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Robust Aeroelastic Control of Very Flexible Wings
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Yinan Wang∗, Andrew Wynn† and Rafael Palacios‡

Imperial College, London SW7 2AZ, United Kingdom

This paper explores the robust control of large flexible wings when their dynamics are
written in terms of intrinsic variables, that is, velocities and stress resultants. Assuming
2-D strip theory for the aerodynamics, the resulting nonlinear aeroelastic equations of
motion are written in modal coordinates. It is seen that a system which experiences
large displacements can nonetheless be accurately described by a system with only weak
nonlinear couplings in this description of the wing dynamics. As result, a linear robust
controller acting on a control surface is able to effectively provide gust load alleviation and
flutter suppression even when the wing structure undergoes large deformations. This is
numerically demonstrated on various representative test cases.

I. Introduction

This paper investigates strategies for load alleviation and stabilisation of flexible wings with geometrically-
nonlinear deformations using conventional control surfaces. This is relevant in the development of High-
Altitude Long-Endurance aircraft Unmanned Aerial Vehicles (HALE UAVs), which have seen unprecedented
interest in recent years, their uses ranging from front-line military action to surveillance and observation, for
example for use in the development as a low-cost alternative to communication satellites. This unique mission
profile often brings design challenges unseen in other aerial vehicle designs.1,2 For example, a subclass of
HALE aircraft operates on electricity provided by onboard solar panels. Sustained operation on the minimal
amount of power available requires designs that are extremely light and efficient. Such designs require wings
of very low compliance that are susceptible to undergoing large deformations under aerodynamic loads,
particularly in the case of atmospheric turbulence and gusts. Thus, in order to realise the potential of such
lightweight, flexible designs one requires the use of an advanced control system that ensure load alleviation
and/or stabilisation.3

A number of integrated simulation frameworks have been constructed to model the nonlinear response
to gust loads of very flexible aircraft.4–9 They have provided substantial evidence of the importance of
modelling large, geometrically-nonlinear deflections, and the challenges associated to the development of
control systems for gust alleviation and trajectory tracking in such systems. Cook et al.10 and Dillsaver
et al11 applied H∞ and LQG controllers respectively to full aircraft models and investigated the response
to gust and continuous disturbances. They have highlighted the difficulty of achieving robust control on
very flexible aircraft with linear control schemes when it was subject to large disturbances. The control of
nonlinear structures in general has been partially reviewed by Wagg and Neild,12 with methods including
adaptive control, feedback linearisation of nonlinear systems and the use of Lyapunov-based methods. In
particular, Strganac13 has tackled nonlinear control by using feedback linearisation to transform a relatively
small nonlinear aeroelastic system into a linear one. For larger systems, energy methods14 provide a powerful
framework for nonlinear control development, however they rely on the identification on suitable Lyapunov
functions of the nonlinear system. While this has been achieved for the (conservative) structural dynamics
problem,15 it is still an open question how to expand this to aeroelastic systems.
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Within this context, the current research will revisit the use of linear control methods on large flexible
wings subject to relatively large disturbance. The framework will be the intrinsic formulation of the problem,
introduced for geometriccally-exact beam dynamics by Hodges16 and expanded to nonlinear aeroelastic
problems by Sotoudeh et al.7 Our description will use the modal projection of the intrinsic beam equations
of Palacios,17 with aerodynamics given by the strip theory, as in Palacios and Epureanu.18 This provides a
compact description of the problem suitable for control design. The paper thus describes the development
of a H∞ control system on wings described by a intrinsic modal formulation, with the aim of providing
gust alleviation and disturbance rejection using conventional flap actuation. The paper will first review
the geometrically exact, intrinsic formulation of beam structures, expanding the description of Palacios17

to a nonlinear cantilever beam on a moving base. Then, the 2-D aerodynamic model and the projection of
the resulting nonlinear aeroelastic system on the modal basis will be discussed. Finally, the synthesis of a
controller on the linearized system is outlined, followed by a presentation of a set of numerical studies of
increasing complexity to illustrate the use of robust control tools in the present nonlinear aeroelastic analysis
framework.

