www.imperial.ac.uk/aeroelastics

Model Reduction in Flexible-Aircraft Dynamics with Large Rigid-Body Motion

Henrik Hesse and Rafael Palacios

Department of Aeronautics, Imperial College London

SDM Conference 2013 – Boston, USA – 11 April 2013

Flexibility = Barrier to high efficiency

- Next-generation aircraft design requires incorporation of flexibility effects on vehicle dynamics
- Aeroelastic modeling of maneuvering flexible aircraft:
 - > Coupling effects between aircraft flexibility and flight dynamics?
 - Fidelity of the aerodynamic solution?
 - > Can we include geometric nonlinearity?

Modeling of Flexible Aircraft Dynamics

- Next-generation aircraft design requires incorporation of flexibility effects on vehicle dynamics
- Aeroelastic modeling of maneuvering flexible aircraft:
 - Coupling effects between aircraft flexibility and flight dynamics?
 - > Fidelity of the aerodynamic solution?
 - > Can we include geometric nonlinearity?

CFD & CSD

3D UVLM & nonlinear beam models

DLM & mean axes

2D aerodynamics & nonlinear beam models

- Time-domain methods provide answers, but are computationally expensive with large system sizes
 - > Required model fidelity and model reduction for control synthesis and load calculations?

Aeroelastic system for maneuvering aircraft

¹Murua J, Palacios R, Graham JMR, 2012. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics, JPAS 55.

Aeroelastic system for maneuvering aircraft

\mathcal{U}_A Perturbation flexible-body dynamics y_A Composite beam elements on a moving body- \mathcal{U}_{Φ} \succ **AERODYNAMICS** attached reference frame Linearisation of **structural** DoF around nonlinear \succ trim configuration η_0 Body-fixed Local FoR $F \circ R$ $\Phi^{\top} \bar{Q}_{ext}$ FLEXIBLE-BODY (q, β) **DYNAMICS** Inertial FoR **Equation of motion** Structural DoF **Rigid-body DoF** $M(\eta_0) \begin{cases} \ddot{\overline{\eta}} \\ \dot{\beta} \end{cases} + \overline{C}(\eta_0, \beta) \begin{cases} \dot{\overline{\eta}} \\ \beta \end{cases} + \overline{K}(\eta_0, \beta) \begin{cases} \overline{\eta} \\ 0 \end{cases} = \overline{Q}_{ext}(\overline{\eta}, \dot{\overline{\eta}}, \beta, \zeta)$ $\beta = \begin{cases} v_A \\ \rho_A \end{cases} \qquad \qquad \overline{\eta} = \begin{cases} \overline{R}_A \\ \overline{\Psi} \end{cases}$

Aeroelastic system for maneuvering aircraft

 $\Phi^{T}M(\eta_{0})\Phi \left\{ \begin{array}{c} \ddot{q} \\ \dot{\beta} \end{array} \right\} + \Phi^{T}\overline{C}(\eta_{0},\beta)\Phi \left\{ \begin{array}{c} \dot{q} \\ \beta \end{array} \right\} + \Phi^{T}\overline{K}(\eta_{0},\beta)\Phi \left\{ \begin{array}{c} q \\ 0 \end{array} \right\} = \Phi^{T}\overline{Q}_{ext}\left(\overline{\eta},\overline{\eta},\beta,\zeta\right)$

Aeroelastic system for maneuvering aircraft

$$\Delta \Gamma^{n+1} = A \Delta \Gamma^n + B_S \Phi \Delta u_{\Phi}^n + B_A u_A^n$$
$$\Delta y_A^n = \Phi^T \left(C \Delta \Gamma^n + D_S \Phi \Delta u_{\Phi}^n + D_A u_A^n \right)$$

