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Flexibility = Barrier to high efficiency

» Next-generation aircraft design requires incorporation of

. . . AERODYNAMICS
flexibility effects on vehicle dynamics
» Aeroelastic modeling of maneuvering flexible aircraft:
» Coupling effects between aircraft flexibility and flight dynamics? CONTROL, LOADS, REAL-TIME
> Fidelity of the aerodynamic solution?
> Can we include geometric nonlinearity? : FLEXIBLE-BODY
DYNAMICS

SUGAR Volt (Boeing) X-HALE (UMich)
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Modeling of Flexible Aircraft Dynamics

» Next-generation aircraft design requires incorporation of

flexibility effects on vehicle dynamics

» Aeroelastic modeling of maneuvering flexible aircraft:

» Coupling effects between aircraft flexibility and flight dynamics? 0

» Fidelity of the aerodynamic solution?

CFD & CSD
» Can we include geometric nonlinearity? .

3D UVLM & nonlinear
O beam models

DLM & mean axes
(8]

2D aerodynamics &
nonlinear beam models

- Time-domain methods provide answers, but are computationally expensive with large system sizes

> Required model fidelity and model reduction for control synthesis and load calculations?
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Aeroelastic system for maneuvering aircratt

uA
A" = AAT" + B ®Aul, + B,u'; l
Ay; =@ (CAT" +DPAu, +D,u})

Ya
AERODYNAMICS

Linearised UVLM!'

» Small deformations and velocities 4
> Low speed maneuvers 0

Bound Vortex Ring
3 FLEXIBLE-BODY %T 9
(a. 9) DYNAMICS Qeat

"~~~ Wake Vortex Ring
Corner Points

"Murua J, Palacios R, Graham JMR, 2012. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics, JPAS 55.
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Aeroelastic system for maneuvering aircratt

u

Perturbation flexible-body dynamics l !

» Composite beam elements on a moving body- Ya

AERODYNAMICS
attached reference frame

> Linearisation of structural DoF around nonlinear

trim configuration n,

<

' FLEXIBLE-BODY / TA
(g, ) DYNAMICS ¢ Qea

Equation of motion Rigid-body DoF  Structural DoF

M(770){;’3}+5(no,ﬂ){Z}+l?(no,ﬂ){Z}=ém(ﬁ,ﬁ,ﬂ,e”) ﬂ={:)‘1} ﬁ={§_f}




Imperial College
London

u

Perturbation flexible-body dynamics l !

» Composite beam elements on a moving body- Ya

AERODYNAMICS
attached reference frame

> Linearisation of structural DoF around nonlinear

trim configuration n,

» Truncate number of generalised coordinates

<

passed to the aerodynamic system

FLEXIBLE-BODY / TA
(Qaﬁ)\ DYNAMICS (I) Qemt

Equation of motion in modal form

"M (7,)® {g}Hbe(no,ﬂ)cb {;}Nﬁ?(ﬂo,ﬂ)cb {q}ﬂlfém (7.7.8.¢)
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Aeroelastic system for maneuvering aircratt

uA
linear(roduced) B~ """ """ 79
A= AAT" + By®Auy, + B u, : S:J”besirs i;emuce )
|
Ay =@T (cArn + D, DAuj), + DAM;;) Uy,

AERODYNAMICS

I
I
I
Linearised UVLM I
- —

» Small deformations and velocities

» Low speed maneuvers

(q, B) FLEXIBLE-BODY D' Qort

DYNAMICS

Perturbation flexible-body dynamics

o ()0 { L+ Cln. ) |30 K50 (0|00, (74.5.0)
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Balanced truncation of the aeroelastic system

« Large aerodynamic system ideal for balanced truncation

» Few inputs and outputs transmitted by large system (10%)

Ug

1"

Ya

EEEN)  AcroDYNAMICS D

r

A" = AAT" + B.®Au”, + B,u"
Ay: =®"(CAT" + Dy@Auj +D,u’)
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Balanced truncation of the aeroelastic system

« Large aerodynamic system ideal for balanced truncation
» Few inputs and outputs transmitted by large system (10%)

» Balance aerodynamic states according to input and output energy (using

controllability and observability Gramians)

AU =T ATAT, +T B, ®Au), +T "B u';
Ay) =@ (CTAT + D;@Auj +D,u’)

AERODYNAMICS

TT,=T
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Balanced truncation of the aeroelastic system

« Large aerodynamic system ideal for balanced truncation

» Few inputs and outputs transmitted by large system (10%)

» Balance aerodynamic states according to input and output energy (using

controllability and observability Gramians)

» Truncate least controllable and observable states

1"

“ay Ya A =T ATAT HT'B.dA" +T'B.u"
B B S (4] A"A

AERO-

- DYNAMICS ‘
Ay) =@ (CTAT + D;@Auj +D,u’)
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1. Aeroelastic system for maneuvering flexible aircraft : Linear (reduced) i |
: subsystem I
» Suitable for large rigid-body angular velocities | Y T Ya :
. . . . . . l
with resulting coupling terms in the elastic deformations B AR _
» Dynamic load calculations due to gust and maneuver,
real-time simulations, optimisation, and control
FLEXIBLE-BODY
(q! d) DYNAMICS (I)T Qegjt
2. Monolithic framework of the integrated aeroelasticity and flight dynamics = |:xT ‘ AT ]T
- A S

» Control synthesis, stability analysis, and optimisation

» Suitable for clamped problems or linear rigid-body motions
Ax™ = A sAX" + B ity
Ays = C e Ax"
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Goland wing with control surfaces

1.

