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A critical review of the numerical approximations made in flexible air-

craft dynamics modeling is presented. The baseline model is a geometrically-

exact composite beam model describing the flexible-body dynamics which

are subject to aerodynamic forces predicted using the unsteady vortex-

lattice method (UVLM). The objectivity of the beam formulation is first

investigated for static problems with large nodal rotations. It is found that

errors associated with non-objectivity of the formulation are minimized to

negligible levels using quadratic (3-noded) elements. In addition to this,

two force calculation methods are presented and compared for the UVLM.

They show subtle but important differences when applied to unsteady aero-

dynamic problems with large displacements. Nonlinear static aeroelastic

analysis of a very flexible high-altitude long-endurance (HALE) wing is

also carried out, and time-marching analysis is applied to the Goland wing

in order to predict to the response at, and around, the flutter velocity. Con-

clusions drawn from the studies in this work work are directly applicable

in the identification of appropriate modeling strategies in nonlinear flexible

aircraft flight dynamics simulations.

Nomenclature

A panel area, m2

A aerodynamic influence coefficient matrix

b semi-chord, m

∆b panel span, m
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C constant sparse matrix

Cd sectional drag coefficient

CD wing drag coefficient

Cl sectional lift coefficient

CaB linear transformation matrix from basis B to basis a

c chord, m

∆c panel chord, m

D panel drag contribution, N

f force, N

g acceleration due to gravity, m/s2

h plunge displacement, m

K number of panels

k reduced frequency

L panel lift contribution, N

l vortex segment vector, m

m moment, N·m
M number of chordwise panels

M mass matrix

N number of spanwise panels

Na number of nodes in aerodynamic surface grid

Ns number of nodes in structural model

n̂ panel normal vector

P orthogonal projection operator

q column matrix of structural degrees of freedom

Q column matrix of generalized nodal forces

r column matrix of structural residuals

R beam nodal displacement, m

t time, s

∆t time step, s

v velocity of body-fixed frame, m/s

w column matrix of downwash due to inputs

U velocity, m/s

U∞ free-stream velocity magnitude, m/s

Uext column matrix of external velocities, m/s

Uf flutter velocity, m/s

α angle of attack, rad

β flap angle, rad

2 of 25

D
ow

nl
oa

de
d 

by
 A

nd
re

a 
D

a 
R

on
ch

 o
n 

M
ay

 9
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
16

34
 

 Copyright © 2013 by Robert J. S. Simpson and Rafael Palacios. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



Γ circulation, m2/s

Γsys column matrix of panel circulation strengths

η column matrix of flexible-body-dynamic degrees of freedom

ζ aerodynamic grid node, m

ζ column matrix of aerodynamic grid nodes

λ wake wavelength, m

ξ cross-sectional coordinates, m

ρ∞ free-stream air density, kg/m3

χ quaternion

τ̂ panel tangential vector

φ velocity potential

Ψ Cartesian rotation vector, rad

ω angular velocity of body-fixed frame, rad/s

Ω angular velocity of material frame, rad/s

Subscript

i chordwise index

j spanwise index

Superscript

(•̇) time derivative

(•̂) unit vector

(•̄) per unit length

(•)? pertaining to the wake

(•̃) skew-symmetric matrix

I. Introduction

This work seeks to address various numerical issues that arise in the nonlinear time-

domain analysis of very flexible aircraft dynamics. Such analysis was deemed necessary

following the Helios mishap report,1 which found that uncoupled linear treatment of a

high-altitude long-endurance (HALE) aircraft’s aeroservoelastic system was inadequate for

predicting its dynamic behavior. Consequently, the coupled nonlinear analysis of flexible

aircraft dynamics has been the focus of much research. Recent efforts have focused on cou-

pling nonlinear beam formulations for structural dynamics with potential-based unsteady

aerodynamics,2–6 and a similar approach is followed here.

HALE aircraft primary structures are generally slender and may exhibit nonlinear de-

formations, even in trim.7 Hence, nonlinear beam theories that include rigid-body degrees-
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of-freedom are often used in flexible aircraft flight dynamics (FAFD) analysis.2–6 A di-

rect comparison between the available beam theories was presented by Palacios et al.8 In

displacement-based formulations, difficulties associated with interpolating rotations can ad-

versely affect the accuracy of solutions provided by beam models.9 These errors may be

significant, particularly in a FAFD context, hence they are investigated here.

Low-to-medium fidelity aerodynamic models are favored for low-speed FAFD analysis

due to their modest modeling effort and computational cost relative to higher-order, high-

fidelity models based on RANS equations. In particular, unsteady thin-airfoil theory10,11

is a two-dimensional linear theory in which the effect of shed vorticity is captured by a

relative few state variables. This allows monolithic formulations of the aircraft aeroelastic

problem; hence, two-dimensional finite-state aerodynamics have been used extensively in

FAFD analysis.2,3, 5, 6 However, such approaches lack the ability to capture finite-wing effects,

or the cross-influence of multiple surfaces and their wakes.

The unsteady vortex-lattice method12 (UVLM) is a three-dimensional, geometrically-

nonlinear method that can be used to calculate the unsteady aerodynamic loads on aircraft

undergoing large dynamic deformations. In contrast to the doublet-lattice method13 (DLM)

it is formulated in the time-domain, and the non-penetration boundary condition is enforced

on the instantaneous deformed aircraft geometry. Finite-wing effects, large-deformations,

and cross-influence of multiple lifting-surfaces can be captured with this method. The so-

lution procedure leads to the creation of a shed wake, which may be allowed to evolve as a

free-wake according to Helmholtz’s laws of vortex motion. Hence, the UVLM is also suitable

for, at least, the preliminary analysis of aerodynamic interference problems,14 and has been

used to study wake-tail interference effects on the dynamics of HALE aircraft.15

There are some numerical aspects of the UVLM that are occasionally overlooked when

the method is applied. Linear methods in aeroelasticity focus on lift forces and details

of induced-drag calculation methods in the literature are rare and sometimes ambiguous.