Linearised UVLM

- Small deformations and velocities \geq
- Low speed maneuvers \succ

Balanced truncation of the aeroelastic system

- Large aerodynamic system ideal for balanced truncation
 - \succ Few inputs and outputs transmitted by large system (10⁴)

$$\Delta \Gamma^{n+1} = A \Delta \Gamma^n + B_S \Phi \Delta u_{\Phi}^n + B_A u_A^n$$
$$\Delta y_A^n = \Phi^{\mathrm{T}} \left(C \Delta \Gamma^n + D_S \Phi \Delta u_{\Phi}^n + D_A u_A^n \right)$$

Balanced truncation of the aeroelastic system

- Large aerodynamic system ideal for balanced truncation
 - \succ Few inputs and outputs transmitted by large system (10⁴)
 - Balance aerodynamic states according to input and output energy (using controllability and observability Gramians)

$$\Delta \Gamma_B^{n+1} = \mathbf{T}^{-1} A \mathbf{T} \Delta \Gamma_B^n + \mathbf{T}^{-1} B_S \Phi \Delta u_{\Phi}^n + \mathbf{T}^{-1} B_A u_A^n$$
$$\Delta y_A^n = \Phi^{\mathrm{T}} \left(\mathbf{C} \mathbf{T} \Delta \Gamma_B^n + D_S \Phi \Delta u_{\Phi}^n + D_A u_A^n \right)$$

Balanced truncation of the aeroelastic system

- Large aerodynamic system ideal for balanced truncation
 - \succ Few inputs and outputs transmitted by large system (10⁴)
 - Balance aerodynamic states according to input and output energy (using controllability and observability Gramians)
 - Truncate least controllable and observable states

Aeroelastic system for aircraft analysis

- 1. Aeroelastic system for maneuvering flexible aircraft
 - Suitable for large rigid-body angular velocities
 with resulting coupling terms in the elastic deformations
 - Dynamic load calculations due to gust and maneuver, real-time simulations, optimisation, and control

- 2. Monolithic framework of the integrated aeroelasticity and flight dynamics
 - Control synthesis, stability analysis, and optimisation
 - Suitable for **clamped** problems or **linear** rigid-body motions

$$\Delta x^{n+1} = A_{AS} \Delta x^n + B_{AS} u^n_{AS}$$
$$\Delta y^n_{AS} = C_{AS} \Delta x^n$$

Numerical studies

- 1. Goland wing with control surfaces
 - Verification of the linearized aeroelastic approach
 - Demonstration of balanced truncation on monolithic framework
 - Robust control synthesis based on ROM
- 2. Representative HALE aircraft
 - Insight into the coupling effects between aeroelastic and rigid-body modes
 - ROM of the maneuvering aircraft subject to aileron inputs
 - Generic approach for aircraft design

Goland wing

- Benchmark for aeroelastic calculations (Goland, 1945)
- Relatively stiff and low aspect-ratio wing
- Flutter speed using 16 x 26 bound panels (4550 states)
 - $\blacktriangleright \text{ Present approach: } V_f = 169 \text{ m/s} \qquad \omega_f = 70 \text{ rad/s}$
 - > Murua et al. (2010): $V_f = 165 \text{ m/s}$ $\omega_f = 72 \text{ rad/s}$
 - ➢ Wang et al. (2006): V_f = 164 m/s

Goland wing characteristics	
Aspect ratio	3.33
Elastic axis (from le)	33 %
Center of gravity (from le)	43 %
Mass per unit length	35.71 kg/m
Torsional rigidity	0.99×10 ⁶ N⋅m ²
Bending rigidity	9.77×10 ⁶ N⋅m ²

Hesse H, Palacios R, 2012. Consistent Structural Linearisation in Flexible-Body Dynamics with Large Rigid-Body Motion. Computers and Structures 110-111.