> Verification of the linearized aeroelastic approach
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framework

> Robust control synthesis based on ROM

2. Representative HALE aircraft

Insight into the coupling effects between aeroelastic and

>

rigid-body modes
> ROM of the maneuvering aircraft subject to aileron inputs

» Generic approach for aircraft design
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Benchmark for aeroelastic calculations (Goland, 1945) Goland wing characteristics

- Relatively stiff and low aspect-ratio wing Aspect ratio 3.33
Elastic axis (from le) 33 %
 Flutter speed using 16 x 26 bound panels (4550 states) Center of gravity (from le) 43 %
» Present approach: V=169 m/s  w,=70rad/s Mass per unit length 35.71 kg/m
Torsional rigidity 0.99x108 N-m?
» Murua et al. (2010): V,=165m/s w;= 72 rad/s
( ) ' ' Bending rigidity 9.77x108 N-m?
» Wang et al. (2006): V,=164 m/s -
« Comparison with nonlinear time-marching solution V = 140 m/s
x 107 —oa— nonlinear, w=15 rad/s
= 4l L ' _____________ . |—#—nonlinear, w=30 rad/s
£, . |- — — state-space
-
\’_’ﬂ\ o Db R
A 5
D
Hﬁ _______________________________________________________________
o
/ = I N SO AN A N N 3 AN
<7 o=ldegssin(ar) 2 ,
.83 S afete e R R B
n
\/ 0 0.1 0.2 0.3 0.4 0.5

time [s]

Hesse H, Palacios R, 2012. Consistent Structural Linearisation in Flexible-Body Dynamics with Large Rigid-Body Motion. Computers and Structures 110-111.
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Benchmark for aeroelastic calculations (Goland, 1945)

Relatively stiff and low aspect-ratio wing State-space system predicts high

* Flutter speed using 16 x 26 bound panels (4550 states) i frequency aeroelastic response
» Present approach: Vi=169 m/s w;= 70 rad/s But: large system size obstacle for
> Murua et al. (2010): V,=165m/s  w,=72rad/s ‘ effective aircraft design
» Wang et al. (2006): V,=164 m/s - -

Comparison with nonlinear time-marching solution V = 180 m/s

0.015

nonlinear
— — — state-space

0.01

0.005

wing tip deflection [m]

0 =1deg-sin(ar) ~0.01

/ @ 0,005k S N

<1 85 | | | i i 5
\\/ 0 0.05 0.1 0.15 0.2 0.25 0.3

time [s]

Hesse H, Palacios R, 2012. Consistent Structural Linearisation in Flexible-Body Dynamics with Large Rigid-Body Motion. Computers and Structures 110-111.
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« Balanced truncation of the SISO aeroelastic system at V =180 m/s with 4550 states

with aileron input and tip deflection as output

----- 8 states ---e 12 states

magnitude [dB]

-60
0

phase [deg]

|
0 0.5 1 1.5 2 2.5 3
reduced frequency, k
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» Robust control synthesis using He for suppression of structural vibrations

« Demonstrate flutter suppression of the Goland wing at V=180 m/s

5 . : ! O open-loop
§ R o closed-loop, n, =2
I T R « closed-loop, n, =40
s o '
S 3h g
= ;
>k o B ]
@ :
£ :
[@)] 1 e @ ______________________________________________________
©
g o o . . m|

0 ol i - i

-20 -15 -10 -5 0

real [rad/s]

Model reduction enables use of higher fidelity
tools to reduce uncertainties
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Goland wing with control surfaces

1.

> Verification of the linearized aeroelastic approach
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framework

» Robust control synthesis based on ROM

2. Representative HALE aircraft

Insight into the coupling effects between aeroelastic and

>

rigid-body modes
> ROM of the maneuvering aircraft subject to aileron inputs

» Generic approach for aircraft design
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Representative HALE UAV

1 125 m . HALE model characteristics
A g 137 m
20 deg (T~ - N \ Aspect ratio 16
o T
\ i \"ﬁ Elastic axis (from le) 50 %
¢ d - 0 0
2m 0.75- B Center of gravity (from le) 50 %
Elevator, 0.25 m - 5m . Mass per unit length 0.75 kg/m
. 4.1 m Torsional rigidity 10x10%N-m?2
Bending rigidity 20x104N-m?
- Aileron., 4 m x 0.25 m . Aileron, 4 m x 0.25 m
J/ . N Bound panels: 632
Y/ ] J=-—& | 1m

