbouring elements.

• Quicksort Algorithm: This algorithm follows a “divide and conquer” strategy. It creates successive
partitions of the array by selecting a pivot. All elements smaller than the pivot are moved before it
and all greater elements are moved after it. The operation is repeated until the array is sorted.

The different sorting algorithms are discussed in more detail in Section VI.D, in terms of the efficiency
of the preprocessor.

V. Parallel Implementation of Preprocessor

The parallel implementation of the preprocessor is designed to work as much as possible with the same
operations of the serial preprocessor described in Section IV. All of these operations rely on the use of search
trees as explained before. The main difficulties found when parallelising the preprocessor are distributing
these search trees among processes and communicating the trees efficiently. Instead of forming one global
search tree and distributing it among processes, the method uses the METIS library13 to subdivide each of
the individual input grids, assigning the same number of points from each grid to each process. From these
assigned points each process then forms its own separate search trees that are communicated at run time.

Ideally, to increase the performance of the parallel stencil selection, each process should be allowed to
work as independently as possible and the work load should be balanced between processes. An immediate
drawback of performing tree searches for the stencil selection, is that it is not possible to have prior infor-
mation about the computational cost of the operations for each individual point. The problem is aggravated
as the candidate points need to be sorted according to the merit function, as explained in Section IV.C.
These considerations make it difficult to correctly load balance the stencil selection problem, as it will be
demonstrated in the results section.

Regardless of the domain decomposition, the parallel preprocessor follows the same four stages described
in Section IV. Stage 3, which corresponds to selecting the final stencils, is modified and divided into the
following operations:

(a) Form the local search trees and perform the local search for candidates, following the same method
described for the serial preprocessor.

(b) Identify the points located on regions of inter-processor overlap, to make sure only information from
relevant points is communicated across processes.

(c) Execute the parallel communication of search trees, coordinates and resolving vectors for the points
identified as relevant.

(d) Perform the remote search for candidates using the information received from other processes.

(e) Select the final stencils from the candidate list.

The parallel versions of the four stages described in Section IV are discussed in more detail below, with
emphasis on Stage 3 where most of the parallel operations are found.

A. Detecting Boundary Overlaps and Redefining Boundaries

The described parallel method currently only works for problems where no overlap of solid boundaries is
found. For this reason, Stage 1 is skipped when running in parallel.

B. Blanking Points and Checking Final Stencils

When running in parallel, each process stores all of the global boundary elements. By doing this, all the
operations related to boundaries can be performed by each process working independently from others.
This is the case for stages 2 and 4. To detect and blank local points that lie inside solid boundaries, each
process autonomously performs the same procedure described in Section IV.B. The final stage in the parallel
preprocessor is checking that the selected stencils are valid and that they respect the boundary elements.
Similar to Stage 2, all processes work independently to check the validity of the selected stencils for their
local points.
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Figure 5. Example of pre-search for two overlapped domains divided among 4 processes.

C. Selecting Stencils

In parallel, the stencil selection procedure can be divided as follows:

Forming Local Search Trees and Performing Local Search

In the first operation above, all processes form bounding boxes for each of the local points in the domain.
Then, search trees are created from these bounding boxes, as described in Section IV, with only local points
taken into account. All processes then perform a search by traversing their local trees to find candidates for
all their local points. This procedure runs independently on each process and is the same used in Section IV.C
to find candidate points.

Identification of Relevant Points to be Communicated

When running in parallel, each process needs to find candidates for all its assigned points by searching
through its local data, but it also needs to find potential candidates that are stored remotely in the other
processes. In order for the parallel method to be efficient, each process needs to store and process as little
remote data as possible. To increase efficiency, before communicating the trees each process identifies a list
of relevant points to be sent to other processes. This means that all processes will perform a preliminary
search for points located in regions of inter-process overlap, thus making sure that only relevant data is
communicated.

Figure 5 shows an example where an aerofoil (grid A in red) overlaps with a rectangular background
grid (grid B in blue) and the job is divided among four processes. The domain decomposition in the figure
is arbitrary but it serves the purpose of showing how the preliminary search works. Each individual grid is
divided into four partitions and the preliminary search will result, for instance, in process 0 identifying the
area marked by the black diagonal lines, as the inter-process region between processes 0 and 2. Points from
grid A, located inside this region are then identified as relevant to be sent to process 2. Process 0 on the
other hand will not send any information about grid A to processes 1 or 3. After the preliminary search is
complete, new search trees are created with the points that are found relevant for communication. These
search trees will be exchanged next.

Parallel Communication of Trees

In the third step, information is exchanged among processes. The data to be communicated includes search
trees, coordinates, bounding boxes and resolving vectors for all the points identified before. In the prepro-
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cessor, the search trees are specialised data structures that store the needed information for each leaf (node)
of the tree and directions on how these leaves connect to other leaves. The total memory size for these
structures can vary depending on the actual arrangement of the tree.