Comparison with nonlinear time-marching solution

Goland wing

- Benchmark for aeroelastic calculations (Goland, 1945)
- Relatively stiff and low aspect-ratio wing
- Flutter speed using 16 x 26 bound panels (4550 states)
 - > Present approach: $V_f = 169 \text{ m/s}$ $\omega_f = 70 \text{ rad/s}$
 - > Murua et al. (2010): $V_f = 165 \text{ m/s}$ $\omega_f = 72 \text{ rad/s}$
 - ➢ Wang et al. (2006): V_f = 164 m/s

Hesse H, Palacios R, 2012. Consistent Structural Linearisation in Flexible-Body Dynamics with Large Rigid-Body Motion. Computers and Structures 110-111.

Model reduction for the Goland wing

 Balanced truncation of the SISO aeroelastic system at V = 180 m/s with 4550 states with aileron input and tip deflection as output

imperial College

London

Control synthesis for the Goland wing

- Robust control synthesis using H_{∞} for suppression of structural vibrations
- Demonstrate flutter suppression of the Goland wing at V=180 m/s

Impérial College

London

Model reduction enables use of higher fidelity tools to reduce uncertainties

Numerical studies

- 1. Goland wing with control surfaces
 - Verification of the linearized aeroelastic approach
 - Demonstration of balanced truncation on monolithic framework
 - Robust control synthesis based on ROM

2. Representative HALE aircraft

- Insight into the coupling effects between aeroelastic and rigid-body modes
- ROM of the maneuvering aircraft subject to aileron inputs
- Generic approach for aircraft design

Representative HALE UAV

Murua J, Palacios R, Graham JMR, 2012. **Open-Loop Stability and Closed-Loop Gust Alleviation on Flexible Aircraft Including Wake Modeling**, AIAA 2012-1484. Hesse H, Murua J, Palacios R, 2012. **Consistent Structural Linearisation in Flexible Aircraft Dynamics with Large Rigid-Body Motion**, AIAA 2012-1402.

Aeroelastic system for aircraft analysis

- 1. Aeroelastic system for maneuvering flexible aircraft
 - Suitable for large rigid-body angular velocities with resulting coupling terms in the elastic deformations
 - Dynamic load calculations due to gust and maneuver, real-time simulations, optimisation, and control

- 2. Monolithic framework of the integrated aeroelasticity and flight dynamics
 - Control synthesis, stability analysis, and optimisation
 - Suitable for **clamped** problems or **linear** rigid-body motions

$$\Delta x^{n+1} = A_{AS} \Delta x^n + B_{AS} u^n_{AS}$$
$$\Delta y^n_{AS} = C_{AS} \Delta x^n$$

Aerodynamic part of modeshapes

Open-loop response of maneuvering HALE UAV

Stiff configuration with σ = 1000

Imperial College

London

Open-loop response of maneuvering HALE UAV

Imperial College

London

ROM response of maneuvering HALE UAV

ROM response of maneuvering HALE UAV

Generic approach?

- $L\infty$ error norm of flight dynamic response
 - > Aeroelastic framework allows automatic exploration of ROM
 - Inclusion of unnecessary elastic modes harms the balanced truncation of the aerodynamic system
 - Generic approach for range of parameters, e.g. stiffness and flight speed

Model reduction by three orders of magnitude!

Concluding remarks

- ROM of an integrated framework for the analysis of very efficient aircraft in time domain
- Approach provides an alternative to frequency-based methods at a similar system size, but:
 - large trim deformations
 - > includes coupling effects between aeroelastic and rigid-body dynamics response
 - captures the unsteadiness of the 3D flow
- Ideal for robust control synthesis, load calculations and real-time simulations of next-generation aircraft
 - Goland wing
 - > Representative HALE aircraft

www.imperial.ac.uk/aeroelastics

Model Reduction in Flexible-Aircraft Dynamics with Large Rigid-Body Motion

Henrik Hesse and Rafael Palacios Department of Aeronautics, Imperial College London

Special thanks to EPSRC and Dr. Murua (University of Surrey)

SDM Conference 2013 – Boston, USA – 11 April 2013