However, one needs to consider all the components of aerodynamic forces when large wing

deformations are present and therefore good estimations of the induced drag are required.

The details of suitable force calculation methods may have a significant effect on what

constitutes acceptable mesh refinement.

The remainder of this paper will, firstly, outline the methods used for the flexible-body

dynamics, aerodynamics, and the coupling of the two models. Detailed descriptions of these

methods, including consistent linearization approaches, can be found in the work of Murua16

and Hesse.17 This paper is focused on the implementation of the nonlinear methods. Results

are then presented for the independent structural and aerodynamic models before moving on

to coupled aeroelastic analysis. The Goland wing18 and a representative HALE wing19 are

analyzed in order to compare with existing results from the literature and to provide a basis

4 of 25

D
ow

nl
oa

de
d 

by
 A

nd
re

a 
D

a 
R

on
ch

 o
n 

M
ay

 9
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
16

34
 

 Copyright © 2013 by Robert J. S. Simpson and Rafael Palacios. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



for discussion. Particularly, it is the discretisation of the aerodynamic and structural models,

and the details of the aerodynamic force calculation scheme, which will be discussed in the

context of nonlinear static and dynamic aeroelastic analyses. Although no flight dynamics

results are presented directly, results from the nonlinear aeroelastic model presented in this

work can be readily appreciated from a FAFD modeling perspective, where the aeroelastic

equations of motion are solved to predict aircraft behavior.

II. Nonlinear Flexible-Body Dynamics: Displacement-Based

Geometrically-Exact Composite Beam

Primary structures of the aircraft are represented by curvilinear, composite (anisotropic)

beams that may be initially curved and twisted, and are capable of large deformations and

global rotations. Small local strains are assumed in the formulation.20 In this paper the fol-

lowing model will be referred to as the geometrically-exact composite beam (GECB) model.

The beams are discretized using linear (2-noded) or quadratic (3-noded) finite elements.

Each node has six primary degrees-of-freedom: The three components of nodal displace-

ment, Ra, where the subscript indicates that the components of vector R are expressed in

the body-fixed frame, a; and the Cartesian rotation vector (CRV), Ψ,21 which describes the

orientation of each node’s local coordinate system, B, relative to the a-frame. For clarity, a

column matrix of all the nodal displacements and rotations is defined, η ∈ R6(Ns−1) where

Ns is the number of structural nodes. The flexible-body equations of motion are formulated

in the a-frame, which is free to translate, v, and rotate, ω, with respect to an inertial frame,

G. Orientation of vector quantities in the local frame at each node, B, are projected into

the a-frame by the linear transformation CaB(Ψ). An illustration of the frames of reference

used in the formulation is shown in Fig. 1.

Using Hamilton’s principle, the flexible-body equations of motion can be written in dis-

crete form as,8

M(η)


η̈

v̇

ω̇

+Qgyr(η, η̇,v,ω) +Qstiff(η) = Qext(η, η̇,v,ω, χ), (1)

where matrix M is the tangent mass matrix, and Qgyr, Qstiff, and Qext are the discrete

gyroscopic, stiffness, and external generalized forces, respectively. Quaternions, χ, are used

to describe the orientation of the a-frame with respect to the inertial frame.

The discrete system is built upon finite-element interpolation within each element of the

corresponding nodal degrees of freedom. In particular, interpolation of the Cartesian rotation
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Figure 1. HALE aircraft represented by lifting-surfaces and beams. Frames of reference used in
the flexible-body dynamics model are shown.

vector should guarantee invariance of the strain field under rigid-body rotations,9,22 otherwise

known as objectivity. Alternative parameterizations of rotation are common, however the is-

sue of objectivity remains regardless of which is used. Since rotation vectors are non-additive,

the direct interpolation of rotation parameters leads to non-objectivity of interpolated strain

measurements.9 Even the initial orientation of an undeformed beam can adversely effect the

accuracy of predictions using displacement-based nonlinear beam theories. However, con-

sideration of appropriate finite-element formulations and discretizations can minimize these

errors. For example, using many frames of reference, one for each primary structure, reduces

the proliferation of interpolation errors,17 however the transformations between frames may

become an excessive burden on computational time. It is therefore desirable to use one frame

for the definition of all the beam FEs, whilst attempting to quantify the level of error that

may be introduced by the non-objectivity of the formulation.

III. Aerodynamics: Unsteady Vortex-Lattice Method

The unsteady vortex-lattice method (UVLM) calculates forces exerted on a streamlined

body as it moves through an inviscid, incompressible fluid. Fluid particles in the majority

of the domain are assumed to be irrotational, however rotational flow may exist within

infinitesimally-thin shear layers on the body surface and in the trailing wake. Such flows

may be modeled using potential flow, which is governed by Laplace’s equation, ∇2φ = 0,

where φ, in this case, is a scalar-valued potential for the flow velocity, such that the flow

velocity is given by U(x, t) = ∇φ(x, t). The notation used to describe the UVLM in this

work borrows heavily from that found in the thesis of Murua.23
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A. Solution Methodology

A solution to Laplace’s equation is sought by placing a lattice of rectilinear vortex rings

over an infinitesimally-thin surface, which is used in place of the three-dimensional lifting

surface geometry. Each vortex ring is a closed filament of vorticity with constant circulation

strength, Γ, which induces a flow velocity calculated using the Biot-Savart law.12 Control

points are chosen at the center of each vortex ring where the non-penetration boundary

condition will be enforced; these are referred to as collocation points. A schematic of a

simple lifting-surface is shown in Fig. 2, which illustrates the vortex lattice geometry and

collocation point locations.

n

i = 1
i = 2

i = M

j = 1

j = 2

j = 3

j = N

Δc

ΔbΔc 3Δc
4 4

Γi,j

 Γi,j - Γi-1,j

 Γi,j - Γi,j+1

 Γi,j - Γi,j-1

 Γi,j - Γi+1,j

Figure 2. Body surface overlaid with vortex lattice geometry. Four vortex segments are shown on
the right, which have circulation strengths equal to the difference in adjacent vortex ring strengths.