II. Intrinsic Beam Formulation

An intrinsic beam formulation16 uses sectional stress and velocities along to describe the dynamics of a
deformable reference line with rigid cross-sections attached to each location s along the line. The initial shape
of this reference line is described by components of the local initial strain and curvature vector, γ0(s) and
k0(s) respectively, in a local reference frame. The intrinsic model does not place constraints on the material
properties of the beam except it must have a high aspect ratio, i.e. its sectional area being small compared
to the square of the typical scale of the beam deformations. The equations of the intrinsic formulation,
developed by Hodges,16 will be written here as17,19

Mẋ1 − x′2 − Ex2 + L1(x1)Mx1 + L2(x2)Cx2 = f1,

Cẋ2 − x′1 + ETx1 − LT1 (x1)Cx2 = 0.
(1)

Dots (•̇) denote derivatives with time, t, while primes (•′) are used for derivatives with the arc length, s.
The first equation is the actual equation of motion, while the second is a compatibility condition between
strains and velocities that ensures uniqueness of the solution. The state vector components x1(s, t) ∈ R6

and x2(s, t) ∈ R6 and the force vector f1(s, t) ∈ R6 are given by

x1 =

(
v

ω

)
, x2 =

(
f

m

)
, f1 =

(
fa

ma

)
, (2)

where v(s, t) and ω(s, t) are the translational and angular inertial velocities; f(s, t) and m(s, t) are the
sectional internal forces and moments; and fa(s, t) and ma(s, t) are the applied forces and moments per
unit length. All vectors are expressed in their components in the local (deformed) material frame. Their
definition in terms of beam displacements and rotations can be found, for example, in the work by Palacios.20

The material constants in the equation are the cross-sectional mass, M , and flexibility (or compliance), C,
matrices, which can be obtained from a structural homogenisation process.21 They are full symmetric
matrices that may vary with the arc length, s. Finally, the matrix E includes the effect of the initial strain
γ0 and curvature k0 by

E :=

(
k̃0 0

ẽ1 + γ̃0 k̃0

)
, (3)

where e1 := (1, 0, 0) and •̃ is the skew-symmetric (or cross-product) operator. The linear operators L1 and
L2 are finally defined as

L1(x1) :=

(
ω̃ 0

ṽ ω̃

)
, and L2(x2) :=

(
0 f̃

f̃ m̃

)
. (4)

The intrinsic formulation is therefore defined in terms of the spatial (force) and time (velocity) derivatives
of the displacements and rotations along the beam. The problem of numerically integrating (1), or otherwise
characterising its solutions, needs to be solved with end conditions at s = 0 and s = L, for all t, as well

2 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

nd
re

a 
D

a 
R

on
ch

 o
n 

M
ay

 9
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
14

85
 

 Copyright © 2013 by Yinan Wang, Andrew Wynn and Rafael Palacios. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 



as with initial conditions for all s. In general, natural boundary conditions to the intrinsic formulation are
posed as:

x1i(0, t) · x2i(0, t) = 0

x1j(L, t) · x2j(L, t) = 0.
(5)

In a multi-beam configuration found on most aircraft geometries, the joints between beams can be modelled
as additional boundary conditions of the type:

x1,1(s1, t) = C1jx1,j(sj , t), for 2 ≤ j ≤ J
J∑
j

C1jx2,j = 0.
(6)

where J is the number of beams in a joint and sj refers to the coordinate of the end of the j-th beam at the
joint. One of the beam is used as reference, and C1j is the rotation matrix from the beam j in the joint to
the reference one.

