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Dynamic derivatives are used to represent the influence of the aircraft motion rates on

the aerodynamic forces and moments needed for studies of flight dynamics. The use of

computational fluid dynamics has potential to supplement costly wind tunnel testing.

The article considers the problem of the fast computation of forced periodic motions

using the Euler equations. Three methods are evaluated. The first is computation in

the time-domain which provides the benchmark solution in the sense that the time-

accurate solution is obtained. Two acceleration techniques in the frequency-domain

are compared. The first uses an harmonic solution of the linearised problem, referred

to as the Linear Frequency Domain approach. The second uses the Harmonic Bal-

ance method, which approximates the non-linear problem using a number of Fourier

modes. These approaches are compared for ability to predict dynamic derivatives and

for computational cost. The NACA 0012 aerofoil and the DLR-F12 passenger jet wind

tunnel model are the test cases. Compared to time-domain simulations an order of

magnitude reduction in CPU costs is achieved, and satisfactory predictions are ob-
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tained for cases with a narrow frequency spectrum and moderate amplitudes using the

frequency-domain methods.

Nomenclature

A = matrix in frequency domain equation

c = mean aerodynamic chord

Cm = pitching moment coefficient

Cm 0 = non-linear static pitching moment coefficient

C̄mα
= in-phase component of pitching moment coefficient

C̄mq
= pitching moment damping coefficient

CN = normal force coefficient

CN 0 = non-linear static normal force coefficient

C̄Nα
= in-phase component of normal force coefficient

C̄Nq
= normal force damping coefficient

D = matrix in harmonic balance equation

F [ψ(t)] = Fourier transform of quantity ψ(t); equivalent to ψ̃(j ω)

f = dimensional frequency

j = imaginary unit,
√
−1

k = reduced oscillation frequency, ω c/2U∞

M = freestream Mach number

nc = number of oscillatory cycles

nH = number of harmonics

R = residual vector

R (ω) = amplitude ratio of transfer function

s = wing semi-span

t = physical time

t∗ = non-dimensional time, t U∞/c
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U∞ = freestream speed

W = vector of conserved variables

∠ ψ̃(j ω) = phase angle of the Fourier transform of quantity ψ(t)

Greek

α = angle of attack

α0 = mean angle of attack

αA = amplitude of oscillatory motion

φ (ω) = phase angle between output and input

ω = oscillation frequency, 2 π f

Subscript

0 = mean value

A = amplitude

hb = harmonic balance

Superscript

̂ = Fourier coefficient

˜ = perturbation amplitude

I. Introduction

For flight dynamics, the aerodynamic model introduced by Bryan [1] is often used. The force

and moment dependency on flight and control states is expressed in linear form, with the coeffi-

cients referred to as aerodynamic derivatives. There are three types of derivative, static, dynamic

and control [2]. Dynamic derivatives are calculated from observing the response of aerodynamic

forces and moments to translational and rotational motions. Dynamic derivatives influence the

aerodynamic damping of aircraft motions and are used to evaluate the aircraft response and the

open-loop stability, e.g., short-period, Phugoid and Dutch roll modes.
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There are several possible sources of data for the generation of the aerodynamic model. Flight

testing the aircraft is the most realistic but also the most expensive of these methods [3]. Wind-

tunnel testing of scaled models is cheaper than flight testing. However, blockage, scaling and

Reynolds number effects together with support interference issues limit the proper modelling of the

full scale aircraft behaviour [4]. The third approach combines data sheets, linear aerodynamic theory

and empirical relations [5]. Due to simplicity, this method is in widespread use and is a common

choice to obtain aerodynamic characteristics in the conceptual design stage [6]. In the absence of a

background database, empiricism is strongly limited when confronted with novel configurations and

flight conditions dominated by non-linear aerodynamic effects.

A possible useful addition to the high-fidelity/high-cost of testing and low-fidelity/low-cost of

semi-empirical approaches is Computational Fluid Dynamics (CFD), which represents the state of

the art in predicting non-linear flow physics [7]. The computation of static stability derivatives

can be done with off-the-shelf CFD tools. However, the generality realized in a CFD simulation

comes at the expense of computational cost. The use of high-fidelity CFD simulations to cover a

large parameter space of conditions is costly, and, particularly, so when tackling unsteady problems.

Extensive computer resources are required for time-domain simulations for the prediction of dynamic

derivatives [8]. Recent studies [9–12] demonstrated the desirability to complement and replace

engineering methods with CFD.