Enforcing the non-penetration condition, U · n̂ = 0, at each of the collocation points

leads to a system of algebraic equations of the form,

AΓ
n+1

sys +A?Γ?n+1

sys + w
n+1

= 0, (2)

where A(ζ
n+1

) ∈ RK×K is the Aerodynamic Influence Coefficient (AIC) matrix, and K =

MN , where M and N are the number of chordwise and spanwise panels, respectively. Each

element of the AIC matrix represents the normal velocity at one panel induced by another

panel with all panel strengths set to unity; hence, it is purely function of the aerodynamic

surface grid points, denoted ζ ∈ R3Na where Na is the number of surface grid points, and

must be re-calculated should the aircraft deform. The superscripts (•)n and (•)n+1 denote the

time step. A?(ζn+1
, ζ?

n+1
) ∈ RK×K?

represents the normalwash induced by each wake vortex

ring at the surface collocation points; it is analogous to A, but is defined with one dimension

of size K? = M?N , which is the number of wake panels, and ζ? ∈ R3N?
a , which are the

wake grid points. N?
a is the number of aerodynamic grid points in the wake. Γsys ∈ RK and

Γ?sys ∈ RK?
are the column matrices of surface and wake circulation strengths, respectively.
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The downwash at the collocation points due to inputs, w ∈ RK , is given by w = W
[
ζ̇ + Uext

]
,

where Uext are prescribed fluid velocities at the surface grid points which may include free-

stream velocities and gusts. The matrix W (ζ
n+1

) interpolates from grid corner-points to

collocation points and projects the resulting velocities along the corresponding panel normal

vector.

As mentioned earlier the position and strength of a free wake is calculated by the UVLM.

The propagation of circulation strengths through the wake is given by,

Γ?
n+1

sys = CΓΓ
n

sys + C?
ΓΓ?

n

sys , (3)

where CΓ ∈ ZK?×K is a sparse constant matrix that propagates the circulation strength

from the trailing-edge at the previous time step into the first row of wake vortex rings.

Analogously, C?
Γ ∈ ZK?×K?

shifts the circulation strength in the wake downstream. The

propagation of the wake grid, denoted ζ? ∈ R3N?
a where N?

a is the number of wake grid

points, is given by,

ζ?
n+1 − Cζζ

n+1

= C?
ζ ζ

?n + ∆t
(
AUΓ

n

sys +A?UΓ?
n

sys

)
+ ∆tU?n

ext , (4)

where Cζ ∈ Z3N?
a×3Na closes the wake grid with the trailing-edge points at the current time

step. C?
ζ ∈ Z3N?

a×3N?
a shifts the wake grid points downstream, and U?n

ext ∈ R3N?
a are prescribed

fluid velocities at the wake grid points. The matrices AU ∈ R3N?
a×K and A?U ∈ R3N?

a×K?

account for the fluid velocities induced by the surface and wake vortex rings, respectively

– including these velocities allows the UVLM to capture wake roll-up. The Joukowksi hy-

pothesis, which requires that flow leaves the trailing-edge smoothly, i.e. trailing-edge vortex

segments have zero circulation, is approximately satisfied by setting the newly-shed panel

strengths equal to the corresponding trailing-edge panel strength at the previous time step,

Eqns.(3) & (4). This also approximately satisfies Kutta condition, which is the require-

ment for no pressure jump to exist at the trailing-edge.24 The particular form of Eqn. (4)

corresponds to a first-order, explicit, time-stepping scheme, which is widely used for the

UVLM.4,12,23 Classical vortex methods are unconditionally stable (Cottet et al.,25 pg. 43 -

44) however in the UVLM, in which new wake panels are shed from the trailing-edge, there

are some limitations on the time step. Since a newly-shed wake panel has a circulation equal

to the corresponding trailing-edge panel at the previous time step it should also be of equal

area. Often it is useful to define a non-dimensional time step, ∆t U∞
c

, to help achieve this.

Then, assuming that the chord is split into M equally-sized panels, the time step can be set

as ∆t U∞
c

= 1
M

.
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B. Evaluation of Forces

The literature surrounding the UVLM lacks a thorough discussion of force calculation meth-

ods, particularly with regards to unsteady induced-drag calculations. Accurate prediction of

unsteady induced-drag is of great importance in flexible aircraft flight dynamics and flapping

flight applications26,27 in which all components of the aerodynamic forces play an important

role.

The main difficulty associated with induced-drag calculations in thin lifting-surface meth-

ods is the inclusion of leading-edge suction effects. Capturing leading-edge suction effects in

the UVLM requires that force contributions from all bound vortex segments (singularities)

are included. Such contributions are quasi-steady in nature, and have the form,

δfst = ρ∞Γ (U × δl) , (5)

where δl is an incremental length of vortex segment. The force calculated for linear vortex

segments using Eqn. (5) is approximated to act at the midpoint of the segment. Since

the UVLM resolves the mean aerodynamic surface the unsteady force component from

Bernoulli’s equation, orientated along the normal of each vortex ring (panel), can be found.28

This leads to an unsteady contribution from each panel,

fuij
= ρ∞

∂Γij
∂t

Aijn̂ij, (6)

where Aij is the panel area, n̂ij is the panel normal vector, and i and j are panel indices in the

chordwise and spanwise directions respectively. The unsteady force, Eq. (6), is approximated

to act at the midpoint of the panel’s leading vortex segment. For the proceeding discussion,

this method, in which the steady contribution from each vortex segment (5) and the unsteady

component from each panel (6) are summed, will be referred to as the Joukowski method.