For the particular problem of a translating base, with u(t) ∈ R6 the prescribed base velocities (and
angular velocities), the boundary condition becomes

x1(0, t) = u(t),

x2(L, t) = 0.
(7)

Next, we project the system degrees of freedom into a set of mass-normalised linear normal modes (LNMs)
about the undeformed beam,17

x1(s, t) = q1j(t)φ1j(s),

x2(s, t) = q2j(t)φ2j(s).
(8)

In this work, x1 is expanded in terms of cantilever modes, according to Ref. [18, equation (19)], which
are augmented by another set of 6 rigid-body modes computed from a free-free configuration which serves to
contribute to u(t) at s = 0. While the resulting set is not orthogonal, it was found to simplify the numerical
solution of the nonlinear system. Upon projecting onto modal coordinates using (8), (1) becomes

A1q̇1 = B1q2 −
(
q1`Γ

`
1q1 + q2`Γ

`
2q2
)

+ η1,

A2q̇2 = B2q1 + q2`
(
Γ`2
)>
q1.

(9)

with the real coefficients

(A1)jk := 〈φ1j ,Mφ1k〉,
(A2)jk := 〈φ2j , Cφ2k〉,
(B1)jk := 〈φ1j , φ′2k + Eφ2k〉,
(B2)jk := 〈φ2j , φ′1k − ETφ1k〉,
(Γ`1)jk := 〈φ1j ,L1(φ1k)Mφ1`〉,
(Γ`2)jk := 〈φ1j ,L2(φ2k)Cφ2`〉,

(10)

The inner product symbol 〈v, w〉 here represents an integration along the entire length of the beam of
v>w. We further note that to prescribe a preset movement u(t) is to effectively apply a force at base capable
of causing the movement, thus

u =

n+6∑
i=1

φ1i(0)q1i = Gq1

u̇ = Gq̇1

(11)

The external forces η1 can be separated into those resulting from the user-defined force, f1(s, t), and a
reaction force at the moving base, fr(t), and formulated as:
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η1 = ηe + ηr, (12)

with the forcing terms being ηr,j = φ1j(0)>fr = Ffr and ηej = 〈φ1j , f1〉. Now,

u̇ = GA−11 (B1q2 −
(
q1`Γ

`
1q1 + q2`Γ

`
2q2
)

+ ηe) +GA−11 Ffr. (13)

Solving for ηr,

ηr = F (GA−11 F )−1u̇− F (GA−11 F )−1GA−11 (B1q2 −
(
q1`Γ

`
1q1 + q2`Γ

`
2q2
)

+ ηe). (14)

The solution of ηr can be incorporated back into the modal equations:

q̇1 = A−11 (I − F (GA−11 F )−1GA−11 )(B1q2 −
(
q1`Γ

`
1q1 + q2`Γ

`
2q2
)

+ ηe) +A−11 F (GA−11 F )−1u̇. (15)

or, collecting terms,
q̇1 = A∗(B1q2 −

(
q1`Γ

`
1q1 + q2`Γ

`
2q2
)

+ ηe) +A−11 Buu̇, (16)

where
A∗ = A−11 (I − F (GA−11 F )−1GA−11 ), (17)

and
Bu = F (GA−11 F )−1. (18)

Thus the prescription of base translations transforms the dynamics with an additional A∗ matrix. This is an
augmentation (with initial curvature and base movements) upon the modal equations of Ref. [17, equation
(20)]. This choice of the intrinsic formulation as the structural model in this work partially arises from the
fact that it is an exact description of the structural dynamics which only contains quadratic nonlinearities.
The nonlinear couplings are relatively small even when the structure undergoes significant deformations as
will be shown in Fig. 2. These characteristics make the formulation very suitable for the synthesis of a
control system.

III. Aeroelastic Formulation

The aerodynamic component of the model relies on 2-D thin-strip aerofoil model, where the Wagner’s
function is used to compute the aerodynamic forces from the aerofoil’s local velocities,20 and provides a
linear aerodynamic description with sufficient accuracy for this study. This model computes the local lift
force on a wing section as a sum of the contributions from quasi-steady (instantaneous) angle of attack αqs
and circulation-induced angle of attack αi:

fa(s) = ρ∞bv
2
y


0

−cd0 − vz
vy
cl

cl

 , ma(s) = ρ∞b
2v2y


acl − π

2
bωx

vy

0

0

 . (19)

with
cl = π (αqs + αi) , (20)

where v and ω are local components of velocities and angular velocities.
The quasi-steady component of lift is a function of the inertial velocity vector x1:

αqs =
b

vy
κTx1, (21)

where
κT =

{
0 0 − 1

b (1− a) 0 0
}
. (22)

The induced component of angle of attack is obtained from a rational-function state-space approximation
of the lift deficiency function, C(k), in Theodorsen’s airfoil theory. This results in

αi = 2

Na∑
n=1

Aaen b
ae
n λn, (23)
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where the aerodynamic states λn satisfy

λ̇n +
baen V∞
b

λn = κTx1. (24)

For Na = 2 aerodynamic states, a good approximation to the values of the non-dimensional constants
are bae1 = 0.0455, bae2 = 0.3, Aae1 = 0.165, Aae2 = 0.335. The exact form of the aerodynamic forces in the
modal description, derived using Wagner’s function, is described by Palacios and Epureanu.18 These forces
can be approximated by a quadratic coupling between the velocity modes augmenting the modal ODE. The
aeroelastic modal dynamics can then be written as:

A1q̇1 = B1q2 −
(
q1`(Γ

`
1 − ρ∞Ξ`1)q1 + q2`Γ

`
2q2
)

+ 2Aaen b
ae
n ρ∞λn,`Ξ

`
2q1 + η1,

A2q̇2 = B2q1 + q2`
(
Γ`2
)>
q1,

λ̇n = q1 −
baen V∞
b

λn.

(25)

where λn being a vector of the aerodynamic states and Ξ is given by18

(Ξ`1)jk := 〈φ1j ,A1(φ1k)πbφ1`〉,
(Ξ`2)jk := 〈φ2j ,A2(x1(s, 0))πbφ1kκ

Tφ1`〉,
(26)

where

A1(x1) =



0 0 0 0 0 0

0 − cd0π vy vz −b(1− a)vz 0 0

0 −vz 0 b(1− a)vy 0 0

0 −abvz 0 2a−2a2−1
2 b2vy 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, A2(x1) =



0 0 0 0 0 0

0 0 −vy 0 0 0

0 vy 0 0 0 0

0 abvy 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (27)

Note that Ξ2 is computed under a fixed reference airspeed, V∞, and thus will change when the reference
flight conditions are changed. Any control surface input will enter the model via aerodynamic forces in the
η1 term.

IV. Control Problem Definition

Sections II and III have described an aeroelastic model as state-space system with quadratic nonlinearity.
To synthesise a controller requires the definition of inputs and outputs to the system. In the spirit of the
eventual goal of this study, the control system will focus on vibration suppression and gust alleviation. For
vibration suppression studies, the disturbances are defined as basal accelerations, and the control inputs will
be forces applied on the beam tip. In the aeroelastic problem (Eq. (25)), the disturbance will be assumed
to be external gust loads (modelled as a prescribed distributed force), and the control input would be flap
deflections at particular spanwise locations.

The H∞ controller is a linear optimal controller with linear observers and controllers that act to minimise
the ∞-norm of the transfer function, in effect minimising the all-time maximum of the output caused by
a disturbance.22 This is important in gust alleviation as it is often a critical requirement to limit the
maximum structural load experienced by the wing. However, note that it was shown23 that there is not a
great difference between the use of H∞ in continuous disturbance rejection compared to an LQG controller
which is specifically optimised for this task.

To synthesise the H∞ control system, define the system state as

q =

 q1

q2

λn

 , (28)
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where q1 and q2 are the state vectors of velocity and force respectively, and u represents the 6 components
of basal velocity. The full open-loop system is written as:

q̇ = MAq +MEd+MBw + F2(q, d, w),

yctrl = MC1
q +MD11

d+MD12
w,

ymeas = MC2
q +MD21

d+MD22
w,

(29)

where MC1
= MC2

= MC and the MD matrices are zero matrices of the appropriate dimensions, as the
disturbance and input do not affect the output directly. The F2 term contains the quadratic couplings
between the states and is the only nonlinear term in the equation. In the structural-only case with basal
translations as disturbances, d will be a vector containing basal accelerations u̇, and w is the control force
input. The system matrix MA is defined as the following:

MA =

(
A∗ 0

0 0

)
·

 0 A−11 B1 0

A−12 B2 0 0

0 0 0

 , (30)

where matrices Ai, Bi and A∗ are defined in Eq. (10) and Eq. (17) respectively. Note that A∗ will be
replaced by I when basal accelerations are not prescribed. In the aeroelastic case, the matrix MA is defined
by linearising Eq. (25) around a steady flight condition. Define the observed states (for both controlled and
measured output) as a sensor measuring velocities and forces at particular locations sj along the beam axis,
thus

yj = MCq =
(
φ1(sj) φ2(sj) 0

)
· q. (31)

The control input matrix is

MB =

(
A∗ 0

0 0

)
·

 〈φ1, f̂j〉0

0

 , (32)

where the inner product 〈〉 is again integration over the entire beam, and f̂j describes normalised input force,
which is then scaled using the forcing vector w, i.e.:

f1 =
∑

f̂j · wj , (33)

The disturbance enters the system via

ME =

 A−11 Bu

0

0

 . (34)

as prescribed basal accelerations, or,

ME =

 〈φ1, ĝj〉0

0

 , (35)

as disturbance forces, in a form similar to control forcing, where ĝj describes the normalised disturbance
force. In the current form the linear part of the equation (without the F2 term) can be used to synthesise
the H∞ controller, which takes the form of:

ż = KAz +KBymeas,

w = KCz +KDymeas.
(36)

where the controller dynamics are given by the K matrices and z is the vector containing the controller
states. As the structural eigenmodes are orthogonal and energy-preserving, the eigenvalues of the open-loop
system lie entirely on the imaginary axis. Therefore, as a requirement in the synthesis of the H∞ controller,
the eigenvalues are shifted into the negative half-plane by adding (−ε ·I) to MA where the value of ε is chosen
to be 10−3 of the smallest eigenvalue of MA. Although the addition of aerodynamics tend to damp most
poles, this modification is still necessary as long as the open-loop dynamics contain undamped modes, e.g.
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axial modes. It should also be noted that in order to tune the controller, the system is further augmented
with tuning parameters in the form of:

MD12 =

(
MD12

kw

)
,

MD21
=
(
MD21

kd

)
,

(37)

as the variables yctrl and d are augmented to become:

yctrl =

(
yctrl

yw

)
,

d =

(
d

dmeas

)
,

(38)

as part of the standard treatment of controller synthesis. Note that the original MD12
and MD21

are zero
matrices. Here kw places a weight on the input w so that the controller does not respond with an unreal-
istically large input, whereas kd places a weight on the sensor measurement to represent the measurement
uncertainties from real-life sensors. The addition of yw and dmeas does not affect the dynamics of the original
system in any way.

The H∞ control synthesis, used with the control problem posed in the way described, tends to create very
high frequency poles for the controller which are unrealistic and also have a negative impact to the robustness,
or sensitivity of the controller to deviations from the model. Thus loop-shaping24 is also conducted in order
to tune the controller in the frequency domain and obtain a more desirable response. The technique also
ensures that high-frequency modes including unmodelled ones are not overly excited.

V. Numerical Results

In this section, numerical results will be presented for the verification of the structure, control and
aerodynamic system respectively. The systems are then coupled in order to simulate the response of a
cantilever wing moving in freestream. In the solution process, the modal ODE presented in previous sections
is marched in time using a Runge-Kutta scheme with automatic timestepping at a relative error tolerance of
0.1%. This numerical marching scheme is to be used in all subsequent simulations. In the modal description,
the structural modes used is chosen according to the lowest eigenvalues and limited to prescribed mode types
(axial, torsion, in-plane bending etc) whenever these are clearly identifiable.