The MPI interface requires a rigorous definition of the data types to be communicated. The basic
predefined MPI data types allow for the communication of bytes, integers, floating point numbers and
characters, as well as user-defined data structures, as long as the memory size of the user-defined structure
is known (and fixed). Since there is no predefined size for the tree data structures used in this algorithm, a
way of representing trees with the predefined MPI data types is needed.

A procedure to pack the skeleton of the trees using two integer arrays and one double array was devised.
One of the integer arrays holds the map of how to traverse the tree, and the other one stores the index of the
nodes. The double array holds the geometric data for the node. The procedure to pack the tree starts from
the root and visits each of the nodes of the tree until it has been traversed entirely. This algorithm, besides
allowing the use of standard MPI data types, reduces the size of the message to be sent when compared to
storing all the nodes with all its children (existing or not). The process is analogous to compacting a full
matrix into a sparse one. To unpack the trees after they are received, the code traverses the first integer
array as a map, and creates nodes using the information stored in the other two arrays.

Remote Search

With the received data, step four calls for each process to perform a search for candidates by traversing the
received remote trees. Any remotely located candidates are added to the candidate list from the previously
performed local search. For the example of Fig. 5, this remote search means that star points located in
process 2 will search through the trees received from the dashed region in process 0, trying to find suitable
candidates.

Final Selection of Stencils

In the last step, each process performs the procedure described in Section IV.C to select the stencils. The
received resolving vectors from the remote candidates are summed with the local vectors to form a final
resultant resolving direction. With it, the new coordinate system is defined and candidate points are assigned
a ψ value from Eq. (10). These candidates are then ordered by increasing value of ψ, and the final stencils
are selected. It is in this stage that the biggest load imbalance is found. Even though all processes are
assigned the same number of points, it is likely that the number of candidates per point is different as well
as the computational cost of the sorting operation.

D. Parallel Transient Simulations

The process of running parallel transient simulations with movable geometry starts with a call to the prepro-
cessor to initialise the simulation. The preprocessor reads the input grids and divides them using the METIS
library in such way that each process stores the same number of points, as it was the case with steady-state
simulations described before. The preprocessor will then perform all the stencil selection operations and
write the stencils to an output file. This file is then read by the flow solver, which performs its own domain
decomposition, as explained in Section III, before solving the governing equations.

After this first iteration, a closed loop starts with successive calls to the preprocessor and flow solver.
At the beginning of each real time-step, the points are moved in space according to the prescribed motion
and the preprocessor is called to re-calculate the new stencils with the method described. The flow solver
then uses these stencils to calculate the flow solution. Both the preprocessor and flow solver perform their
operations based on the initial domain decomposition from the parallel flow solver. This eliminates the need
for input/output (I/O) files while running in coupled mode.

The decision to use the same domain decomposition in the preprocessor and solver was made to remove
the cost of partitioning the domain in each call to the preprocessor and to avoid unnecessary I/O operations.
It was demonstrated in ref. 6 that the flow solver is much costlier in terms of computing time than the
preprocessor. For this reason it was decided to favour the flow solver domain decomposition as an acceptable
compromise. This explains why the preprocessor is designed to work with any type of domain decomposition
given by the solver.
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Figure 6. Flow solution of test case 1.

VI. Results

In this section, the performance of the parallel stencil selection and flow solver are evaluated using
different test cases, both in two and three dimensions. The test cases are academic, but serve the purpose
of demonstrating the capabilities of the method. The first test case is two-dimensional and consists of two
NACA0012 aerofoils in a steady-state simulation. The second case is a bigger steady-state case in three
dimensions, in which a store is overlapped with the grid of a generic fighter geometry. The final test is
a transient three-dimensional case, in which a store is released from a wing geometry and shows the full
capabilities of the parallel preprocessor and flow solver.

A. Two-Dimensional NACA0012 Biplane

In this simple two-dimensional case, two NACA0012 aerofoils are overlapped. The background grid includes
the first aerofoil and contains 18,500 points. The second grid, formed from 17,500 points, contains the other
aerofoil and is positioned over the first grid. The location of the first aerofoil is such that the leading edge
coincides with the origin. The leading edge of the second aerofoil is located at coordinates (0.2c, −1.0c),
where c is the chord length of the aerofoils. The preprocessor and flow solver were run in both serial and
parallel modes with different numbers of processes. The flow conditions for the test case are a freestream
Mach number of 0.755 and 0.016 degrees angle of attack. The test case is shown in Fig. 6(a). In the figure
three shock waves are visible, one on the upper surface of the top aerofoil, one on the lower surface of the
second aerofoil and a strong one in between the two. Figure 6(b) shows the surface pressure coefficient, along
with numerical results from Liao et al.,17 which uses the Chimera method on two overlapping structured
aerofoil grids to solve the Euler equations. The results show good agreement, though there is a slight
difference for the location of the main shock in between the aerofoils.