A common wind-tunnel testing technique for the prediction of dynamic derivatives relies on

harmonic forced-oscillation tests. After the decay of initial transients, the nature of the aerodynamic

loads becomes periodic. A time-domain simulation of this problem requires significant computational

effort. Several oscillatory cycles have to be simulated to obtain a harmonic aerodynamic response,

and a time-accurate solution requires a small time-step increment to accurately capture the flow

dynamics [13, 14]. Time-domain calculations support a continuum of frequencies up to the frequency

limits given by the temporal and spatial resolution, but dynamic derivatives are computed at the

frequency of the applied sinusoidal motion. It is therefore worthwhile to consider a frequency-

domain formulation to obtain a good estimate of the derivatives at reduced computational cost. The

computational methods used in this paper, the Harmonic Balance (HB) and the Linear Frequency
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Domain (LFD) methods, provide the ability to efficiently approximate the aerodynamics resulting

from small, periodic and unsteady perturbations of the geometry of an aircraft configuration. By

resolving only the frequencies of interest, the computational cost of dynamic derivatives is greatly

reduced. Initially developed in the field of turbomachinery [15, 16], the HB and LFD methods have

been subsequently used for external aerodynamics applied to aircraft problems [17–19]. Murman [20]

envisioned the exploitation of the periodicity to reduce the cost of computing dynamic derivatives.

The concept of an adaptive HB method has also been put forward, with good success [21, 22]. A large

amount of research has been devoted to applications of the HB and the LFD technologies to a broad

spectrum of engineering disciplines. There is the question of the influence of the approximations

on the derivative predictions. The evaluation of the computational benefits and the predictive

limitations are the subject of this study. The contribution of this work is to look at the adequacy

of frequency domain methods for the rapid calculation of dynamic derivatives for use in flight

dynamics analysis. An extension on previous work to include key flow regimes is also done. This

enables a thorough investigation of the dependencies of dynamic derivatives on model parameters

to be performed, and to assess the limitations of the tabular aerodynamic models traditionally used

by flight dynamicists [23].

The article begins with a description of the time-domain, HB and LFD methods. Results are

then presented to compare the dynamic derivative predictions obtained from the time-domain and

from the acceleration methods. Two test cases are considered for transonic flows. Conclusions are

then given.

II. Numerical Approach

The HB and the LFD methods compared in the current work are implemented in different

CFD codes. The approach taken in the results section is to benchmark each against the underlying

time-domain flow solver. In the current section the underlying flow solvers are first summarised,

and then the HB and LFD methods described.
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A. Time-Domain Formulations

1. University of Liverpool (PMB)

The main features of the Parallel Multiblock (PMB) solver are described in Badcock et al. [24]

A fully implicit steady solution of the Reynolds-Averaged Navier-Stokes (RANS) or Euler equations

is obtained by advancing the solution forward in time by solving the discrete non-linear system of

equations

Wn+1 − Wn

∆ t∗
= −R

(
Wn+1

)
(1)

The term on the right hand side, called the residual, is the discretisation of the convective terms,

given here by Osher’s approximate Riemann solver [25], MUSCL interpolation [26] and Van Al-

bada’s limiter. Equation (1) is a non-linear system of algebraic equations which is solved by an

implicit method [24], the main features of which are an approximate linearisation to reduce the

number of non-zero matrix entries and the condition number of the linear system, and the use of a

preconditioned Krylov subspace method to calculate the updates.

The steady state solver is applied to unsteady problems within a pseudo time stepping itera-

tion [27] which at each real time step is written as

[(
1

∆t∗
− 3

2∆ t

)
I +

∂R

∂W

]
∆W = −

(
R(W) +

3Wn+1 − 4Wn + Wn−1

2∆t

)
(2)

where ∆t is the real time step. Periodicity can be used to approximate the initial solution for the

pseudo time stepping at each real time step. At each iteration a file is written to the local disk

with the converged solution at that real time step. On the next cycle this file is read to provide the

initial solution for the pseudo time stepping, and on convergence to the next real time solution, the

original file is overwritten with the updated solution. As the solution approaches a periodic state

the pseudo time stepping converges quickly because it starts from an excellent initial guess. In this

way results can be obtained from time marching in a very efficient manner.