A. Structural Model Verification

The initial numerical model (vibrations in vacuo, i.e. without aerodynamic forces) is based on the modal
formulation presented in Eq. (9). The beam used in all simulations presented in this subsection is a
50 × 1 × 0.5 m cantilever beam with mass density 8000 kgm−3, Young’s modulus 200 GPa and Poisson’s

ratio of 0.3, modelled under Euler-Bernoulli assumptions where C =
[

1
EA , 0, 0,

1
GJ ,

1
EI2

, 1
EI3

]
and M =

[ρA, ρA, ρA, ρI1, ρI2, ρI3].
The test case for validation is chosen to be sinusoidal basal translations on the r1 and r3 (axial and

out-of-plane) axes with v = vmax sin(ωt), amplitude vmax = 5 ms−1 at ω = 1 rad s−1 and was compared
against results from a FEM software package (ABAQUS, 200 1-D beam elements simulated with a timestep
of 0.02 s). This excitation produces a tip displacement of the order of the beam length (50 m) and is therefore
highly nonlinear. Agreement is good with 15 bending and 10 longitudinal modes used in the simulation,
as shown in Fig. 1. Convergence with a lower number of modes is demonstrated in Table 1. The results
show that with 6 modes in both bending and longitudinal directions, the simulated open-loop response is
already very close to the one with 15 bending and 10 axial modes, and in turn in good agreement with
FEM results. It should be noted that the inclusion of axial modes is necessary as they provide the coupling
between bending modes which are otherwise isolated from each other. Although torsional modes are not
needed in this particular example as this is a 2-D problem.
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Modes Error v1 Error v3

5 Bending, 5 Axial 5.95% 2.29%

6 Bending, 6 Axial 5.90% 2.27%

10 Bending, 5 Axial 5.92% 2.29%

10 Bending, 10 Axial 0.081% 0.022%

Table 1: Percentage RMS errors in tip velocity history for different mode selections against the case of 15
bending and 10 longitudinal modes.

It should be noted that in the intrinsic modal description of beams, the nonlinear coupling between modes
is much weaker than in a displacement-based description, and for this reason the linear controller performs
well on the structural model under relatively large excitations (e.g. tip displacement of 30% beam length)
as the nonlinear structural couplings remained small. To demonstrate the linearity of the formulation, the
nonlinear coupling was turned off in the validation model, and the results showed that the transverse tip
velocity is still simulated with some accuracy as seen in Fig. 2. However the axial velocity component (not
shown) presents larger errors since there is no coupling involved. It should be noted that the controlled
response is less severe than the open-loop and thus demonstrates even less nonlinear behaviour.

B. Aeroelastic Model Verification

The Goland wing model25 is used to validate the coupling between structural and aerodynamic forces in
the model. The Goland wing is a low aspect ratio wing in a cantilever configuration and is a well-studied
benchmark numerical test case for aeroelastic simulations in which the structural model is based on beam
elements. Properties of the beam can be found in Table 2.

Chord, 2b 1.8288 m Mass per unit length, ρA 35.71 kgm−1

Semi-span, L 6.096 m Moment of inertia around e.a., ρI1 8.64 kg·m
Elastic axis (from l.e.) 0.66b Torsional stiffness, GJ 0.99×106N· m2

C.G. (from l.e.) 0.86b Bending stiffness, EI2 9.77×106N· m2

Table 2: Relevant properties of the Goland wing18

The airspeed at which flutter occurs on the Goland wing is computed by a linearisation of the dynamics
over a range of increasing airspeeds. An unstable eigenvalue in the linearised dynamics indicates that flutter
has occurred. The current study uses 11 bending modes and 1 axial mode which produced results that match
well with previous studies using 2D aerodynamic approximations (see Table 3), whereas 3D aerodynamic
methods such as UVLM more accurately reflect tip effect which have a noticeable impact on the computed
flutter speed.18

Time-domain simulation shows that structural nonlinearities do not give rise to any limit-cycle oscillations
on the Goland wing at post-flutter speeds. Patil et al26 also confirmed that structural nonlinearities in
themselves are unable to create limit-cycle oscillations post-flutter. Instead they observed that in general
stall and other nonlinear aerodynamic effects will set in well before significant structural nonlinearity is
observed.