An approximation to the method above is given by Katz & Plotkin,12 in which the

unsteady Bernoulli equation is applied to the top and bottom surfaces of each panel to find

the pressure jump, which results in a local lift contribution,

Llocalij = ρ∞

((
Uu
ij +Uw

ij

)
.τ̂ cij

Γij − Γi−1,j

∆cij

+
(
Uu
ij +Uw

ij

)
.τ̂ sij

Γij − Γi,j−1

∆bij
+

∂Γij
∂t

)
Aij cosαij,

(7)

where Uu
ij is the velocity at the collocation points due to aerodynamic system inputs, i.e

Uu
ij = U ext

ij − ζ̇col
ij , where U ext

ij and ζ̇col
ij are external fluid velocities (such as free-stream or

gust velocities) and the motion of the aerodynamic surface, respectively. Uw
ij are the ve-
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locity contributions from the wake vorticity, at the collocation points. The contribution

of bound vorticity is approximated by two components arising from the gradient of cir-

culation along the direction of panel tangential vectors τ̂ cij and τ̂ sij, in the chordwise and

spanwise directions, respectively. Katz & Plotkin12 note that the force resulting from the

pressure jump does not include leading-edge suction effects and is only adequate for lift

prediction. Hence, the local angle of attack αij is introduced, which for general motions is

αij = tan−1
(
Uu
ij.n̂ij / U

u
ij.τ̂

c
ij

)
.26 This effectively generalizes the lift prediction presented by

Katz & Plotkin12 for complex kinematics.

The induced drag is then calculated using the component of downwash that acts along

the local lift vector. The local lift vector is found by projecting the panel normal vector onto

the plane perpendicular to the relative inertial velocity. This is achieved using an orthogonal

projection operator,21 PÛu
ij

= I − Ûu
ij Û

uᵀ
ij , where I is the identity matrix. The local drag is

then

Dlocal
ij = ρ∞

[
−
(
U bc
ij +Uw

ij

)
.
(
PÛu

ij
n̂ij

)
(Γij − Γi−1,j) ∆bij +

∂Γij
∂t

Aij sinαij

]
, (8)

where the superscript bc indicates a velocity is calculated considering bound, chordwise-

orientated vorticity only. At the leading-edge Γi−1,j is set to zero. The total force contribution

from each panel is then, fij = Dlocal
ij Ûu

ij + Llocalij PÛu
ij
n̂ij. Note that Eqns. (7) & (8) do not

account for sideslip, which is seen to have an effect in the context of nonlinear aeroelasticity,

below.

In this method, which will be referred to as the Katz and Plotkin method, the panel

forces are calculated based on velocities calculated at the collocation points – not directly

on the vortex segments – introducing additional discretization error. Also, only spanwise-

orientated vorticity can contribute to the local drag term. This may have implications for

the level of mesh refinement used in the aerodynamic model, in particular on control surfaces

which typically feature very coarse paneling. Further comments on the suitability of both

methods for accurately predicting unsteady induced-drag can be found in previous work by

the authors.29

IV. Multi-Disciplinary Considerations

In this section the coupling of structural and aerodynamic models is presented in three

sections. Firstly, the definition of the discretized fluid-structure-interface is presented. This

includes the mapping of beam nodal displacements and rotations to aerodynamic grid nodes,

and subsequently the mapping of forces on the aerodynamic grid nodes back onto the beam

nodes. Secondly, three methods of coupled time-integration are presented. Finally, the
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software architecture used to implement the models is presented, namely, Simulation of

High-Aspect-Ratio Planes in Python (SHARPy).

A. The Fluid-Structure Interface

The coupling of structural and aerodynamic finite-element discretizations is achieved using

the assumptions of rigid cross-sections and coincident discretizations in the spanwise di-

rection. Therefore, each structural node has a corresponding cross section defined by the

points,

ξBi
= [ 0 ξyi ξzi ]T for {i ∈ Z | 1 ≤ i ≤M + 1}, (9)

where M , as mentioned in Sec. III.A, is the number of chordwise panels in the aerodynamic

model. The aerodynamic grid is defined in the inertial G-frame, where each aerodynamic

grid point is found as,

ζGij
= rG + CGa(χ)

[
Raj + CaB(Ψj)ξBi

]
, (10)

where rG is the origin of the a-frame, CGa is the linear transformation from the a-frame

to the inertial frame deduced from the quaternion χ, Raj is the deformed position of the

j-th structural node, and CaB is the linear transformation from the material B-frame to the

a-frame based on the CRV at the j-th structural node, Ψj. Similarly, the velocities of the

aerodynamic grid points are,

ζ̇Gij
= CGa(χ)

[
va + ω̃aRaj + Ṙaj + CaB(Ψj)Ω̃Bj

ξBi

]
, (11)

where va is the translational velocity of the a-frame. The matrix-valued skew-symmetric

operator (•̃) is applied to ωa and ΩBj
, which are the angular velocities of the a-frame and

j-th structural node, respectively.