! Wake panels: 1975

(wake length 20 m)

Payload, 50 kg

Free-stream velocity: 30 m/s with time step 0.02 s

s

o

Flexible main wing

Rigid fuselage and T-tail

Murua J, Palacios R, Graham JMR, 2012. Open-Loop Stability and Closed-Loop Gust Alleviation on Flexible Aircraft Including Wake Modeling, AIAA 2012-1484.
Hesse H, Murua J, Palacios R, 2012. Consistent Structural Linearisation in Flexible Aircraft Dynamics with Large Rigid-Body Motion, AIAA 2012-1402.
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1. Aeroelastic system for maneuvering flexible aircraft : Linear (reduced) |
: subsystem I
» Suitable for large rigid-body angular velocities | Y T Ya :
. . . . . . l
with resulting coupling terms in the elastic deformations B AR _
» Dynamic load calculations due to gust and maneuver,
real-time simulations, optimisation, and control
FLEXIBLE-BODY
(q d) DYNAMICS (I)T Qegjt

2. Monolithic framework of the integrated aeroelasticity and

flight dynamics

» Control synthesis, stability analysis, and optimisation

» Suitable for clamped problems or linear rigid-body motions

Ax" = A A" + B
Ayfxs — CASAxn
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Goupled aeroelastic/flight dynamic stability

Aerodynamic
modes

¢ oc[le2,1e3], Ao=1e2
e 0¢e[10,90], Ac=10

o e [3,9], Ao=1
o oe[1,2], Ao=0.2
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Open-loop response of maneuvering HALE UAY

Elevator, 0.25 m

N

5m

F

]
.

10 m

Aileron, 4 m x 0.25 m

|

Tm

Jhx

Aileron, 4 m x 0.25 m

_‘F_P ‘

Yy =20

|

Stiff configuration with o = 1000

Payload, 50 kg

Aileron input [deq]

5

. right aileron
Control surface input g

A

0 5 10 \ 15

Time [s] left aileron
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. right aileron
Control surface input g

Elevator, 0.25 m 5m = ™~ R
N ok S '

; Jm z,
k)
E = 1 L

10 m 0 5 10 N\, 15
Time [s] left aileron
Aileron, 4 m x 0.25 m X Aileron, 4 m x 0.25 m
| A by
Y — V=& [ T 1m System size:
* i
Payload, 50 kg 3239 aerodynamic states

1068 structural states

Flexible configuration with o = 2

% ~_ T
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Aeroelastic system for maneuvering aircratt

Linearised UVLM I Linear (reduced)
: subsystem

Ug

A" = AAT" + B ®Au), + B,u';
Ay; =®"(CAT" + D@Auy +D,u})

AERODYNAMICS

System size:
3239 aerodynamic states

1068 structural states

(q, B) FLEXIBLE-BODY D' Qort

DYNAMICS

Perturbation flexible-body dynamics

W ()0 { L+ Cln.p) |30 K p)0 (0|00, (7.4.5.0)
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ROM response of maneuvering HALE UAV

Full-order with 3239 states

Os

y [m]

-+ 1l

x [m]
ROM with 4 states
t=4.95 ——— —— t:DS
15+
10+
5_
E ol
-
-10
151 | | |
-150 -100 -50

x [m]
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ROM response of maneuvering HALE UAV

Mode 8

Mode 11

Reduce number of free-free modes

norm. wing tip deflection

full-order

0.02

0.01

04

-0.01

— — — 8 modes
o - - 11 modes
o 12 modes

-0.02
0

roll angle [deg]

0.08
0.06
0.04

0.021---

-0.02
-0.04
-0.06

full-order
— — — 8 modes

11 modes
12 modes
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« Leo error norm of flight dynamic response
> Aeroelastic framework allows automatic exploration of ROM

> Inclusion of unnecessary elastic modes harms the balanced truncation of the

aerodynamic system

» Generic approach for range of parameters, e.g. stiffness and flight speed

o=2 o=1000
3 —10° S —10°
© 18 m© 18
w o |
RS 16 _10-0.5 o 16: _10-0.5
% 14 g 14
c 12 g 12
3 10 10710 3 10
g 8 g
S 6 1015 5 6
g 4 g
2 2
g 10-2.0 g
= 8 10 12 14 16 18 c 8 10 12 14 16 18
number of free=free modes number of free=free modes

Model reduction by three orders of magnitude!
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« ROM of an integrated framework for the analysis of very efficient aircraft in

time domain

« Approach provides an alternative to frequency-based methods at a similar

system size, but:

» large trim deformations

» includes coupling effects between aeroelastic and rigid-body dynamics response

» captures the unsteadiness of the 3D flow

» Ideal for robust control synthesis, load calculations and real-time

simulations of next-generation aircraft
» Goland wing

> Representative HALE aircraft
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