The performance of the parallel preprocessor is measured by two metrics, memory usage and speed-up.
The cases were run on a system of desktop machines. Figure 7(a) shows the memory usage for each process
when running the preprocessor on one to eight processes. As expected, for the higher number of processes
the total memory consumption increases. This is due to the extra data stored in regions of inter-process
overlap. The memory overhead is manageable however and shows good scalability.

The parallel speed-up for case 1 is shown in Fig. 7(b). Here we can see a super-linear reduction in
calculation times for this particular test case when running on two and four processes. This is due to the
pre-search, performed when generating the communication lists effectively ruling out points that might be
included as candidates otherwise when running in serial mode. This means that the list of candidates per
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(a) Memory usage for the preprocessor for case 1
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(b) Parallel speed-up for the preprocessor for case 1

Figure 7. Parallel efficiency of preprocessor for case 1.

(a) Run times for 2 processes (b) Run times for 4 processes (c) Run times for 8 processes

Figure 8. Load balance for stencil selection for case 1.

point will be smaller, making the sorting of the candidates faster. The highest speed-up shown is when
running in two processes. This can be explained by Fig. 8, where the run times for the stencil selection part
of the preprocessor are shown. This figure gives an indication of the load balance for the preprocessor. When
using two processes for instance (Fig. 8(a)), the work load is well balanced and both processes finished their
operations in about the same time. When running in eight processes on the other hand (Fig. 8(c)), the load
balance is not as good, resulting in some processes finishing faster than the rest. As explained in Section V.C,
this load balance issue is a result of making the preprocessor work with a domain decomposition based on
the connectivity of the individual input grids. There is scope in the future to optimise the partitions to
improve the load balance, thus improving the speed-up.

B. Open Source Fighter with Store

The evaluation of the method continues by analysing a bigger three-dimensional test case. It is a half-model
of a generic fighter aircraft based on publically available data of an F-16 fighter. Details of the geometry are
found in Ref. 18. The second body in the simulation is a store located under the wing of the aircraft. The
aircraft domain is formed of 4.5 million points, while the store domain contains 390,000 points. The flow
conditions for this case are a freestream Mach number of 0.6 and 1.2 degrees angle of attack.
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(a) Memory usage for the preprocessor for case 2
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(b) Parallel speed-up for the preprocessor for case 2

Figure 9. Parallel efficiency of preprocessor for case 2.

(a) Run times for 2 processes (b) Run times for 16 processes

Figure 10. Load balance for stencil selection for case 2.

The test case was run with the parallel preprocessor operating independently from the flow solver. As
explained at the beginning of Section V, the preprocessor divides the domains based on the original connec-
tivity of the input grids. After the selection of the final stencils, they are written to an output file. This file
is then loaded into the flow solver which performs its own domain decomposition.

The preprocessor memory usage and speed performance for this case can be seen in Fig. 9. The results
show that the speed-up for this test case is not as good as with test case 1. When running two processes,
we see an increase in speed of 2.76 when compared with running one process. This improvement, however,
decreases until reaching a speed-up of only 5 when using 16 processes. There are two reasons for this. The
first one is the load balancing as with the aerofoil case. Figure 10 shows the run times for the stencil selection
using 2 and 16 processes. The load balance for two processes is good, resulting in good speed-up as shown
in Fig. 9(b). On the other hand, when using 16 processes it is obvious that the load balancing is not ideal,
as some of the processes finished their tasks much faster, and were idle until the last one finished. When
running on more processes, the time taken in the preliminary search to identify points to be communicated
and in the actual communication increases. This is the second factor on why the parallel efficiency decreases
for this test case. Nevertheless, the speed-up combined with the scalability in terms of memory usage means
the parallel preprocessing method can be applied to bigger cases resembling real industrial applications.

After the preprocessor finishes selecting the stencils, they are written to a file used by the flow solver
as input. The flow solver is the run on a different number of processes ranging from 1 to 16. Figure 11
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Figure 11. Flow results for fighter aircraft case.
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Figure 12. Parallel speed-up of flow solver for case 2.
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(b) Convergence of flow solver for case 2

Figure 13. Parallel flow solver performance.

shows the flow solution for the test case. Here the pressure contours are plotted and streamlines of velocity
are drawn. Figure 12 shows the parallel speed-up per iteration of the flow solver. Here, the advantage of
using asynchronous communication in the code is clear. On average for this test case, the asynchronous
communication proves 10% faster per iteration than the synchronous one, with the difference increasing
as we run in more processes. Figure 13(a) shows the normalized convergence histories for the case. This
test case was run in explicit mode for 100 iterations before changing to implicit integration. In this graph
we see the effects of using a local BILU preconditioner with approximate linear solves, as the convergence
behaviour is different when running on a different number of processors. Figure 13(b) shows that, even
though convergence is somewhat affected, an important reduction in the total calculation times is achieved.
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(a) Pressure contours for case 3 at time 0 (b) Pressure contours for case 3 at time 5

Figure 14. Flow solution for test case 3.
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Figure 15. Average parallel speed-up for a full time-step for case 3.