After calculating the forces on the nodes of the deformed aerodynamic grid, faij, they are

mapped back onto the beam nodes resulting in nodal forces, f sj , and moments ms
j . Since

there is one cross-section for each beam node, the nodal forces and moments are,

f sj =
M+1∑
i=1

faij, (12)

which is the sum of forces acting on the aerodynamic nodes belonging to the j-th cross-

section, and,

ms
j =

M+1∑
i=1

ξ̃ijf
a
ij, (13)
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which the sum of moments caused by the forces acting at aerodynamic nodes in the j-th

cross-section. Note that the vectors in Eqns. (12) & (13) have not been projected into any

particular frame of reference; this is because, depending on how the beam finite-element

model is defined, the nodal forces and moments may be desired in the B-frame (material),

a-frame (body-fixed), or G-frame (inertial). Care must be taken to transform the quantities

in these equations appropriately – cross-sectional coordinates, ξij, are defined in the B-frame

and aerodynamic forces, faij, are calculated in the G-frame.

B. Time-Integration

Integration of the coupled system, Eqns. (1 - 4), in time is done using a partitioned proce-

dure30 whereby separate integration schemes are used to advance the structural and aerody-

namic states. The structural equations are solved using the Newmark-β scheme, which for

each time step, n, uses Newton-Raphson sub-iterations, k, to achieve a converged solution

to Eqn. (1). In a loosely-coupled scheme the structural system residual, r, has the form,

rkn+1 = Mq̈kn+1 +Qk
gyrn+1

+Qk
stiffn+1

−Qextn , (14)

where q̈ = { η̈ v̇ ω̇ }ᵀ are the second derivatives of the structural degrees of freedom. Eqn.

(14) corresponds to a loosely-coupled time-integration scheme because the external forces

are calculated once at the start of each time step, and are based on the system states at

time step n. Therefore, Eqn. (1) is not strictly satisfied at time n + 1 and the solution of

structural and aerodynamic states are staggered.

In order to truly satisfy Eqn. (1) at any given time step, a tightly-coupled procedure

must be adopted. A tightly-coupled procedure is one that ensures up-to-date (i.e at time

n + 1) structural and aerodynamic states are used to satisfy Eqn. (1). One way to achieve

this is to embed the updating of aerodynamic states, and hence external loads Qext, within

the Newton-Raphson loop, leading to a structural residual of the form,

rkn+1 = Mq̈kn+1 +Qk
gyrn+1

+Qk
stiffn+1

−Qk
extn+1

. (15)

The convergence criteria is defined as ε1 = (max rkn+1)/|max r0
n+1| whether a loosely-coupled,

Eqn. (14), or tightly-coupled, Eqn.(15), procedure is used. Unless otherwise stated, ε1 =

10−5 is used for all calculations in this paper.

An alternative tightly-coupled procedure can be constructed by using an outer fluid-

structure sub-iteration loop within each time-step31 in the manner shown in Fig. 3. The

aeroelastic loop continues until the change in external forces is brought below a certain toler-

ance. This second convergence criteria is therefore defined as ε2 = (max ∆Qk′
extn+1

)/|maxQ0
extn+1

|
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where the superscript corresponding to k′ refers to the index used in the aeroelastic loop,

and ∆ denotes the difference between successive iterations.

UVLM:
Update Wake

Update 
Fluid-Structure 

Interface

UVLM: 
Calculate Forces

GECB:
 Calculate 

Displacements and 
Rotations

Newton-Raphson Loop

Aeroelastic Loop

Figure 3. Outer fluid-structure coupling loop.

C. Software Architecture

The GECB, UVLM and fluid-structure interface models presented in this paper are imple-

mented as stand-alone modules in the SHARPy framework. The framework is designed

to be an efficient multi-disciplinary analysis tool, and as such leverages the advantages of

several programming languages. In particular, the Python programming language is used

to provide an interface between other Python-only modules, and shared libraries written in

C/C++ and Fortran90. This approach is popular in the multi-disciplinary analysis and opti-

mization community32–34 because it balances the ease of high-level development (in Python)

with the efficiency of compiled code (C/C++ and Fortran) for computationally-expensive

tasks. Care must be taken when sharing large amounts of data between modules because

the cost associated with making local copies is prohibitive. In SHARPy, data is initialized

in Python and pointers to this data shared between C/C++ and Fortran libraries using

Python’s built-in ctypes module. The UVLM can become computationally expensive when

using a very high spatial or temporal resolution because the computational expense scales

with the number aerodynamic degrees of freedom squared. Speeding up the UVLM with a

fast panel method,35 a fast multipole method (FMM),36 or a combination of similar meth-

ods37 has been carried out in the past by other authors. In this implementation it was found

that parallelization using openMP was adequate to reduce simulation run-time to reasonable

levels.
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V. Numerical Studies

In this section the objectivity of the beam formulation and the force calculation methods

in the UVLM are investigated numerically and discussed in the context of FAFD modeling.

These investigations inform an appropriate modeling approach for FAFD analysis using the

methodologies presented in this paper. In particular, the objectivity investigation informs

the choice of beam finite element, and the force calculation method informs what level of

aerodynamic mesh refinement (paneling) is required. Finally, the analysis methodologies are

exercised in the static and dynamic nonlinear aeroelasticity of very flexible wings.

A. Objectivity Considerations in the Structural Model

The test case used for the work presented here is defined in the book by Geradin and

Cardona.21 It is a cantilever beam of length L = 5 m, stiffness constants: EA = 4.8×108 N,

GA = 3.231 × 108 N (in both axes), GJ = 1.0 × 106 Nm, EI = 9.346 × 106 Nm (in both

axes), and mass constants m̄ = 100 kg/m and J = 10 kgm. Table 1 shows the geometrically-

nonlinear tip displacements for different discretizations under a dead vertical tip force of−600

kN. The convergence parameter in the nonlinear static equilibrium is 10−5, and is defined

as ε2 in Sec. IV.B where the superscript refers to a Newton-Raphson iteration on Eqn. (1)

with velocities and accelerations set to zero. Convergence of computed tip displacements

and rotations with published results is observed for both 2- and 3-noded elements as the

number of elements increases.