2. German Aerospace Center (TAU)

The DLR TAU code [28, 29] is a modern massively parallel software system for the simulation

of flows around complex geometries from low subsonic to hypersonic flow regimes. The different
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modules of TAU can be used stand-alone or in a more efficient way within a Python scripting

framework which allows for inter-module communication without file I/O by using common memory

allocations. The unsteady compressible RANS flow solver is based on hybrid unstructured grids with

a finite volume discretization. The flow solver uses an edge-based dual-cell approach, either cell-

vertex or cell-centred, employing either a second-order central scheme or a variety of upwind schemes

with linear reconstruction for second order accuracy.

As for the PMB solver, unsteady simulations use Jameson’s dual-time-stepping method [27] to

integrate the equations in the time-domain. Additionally, the solver respects the geometric conserva-

tion law, and bodies which are deforming and in arbitrary motion can be simulated. For the pseudo

time stepping various explicit Runge-Kutta and a semi-implicit Lower-Upper Symmetric Gauss-

Seidel (LU-SGS) scheme are available for enhancing convergence acceleration with a geometrical

multi-grid algorithm and local time-stepping.

TAU includes an adjoint-solver for gradient based numerical shape optimization. The discrete

adjoint method [30] consists of the explicit construction of the exact flux Jacobians of the spatial

discretization with respect to the unknown flow variables allowing the adjoint equations to be

formulated and solved, and is an important part of the linear frequency domain solver and error

estimation methods.

3. University of Glasgow (COSA)

The structured multi-block Navier-Stokes solver COSA is an explicit multigrid finite volume cell-

centered code. It solves the integral conservation laws in generalized curvilinear coordinates making

use of a second order discretisation method. The discretisation of the convective fluxes is based

on Van Leer’s MUSCL extrapolations and the approximate Riemann solver of Roe’s flux difference

splitting. The discretisation of the viscous fluxes uses centered finite differences. The set of nonlinear

algebraic equations resulting from the spatial discretisation of the conservation laws is solved with

an explicit approach based on the use of a four-stage Runge-Kutta smoother. The convergence rate

is greatly enhanced by means of local time-stepping, variable-coefficient central implicit residual

smoothing and a full approximation storage multigrid algorithm. When solving problems at very
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low flow speed, computational accuracy and high rates of convergence are maintained by using a

carefully designed low-speed preconditioner [31].

In the case of unsteady problems, Jameson’s dual-time-stepping method [27] is used to integrate

the equations in the time-domain. The interested reader is referred to references [31–33] for further

details on the COSA solver and a thorough validation of its inviscid and viscous capabilities for

steady and unsteady problems.

B. Frequency-Domain Methods

1. Harmonic Balance Method

As an alternative to time marching, the Harmonic Balance method [34] allows for a direct

calculation of the periodic state. Write the semi-discrete form as a system of ordinary differential

equations

I(t) =
dW(t)

dt
+ R(t) = 0 (3)

Consider the solution vector W and residual R to be periodic in time and a function of ω,

W(t) ≈ Ŵ0 +

NH∑

n=1

(
Ŵan

cos(ωnt) + Ŵbn sin(ωnt)
)

(4)

R(t) ≈ R̂0 +

NH∑

n=1

(
R̂an

cos(ωnt) + R̂bn sin(ωnt)
)

(5)

giving a system of NT = 2NH+1 equations in NT unknown harmonic terms, which can be expressed

as

ωAŴ+ R̂ = 0 (6)

where A is a NT × NT matrix containing the entries A(n+ 1, NH + n+ 1) = n and A(NH + n+

1, n+ 1) = −n, and Ŵ and R̂ are vectors of the Fourier coefficients.

The difficulty with solving Eq. (6) is in finding a relationship between R̂ and Ŵ. To avoid this

problem, the system is converted back to the time domain. The solution is split into NT discrete
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equally spaced sub-intervals over the period T = 2π/ω

Whb =





W(t0 +∆t)

W(t0 + 2∆t)

...

W(t0 + T )





Rhb =





R(t0 +∆t)

R(t0 + 2∆t)

...