C. Control Action on Structural Model

Different disturbance scenarios are used to test the efficiency of the controller using the setup described in
Section A, which is synthesised to minimise the local transverse velocity of the tip (relative to the global
coordinates) in the r3 axis (x1,3(L)) by applying a transverse tip force in the local r3 direction. The control
synthesis used 6 bending and 6 longitudinal modes in the linearised system and was then applied to a system
with full nonlinear coupling in the dynamics. The first case was a sinusoidal transverse base velocity of
amplitude 5 ms−1 at 1 Hz. Here the closed-loop system demonstrates that the controller was able to reduce
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Author Model Vf , ms−1 ωf , rad s−1

Current Intrinsic / 2D aero (Modal) 139 70.0

Palacios et al18 Intrinsic / 2D aero (Modal) 141 69.8

Sotoudeh et al7 Intrinsic / 2D aero (FD) 137 70.1

Wang et al27 Intrinsic / UVLM 164 -

Murua et al28 Displacement / UVLM 165 69

Table 3: Flutter velocity and frequency for the Goland wing at ρ∞ = 1.02 kg m−3

the amplitude of the resulting response, with a lower weight on the input allowing for greater amplitude
reduction at the expense of a larger controller input (Fig. 3 and 4). A similar result was obtained when
applying a white noise disturbance with a frequency cutoff at the highest bending mode eigenvalue of ω = 86.1
rad s−1 (Fig. 5).

For a “1 - sin” excitation (Fig. 6), a lower weight on control input allows the controller to provide a larger
input to suppress the excitation, resulting in the disturbance being dampened faster as well as producing a
smaller maximum response.

D. Aeroelastic System with Robust Controller

The Goland wing has a relatively low aspect ratio and the dynamics observed on the wing are very low
in their degree of non-linearity. In order to better study the problems facing a high-aspect ratio wing, the
problem is modified so that large deformations can be observed. The modified wing is defined as 5 times as
long as the original while possessing only one third of the original stiffness. The flutter speed of this modified
wing is found to be Vf = 59 ms−1. Fig. 7 shows that a 10-mode system (of which 9 are bending/torsional
modes and 1 is axial) is able to reach convergence on the open-loop response. Each structural mode is
associated with 2 aerodynamic modes, making the total number of aerodynamic modes 20. This number of
modes will be used in all subsequent simulations.

A linear H∞ controller is applied on the aeroelastic model in order to observe the effect of gust load
alleviation and flutter suppression via active control on the modified wing. The problem is posed so that
the controller aims to control the base bending moment, by measuring the base moment and manipulating
a control surface of 20% chord length and mounted on 60% to 90% of wing span. The model simulates the
base of the cantilever wing moving at V∞ and the controller dynamics is synthesised using a model linearized
about the the the current V∞. The disturbance used is a vertical gust (in global coordinates) with a profile
of v3(s, t) = (1 − cos(ωt))/2 · VMax, while the controller is synthesised assuming that the disturbance is a
time-varying distributed force applied on the local transverse out-of-plane direction.

Simulations using the 1 - cos gust profile show that the controller achieves gust load alleviation under a
range of gust lengths (Fig. 8), with a 7.9% reduction in maximum root bending moment when ω = 5 rad
s−1. Up to a tip deflection of 11.9 m (Fig. 11), or 40% beam length, no significant deviation from linear
behaviour is observed, as shown in Fig. 9 comparing the response to that of a much smaller disturbance,
further demonstrating the weak nonlinear coupling of the formulation. A limit to the current model is
that control saturation is not implemented, therefore the disturbance is chosen so that the control surface
deflection, shown in Fig. 10, is not so large as to make the control surface stall.

When V∞ is chosen to be beyond flutter speed, the controller additionally provides active flutter stabili-
sation of the wing. Fig. 12 and Fig. 13 shows that the stabilisation effect at V∞ = 65 ms−1 is still relatively
robust despite demonstrating a very different response to that of V∞ = 55 ms−1. The system remains sta-
bilised under a large tip deflection, although again care needs to be taken to limit the flap deflection so that
the current model remains a realistic representation of the dynamics.