Model ∆R1 (m) ∆R3 (m) Ψ2 (rad)

5 elements, 2 nodes 0.586 -2.147 -0.6745

10 elements, 2 nodes 0.594 -2.156 -0.6726

20 elements, 2 nodes 0.596 -2.159 -0.6722

2 elements, 3 nodes 0.550 -2.070 -0.6576

5 elements, 3 nodes 0.589 -2.144 -0.6700

10 elements, 3 nodes 0.596 -2.159 -0.6719

(Geradin and Cardona,2001) -2.159 -0.6720

Table 1. Tip displacements and rotations under tip dead force (600 kN)

.

Khosravi et al.38 provided a similar nonlinear test case for isotropic cantilevered struc-

tures subject to a tip moment, for which there is an analytical solution. The computed

beam deformations should form an arc of constant radius which eventually becomes a circle

under the application of increasing tip moments. The tip rotation resulting from a given tip

moment, M2, can be obtained analytically as Ψ2 = LM2

EI
. The analytical solution is matched
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almost perfectly by computed results, presented in Fig. 4. All results were obtained with 10

load sub-steps and a convergence parameter of 10−4.

−1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

x (m)

z 
(m

)

Figure 4. Application of a tip moment up to a maximum of -15000 kNm, in increments of -3000
kN. 20 3-noded elements are used in all cases.

In both of the test cases presented above the beam deformation occurs in-plane, but

specifically in a plane defined by the spatial (as opposed to material) coordinate system (in

this case the x− z plane). Consequently, the Cartesian rotation vector (CRV) has only one

component and interpolation of rotations is not problematic. On inspection of Table 1 it

appears that using either element-type leads to rapid convergence for such problems, and

that the linear (2-noded) element may be slightly better. However, it will be seen that for

practical problems, in which deformations are outside of any one plane defined by the spatial

axes, the choice of element has a significant effect on the accuracy of interpolated rotations.

As mentioned above, the interpolation of rotations should guarantee objectivity, that is,

invariance of the strain field under rigid-body rotations.9,22 This effect is investigated in the

results of Table 2, which are obtained solving the cantilever beam under a tip following force

of 3000 kN for different azimuth locations, φ, in the x − y plane of the undeformed beam.

The CRV in the solution includes the azimuth angle, and results in the table are rotated

back to the plane of the undeformed beam. Both 2- and 3-noded elements are used in the

analysis, and it should be noted that a model with 50 × 3-noded elements has the same

number of degrees of freedom as one with 100 × 2-noded elements. As it can be seen, the

quadratic interpolation on the three-noded element provides a much better approximation

to the CRV than the linear interpolation on the two-noded element. The 3-noded quadratic

elements are therefore favorable for our analysis.

B. Force Calculation Methods in the Aerodynamic Model

The unsteady lift and drag of a plunging airfoil is calculated using the UVLM and the

results are shown in Fig. 5, where h is the plunging amplitude and b is the semi-chord.
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Azimuth Model Ψ1 [rad] Ψ2 [rad] Ψ3 [rad]

0◦ 50 elements, 3 nodes 0 -2.7614 0

90◦ 50 elements, 3 nodes 5.577× 10−8 -2.7614 −4.085× 10−7

180◦ 50 elements, 3 nodes 1.408× 10−8 -2.7614 −6.938× 10−7

0◦ 100 elements, 2 nodes 0 -2.7613 0

90◦ 100 elements, 2 nodes 9.625× 10−5 -2.7613 −1.024× 10−3

180◦ 100 elements, 2 nodes −3.812× 10−5 -2.7612 −1.336× 10−3

0◦ 10 elements, 3 nodes 0 -2.7553 0

90◦ 10 elements, 3 nodes 2.339× 10−5 -2.7553 −1.621× 10−4

180◦ 10 elements, 3 nodes 4.858× 10−6 -2.7553 −3.010× 10−4

0◦ 20 elements, 2 nodes 0 -2.7597 0

15◦ 20 elements, 2 nodes 5.306× 10−4 -2.7596 −4.583× 10−3

90◦ 20 elements, 2 nodes 2.333× 10−3 -2.7589 −2.453× 10−2

180◦ 20 elements, 2 nodes −7.965× 10−4 -2.7562 −3.235× 10−2

Table 2. Tip rotations (in the plane of the undeformed beam) under a tip follower force of 3000 kN
for varying azimuth orientations of the undeformed beam in the x− y plane.

The two-dimensional problem is approximated by modeling a rectangular wing of very large

aspect-ratio, O (103). For both of the force calculation methods employed, agreement with

the linear theories of Theodorsen39 and Garrick40 is excellent. Previous work by the authors

indicates that drag predictions from both force calculation methods convergence similarly

with respect to chordwise paneling in two-dimensional problems.29

−1 −0.5 0 0.5 1
−0.1

−0.05
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0.1

α
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Katz & Plotkin method
Joukowski method
Theodorsen

(a) Unsteady lift

−1 −0.5 0 0.5 1

−15

−10

−5

0
x 10

−4

α
eff
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C
d

 

 

Katz & Plotkin method
Joukowski method
Garrick

(b) Unsteady drag

Figure 5. Unsteady lift and drag of an airfoil oscillating in plunge with amplitude h
b = 0.2 and

reduced frequency k = 0.1. M = 16 and ∆t U∞
c = 1

16 in all cases.