C. Onera Wing with Store in Transient Mode

To assess the capabilities of the parallel preprocessor and flow solver of performing time-accurate simulations
with bodies in relative motion, a simple store release case is investigated. The case consists of an ONERA
M6 wing with a store located beneath it. The M6 wing is a semi-span wing, with a symmetric aerofoil
section, leading edge sweep angle of 30 degrees, an aspect ratio of 3.8 and a taper ratio of 0.562. The point
distribution for the wing contains 1.2 million points. The store used is the same as in case 2. The initial
location of the store is at 15% mean chord length below the wing, and 62% wing span length from the root.
The store is then moved down in a pre-defined motion, at a vertical speed of ż = −0.1U∞, where U∞ is the
freestream speed. There are 100 time steps performed with ∆t = 0.05. The flow conditions for this test case
are a Mach number of 0.5 and an angle of attack of 3 degrees.

The pressure contours at times t = 0 and t = 5 are shown in Fig. 14. The influence of the store on the
pressure field around the wing is noticable at the beginning of the calculation and as expected, this influence
reduces as the simulation progresses. Figure 15 shows the average parallel speed-up for a full time-step of
the simulation. This is the total time needed to calculate one iteration of the preprocessor-solver loop as
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explained in Section V.D. The computational cost per time-step of the flow solver is on average about 5
times higher than the cost of the preprocessor. This justifies the decision of making the preprocessor work
with the flow solver domain decomposition. In the future, however, different domain decomposition methods
for the preprocessor will be investigated, as well as methods for changing the load balance of the flow solver
as the transient simulations progress.

Table 1. Profiling of the code.

Parallel Preprocessor Operation
Percentage of total

CPU time for case 1
Percentage of total

CPU time for case 2

Blanking points 0.7 % 2.5 %

Local candidate search 4.9 % 2.5 %

Preliminary search 3.9 % 3.2 %

Parallel communication 0.2 % 0.9 %

Remote candidate search 2.0 % 5.3 %

Sorting candidates and selecting stencils 85.3 % 79.4 %

Checking final stencils 3.0 % 6.2 %

Table 2. Speed-up of different sorting algorithms.

Test case Selection sort Insertion sort Bubble sort Shell sort Quicksort

Case 1 1.0 2.8 2.8 7.1 9.6

Case 2 1.0 2.8 2.9 7.6 9.0

D. Profiling the Code and Sorting Algorithms

The performance of the different operations of the preprocessor was evaluated by profiling the code for
the first two test cases above. The CPU time per operation was measured and the average of five runs is
taken. Table 1 shows the relative computational cost of the preprocessing operations when running two
processes. From the results it is clear that the most expensive operation of the preprocessor is the sorting
of the candidates according to the merit function.

In an effort to improve the efficiency of the sorting operation, the different sorting algorithms described in
Section IV.C were tested. Table 2 shows the speed-up compared to the most expensive algorithm (selection
sort) for test cases 1 and 2. The bubble sort and the insertion algorithms proved to be of similar efficiency,
with both of them being about 3 times faster than the selection algorithm. There is an increase in speed
of more than 7 times using the shell sort algorithm in respect to the least efficient one, while the quicksort
method is more than 9 times faster than the selection algorithm.

VII. Conclusions and Future Work

The development of a parallel automatic preprocessing tool has been presented. The preprocessor takes
different overlapping grids that can be stationary, or moving relative to one another, and selects meshless
stencils which are used by the flow solver to solve the governing equations. The method applies algorithms
that allow the use of standard MPI routines to communicate the search trees needed by the preprocessor
and employs asynchronous communication in the flow solver to improve the speed-up.

Three test cases were computed, showcasing the method as a powerful tool for applications where different
component grids can move in relation to one another. The parallel preprocessor and flow solver prove to be
efficient in terms of speed-up and memory usage, even though the preprocessor currently does not have an
efficient load balancing method. Different algorithms were tested in an effort to increase the performance of
the candidate sorting operation which turns out to be the most expensive operation of the stencil selection.
The quicksort algorithm was found to be the most appropriate from the algorithms tested.
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In future work, the parallel preprocessor needs to address the problem of boundary redefinition when solid
walls from different input grids intersect. Also, better load balancing techniques for the parallel preprocessor
are being investigated in an effort to improve efficiency further.
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