It should be noted that currently different controllers are designed around their respective V∞, thus how
much change in flight speed can be accommodated by a particular controller remains to be seen.
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VI. Conclusions

The computational results demonstrate that a linear robust control design functions very well on the setup
investigated in this work, up to a deformation large enough to observe significant geometric nonlinearities.
The low degree of coupling between modes in this formulation also serves to explain the good performance of
linear controllers synthesised on a displacement-based formulation, despite the large degree of nonlinearity
involved in which.

As HALE aircraft normally operate at a safe margin from stall conditions, control saturation is likely to
be the major contributor to more complex dynamic behaviour of the wing. The current model also lacks
full rigid body degrees of freedom, the incorporation of which is also likely to have a major impact on the
dynamics and possibly give rise to further nonlinear effects.

Future work will also investigate a more efficient incorporation of displacement into the intrinsic model
which allows modelling of gravity, and a multi-beam configuration which allows a full aircraft configuration
to be studied. The robustness of the controller when subject to different airspeeds V∞ will also be studied.
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Figure 1: Validation study on the 50 m beam using a sinusoidal base velocity excitation of 5 ms−1 amplitude
in the r1 and r3 directions using 15 bending and 10 longitudinal modes, plotted against FEM results.
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Figure 2: A comparison of the computed transverse tip velocity for the base velocity excitation of 5 ms−1

amplitude in the r1 and r3 directions on the 50 m beam using 15 bending and 10 longitudinal modes, with
and without nonlinear couplings between modes. It can be seen that even when the deformation is in the
order of L, the linear approximation still performs well in the transverse direction.
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Figure 3: The effect of tip force control input in suppressing the tip velocity when subject to the continuous
sinusoidal excitation of 5 ms−1 amplitude at 1 Hz in r1 and r3 axis on the 50 m beam, with different weights
used in control synthesis.
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Figure 4: Tip force controller input when subject to the continuous sinusoidal excitation of 5 ms−1 amplitude
at 1 Hz in r1 and r3 axis on the 50 m beam, with different weights used in control synthesis.
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Figure 5: The effect of tip force control input in suppressing the tip velocity when subject to a white noise
base excitation of u̇ =10 ms−2 on the 50 m beam, with different weights used in control synthesis.
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Figure 6: The effect of tip force control input in suppressing the tip velocity when subject to a 1-cycle
sinusoidal excitation of 5 ms−1 amplitude on the 50 m beam, with different weights used in control synthesis.
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Figure 7: Convergence of root bending moment at V∞ = 55 ms−1 on the modified wing. Shown with a 1-cos
distributed force of FMax = 15000 Nm−1 on the local transverse direction with ω = 5 rad s−1. Computed
with 6, 10 and 18 lowest frequency modes.
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Figure 8: Open- and closed-loop root bending moment on the modified wing when a 1-cos gust of VMax = 30
ms−1 is applied at V∞ = 55 ms−1.

0 5 10 15
−6

−5

−4

−3

−2

−1

0
x 10

4

Time normalised with ω
−1

R
o

o
t 

b
e

n
d

in
g

 m
o

m
e

n
t 

n
o

rm
a

lis
e

d
 w

it
h

 V
m

a
x

 

 

Vmax=0.3m/s

Vmax=30m/s
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Disturbance is a 1-cos distributed force on the local transverse direction with ω = 5 rad s−1.
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Figure 10: Control surface deflection on the modified wing when a 1-cos gust of VMax = 30 ms−1 is applied
at V∞ = 55 ms−1.
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Figure 11: Closed-loop tip deflection on the modified wing when a 1-cos gust of VMax = 30 ms−1 is applied
at V∞ = 55 ms−1.
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Figure 12: Open- and closed-loop root bending moment on the modified wing when a 1-cos gust of VMax = 30
ms−1 is applied at V∞ = 65 ms−1.
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Figure 13: Control surface deflection on the modified wing when a 1-cos gust of VMax = 30 ms−1 is applied
at V∞ = 65 ms−1.
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