In three-dimensional problems the force calculation methods produce very different re-

sults when relatively coarse paneling is used. The induced-drag of a pitching (about the

quarter-chord) finite-aspect-ratio (AR = 4) wing is calculated using the UVLM for a range
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of reduced frequencies including the steady state (k = 0). Results are obtained over range of

chordwise panelings, M , with the number of spanwise panels, N , held constant. The results

of this study are shown in Fig. 6, which shows that the mean unsteady drag calculated

by the Katz & Plotkin method converges very slowly; using less than 20 chordwise panels

will result in errors in the order of 10%. The Joukowski method converges much faster,

especially at low reduced frequencies. The error in Fig. 6 has been normalized with respect

to the Joukowski method result from the most densely paneled simulation at each reduced

frequency.
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Katz & Plotkin method (steady, k = 0)
Joukowski method (steady, k = 0)
Katz & Plotkin method (k = 0.2)
Joukowski method (k = 0.2)
Katz & Plotkin method (k = 0.5)
Joukowski method (k = 0.5)

Figure 6. Convergence of steady drag, and mean unsteady drag, with respect to chordwise paneling
for a flat-plate of aspect-ratio 4. Results for α = 5◦ cos(ks), ∆t U∞

c = 1
M , and N = 50.

The modeling of control surfaces is investigated next by considering an airfoil with a

trailing-edge flap that occupies 20% of the chord. The unsteady lift produced by flap oscil-

lations at k = 0.1 is predicted using both force calculation methods and compared to the

result of Theodorsen.39 Here the error was normalized using the modulus of the minimum

lift occurring in the cycle. The root-mean-square (RMS) error in lift is shown in Fig. 7(a),

which shows both force calculation methods match the linear theory very well, even when

only five chordwise panels are used. The error in drag is calculated with respect to the

results of Garrick,40 and is normalized against the modulus of the minimum drag occurring

in the cycle. The resulting RMS error is shown plotted against a range of discretizations

in Fig. 7(b). For the case shown both force calculation methods converge slowly; the Katz

& Plotkin method is slightly faster, although the error for a given discretization is of the

same order of magnitude regardless of what force calculation method is used. In summary,

two-dimensional flapped airfoils require a great many panels to achieve a converged drag

result, but as little as five for a converged lift result.

As mentioned above, nonlinear aeroelastic analysis of very flexible wings requires the
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(a) Error in unsteady lift
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Figure 7. RMS error in unsteady lift and drag of a flapped airfoil (20% of chord) oscillating with
flap angle amplitude β = 0.1◦ and reduced frequency k = 0.1. Error in lift calculated with respect
to Theodorsen. Error in drag calculated with respect to Garrick.

instantaneous values of all components of the aerodynamic forces. The results in this section

have shown that capturing induced drag requires much finer discretizations than that needed

to obtain good estimates of lift. Therefore, discretizations of the lifting surfaces established

on the basis of linear analysis may give poor approximations in nonlinear aeroelastic simu-

lations.

C. Nonlinear Aeroelasticity

Firstly, a HALE wing, introduced by Patil et al.19 and later analyzed by Smith et al.41 using

a nonlinear-beam / Euler-equation-CFD combination, is analyzed using the present method.

The pertinent wing properties are given in table 3.

Chord 1 m

Semi-span 16 m

Elastic axis 50% chord

Center of gravity 50% chord

Mass per unit length 0.75 kg/m

Moment of inertia 0.1 kg·m
Torsional stiffness 1× 104 N·m2

Bending stiffness 2× 104 N·m2

Chordwise bending stiffness 5× 106 N·m2

Table 3. HALE wing properties.

The static deflection of the wing is analyzed at two angles of attack in a free-stream

velocity of U∞ = 25 m/s. The free-stream density was ρ∞ = 0.08891 kg/m3 corresponding

to the U.S Standard Atmosphere at an altitude of 20 km. 25 load steps are used to linearly

approach full aerodynamic load conditions, and the minimum required static residual is set
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to 1 × 10−4. 20 3-noded beam elements are required for a converged static tip-deflection,

corresponding to 40 spanwise panels in the aerodynamic model. 10 chordwise panels are

also required, and the steady wake is approximated using vortex rings that stretched 100

chord-lengths downstream. The Joukowski force calculation method, Eqns. (5) & (6), is

used for the aerodynamic analysis.
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Figure 8. Vertical deflections of the HALE wing at two angles of attack, with and without the
force of gravity. M = 10, N = 41 (20, 3-noded elements).

The results of figure 8(a) show excellent agreement with the work of Smith et al. (2001).

This is perhaps to be expected as the free-stream velocity is so low that compressibility ef-

fects, present in the Euler equation CFD but not in the vortex-lattice method, are negligible.

Perhaps the most significant modeling difference is in the treatment of the wing geometry

(NACA0012 section in CFD versus flat-plate in UVLM) especially near the tip – this may

explain the discrepancy observed at α = 4 deg in figure 8(a). Since the effect of gravitational

forces can be very significant in very flexible wings, they have been included in figure 8(b)

for comparison. The acceleration due to gravity used in those results corresponds to that of

the U.S Standard Atmosphere at 20 km.

Dynamic aeroelastic analysis is now performed on the Goland wing.18 The properties of

the wing are defined in table 4. The wing is isotropic, however pitch-plunge coupling occurs

due to off-diagonal terms in the sectional mass matrix associated with the aft-displacement

of the sectional center of gravity from the elastic axis.

The flutter speed of the Goland wing is calculated by incrementing the free-stream ve-

locity of successive time-marching simulations until the wing-tip response shows neutral

stability (undamped oscillations). A small perturbation to the system is introduced by us-

ing initial conditions corresponding to the static solution at a very small angle of attack,

αt≤0 = 0.05 deg. For t > 0 the angle of attack is set to zero, introducing a step change sim-
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Chord 1.8288 m

Semi-span 6.096 m

Elastic axis 33% chord

Center of gravity 43% chord

Mass per unit length 35.71 kg/m

Moment of inertia 8.64 kg·m
Torsional stiffness 0.99× 106 N·m2

Bending stiffness 9.77× 106 N·m2

Table 4. Goland wing properties.

ilar to that of a small sharp-edged gust. Gravity forces are neglected, and the free-stream

density is set as ρ∞ = 1.02 kg/m3. The numerical damping used in the Newmark method is

set to 1 × 10−4, and the maximum residual is set to ε1 = 1 × 10−5. The Katz and Plotkin

force calculation is used (the Joukowski method produces very similar results), and the wake

length is set as 15 chord-lengths. Loosely-coupled time-integration is used.

Source Aero model Beam elements Chordwise panels Uf [m/s]

Current UVLM 6, 2-noded 6 164.5

Current UVLM 6, 2-noded 12 164.5

Current UVLM 6, 2-noded 18 164.5

Current UVLM 12, 2-noded 6 168.0

Current UVLM 18, 2-noded 6 169.0

Goland42 analytical N/A N/A 137.2

Patil et al.43 strip theory – N/A 135.7

Wang et al.44 UVLM – 8 163.8

Table 5. Convergence of Goland wing flutter speed with finite element discretizations, and com-
parison with previously published results.

The flutter speed, Uf , is calculated to ±0.5 m/s using a range of discretizations and the

results compiled into table 5. The number of beam nodes, and hence the number of spanwise

panels, is varied, as are the number of chordwise panels. The time step is set according to

the relation ∆t U∞
c

= 1
M

. The coarsest chordwise discretization, M = 6, is chosen so that

the wing response is adequately resolved (in time) at the expected reduced frequency of

flutter, kf ≈ 0.37. In fact, from table 5, it can be concluded that this resolution is adequate

for calculation of the flutter velocity, as increasing the number of chordwise panels makes

negligible difference. However, the spanwise discretization (of both the beam and UVLM

models) makes a difference; a 3% change from coarse to fine discretizations is observed, with

a converged flutter velocity of 169.0 m/s. The effect of wake roll-up on the flutter speed was

tested, but was found to make negligible difference, despite changes in the wake shape.

The flutter speed calculated by other authors is also shown in table 5. For a wing of such

low aspect ratio, the assumption of locally-two-dimensional aerodynamics42,43 results in a
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very conservative estimate for flutter velocity. The current methodology, and that of Wang

et al.,44 includes finite-wing effects, hence the good agreement.

Finally, the time-response of the Goland wing is investigated at a velocity well-above

flutter speed. Under such a condition, and in the absence of nonlinear restoring forces (e.g,

cubic hardening in the structural model, or aerodynamic stall), the wing response should

show exponential growth. Contrary to this, when using the Katz and Plotkin method, an

apparent limit-cycle oscillation (LCO) is observed, shown in figure 9. This effect is not

observed when using the Joukowski method however, also shown in figure 9. Since the

beam model is nonlinear, the coupled effect of bending and torsion creates a sideslip relative

to the orientation of panels in the aerodynamic model; it is postulated that the difference

observed in the wing response is due to the inadequate treatment of this sideslip in the

Katz and Plotkin method (Eqns. (7)–(8)). Therefore, for any applications featuring large

deformations, such as FAFD analysis, the Joukoswki method is preferred.

0.0 0.5 1.0 1.5 2.0 2.5
Physical time [s]

−1.5

−1.0
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-d
efl
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]

Joukowski method
Katz and Plotkin method

Figure 9. Goland wing tip-response at U∞ = 180 m/s. Both force calculation methods are shown.
N = 24, M = 6 and ∆t U∞

c = 1
M .

VI. Concluding Remarks

The large deformations and complex kinematics present in the dynamics of very flexible

aircraft called for a review of some key analysis methodologies used in flexible aircraft flight

dynamics modeling. In particular, the objectivity of the geometrically-exact composite beam

(GECB) model, and the force calculations employed in the unsteady vortex lattice method

(UVLM), have been shown to be important details in the analysis of very flexible aircraft

dynamics.
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The objectivity of the GECB model is tested on a model problem featuring large out-

of-plane displacements and rotations around all three axes in static equilibrium conditions.

Typical errors due to the non-objectivity of the formulation have been exemplified by simply

changing the reference frame in which the problem is solved. It is demonstrated that an

informed choice of the finite element discretization can help minimize these errors. In par-

ticular, 3-noded elements show quadratic convergence with the discretization, thus greatly

outperforming 2-noded elements for a given number of structural degrees of freedom in the

problem.

Two force calculation methods are presented for the unsteady vortex lattice method

(UVLM). The methods are referred to as the Katz and Plotkin method and the Joukowski

method, after those who provided the basis on which they are formulated. In two dimensions

the unsteady forces predicted using these methods converge similarly with respect to the

chordwise discretization used, including in cases featuring dynamic flap deflections. The

converged results match those of Theodorsen and Garrick. For the low-aspect-ratio wing

studied the Joukoswki method requires far fewer panels for a converged drag result.

Static aeroelastic analysis of a representative HALE-type wing shows the effect of gravity

is found to have a dramatic effect on the predicted static deformation, and therefore must

be included in future analysis. In addition to this, coupled nonlinear time-marching analysis

is applied to the Goland wing and predictions of the flutter speed are found to compare well

to published results. The closest agreement is with aeroelastic formulations that also use a

three-dimensional aerodynamic model. When using the Katz and Plotkin force calculation

method an apparent LCO is observed at a free-stream velocity above the flutter velocity.

However, analysis using the Joukoski method shows the exponential growth expected in such

conditions. It is therefore postulated that the LCO is observed due to inadequate treatment

of sideslip in the Katz and Plotkin method presented in this paper. Hence, the Joukowski

method is preferred for applications featuring large deformations, such as flexible aircraft

flight dynamics.
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