R(t0 + T )





(7)

where ∆t = 2π/(NTω). Then there is a transformation matrix E (see Eq. 19) such that

Whb = E
−1 Ŵ, Rhb = E

−1 R̂ (8)

and combining with Eq. (6) gives

ωAEWhb + ERhb = 0

ωE
−1 AEWhb + E

−1
ERhb = 0

ωDWhb + Rhb = 0 (9)

where the components of D are defined by

Di,j =
2

NT

NH∑

k=1

k sin(2πk(j − i)/NT ) (10)

One can then apply pseudo-time marching to the harmonic balance equation

dWhb

dt
+ ωDWhb +Rhb = 0 (11)

The HB method was implemented within the structured PMB and COSA codes. The main difference

between the PMB and COSA implementations is that the former solves the equations with an

implicit method [35], whereas the latter adopts an explicit multigrid integration [36]. Reference [36]

presents a stabilization technique to handle the harmonic balance source term, ωDWhb, when

using an explicit numerical integration process. Such a stabilization method can be viewed as

the counterpart of that reported in reference [37], which instead applies to the case of implicit

integration. The parallelization of the COSA explicit multigrid HB solver is based on a hybrid

distributed (MPI) and shared (OpenMP) architecture, which is reported in reference [38].
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2. Linear Frequency Domain Method

The Linear Frequency Domain (LFD) method [39] is obtained by linearizing Eq. (6), in which

the residual R̂ is considered as a function of the grid point locations, x, the grid point velocities, ẋ,

and flow solution, W. Assuming an unsteady motion with a small amplitude, the unsteady terms

can be expressed as a superposition of a steady mean state and a perturbation, which is expressed

by a Fourier series

W(t) ≈ Ŵ0 + W̃ (t) , ‖W̃‖ ≪ ‖Ŵ0‖

x(t) ≈ x̂0 + x̃ (t) , ‖x̃‖ ≪ ‖x̂0‖

ẋ(t) ≈ ˙̃x (t)

When linearizing about the steady mean state, Eq. (6) results in the following complex-valued linear

system of equations for the n-th mode index


∂R / ∂W ω n I

−ω n I ∂R / ∂W








Ŵan

Ŵbn





= −




∂R / ∂x ω n∂R/∂ẋ

−ω n∂R/∂ẋ ∂R/∂x








X̂an

X̂bn





(12)

Derivatives of the residual are all evaluated at the steady mean state (Ŵ0, x̂0). This system of

equations can be written in the form of a linear equation, Ax = b.

The Jacobian ∂R/∂W has been obtained previously in the context of the discrete adjoint

method by analytic differentiation of the flow solver. Considerable attention has been given to

ensure that the evaluation of the Jacobian and matrix-vector products involving the Jacobian are

efficient in terms of memory and time, and require no more than four times the memory requirement

of the non-linear code. The frequency domain residual requires two products of a vector with the

Jacobian, and hence a single evaluation is approximately 20 to 60% more expensive than a non-linear

residual evaluation on the same case.

The terms ∂R/∂x and ∂R/∂ẋ, which arise from the prescribed periodic deformation of the

grid, are evaluated using central finite differences

∂R

∂x
x̃ ≈

R
(
Ŵ0 , x̂0 + ǫ x̃ , 0

)
− R

(
Ŵ0 , x̂0 − ǫ x̃ , 0

)

2 ǫ
(13)

∂R

∂ẋ
˙̃x ≈

R
(
Ŵ0 , x̂0 , ǫ ˙̃x

)
− R

(
Ŵ0 , x̂0 , − ǫ ˙̃x

)

2 ǫ
(14)

where ǫ is a small number chosen to balance truncation and rounding errors.
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C. Method of Data Analysis

Modeling the aircraft aerodynamics for studies of flight dynamics commonly assumes that the

aerodynamic loads depend only on the instantaneous values of the motion variables, and vary

linearly with these variables. Based on this formulation, small amplitude oscillatory tests are used

to estimate the dynamic derivatives. To illustrate, a forced sinusoidal motion around the pitch axis

defines the angle of attack as a function of time

α = α0 + αA sin (ω t) (15)

It is also convenient to introduce the non-dimensional reduced frequency of the applied motion,

k = ω c/(2U∞), based on the mean aerodynamic chord and freestream speed. Within the linearity

assumption, the aerodynamic loads are harmonic at the same frequency of the forced motion and

with a phase lag with respect to the motion variables. The dynamic derivatives are then obtained

from the time histories of the loads over nc oscillatory cycles [13]

C̄iα ≡ Ciα − k2 Ciq̇ =
2

αA nc T

∫ nc T

0

∆Ci (t) sin (ω t) dt (16)

C̄iq ≡ Ciα̇ + Ciq =
2

k αA nc T

∫ nc T

0

∆Ci (t) cos (ω t) dt (17)

for i = L,D, and m

where ∆Ci represents the increment in the longitudinal aerodynamic coefficients with respect to

the mean value during the applied pitching sinusoidal motion. In conventional oscillatory tests,

only composite derivatives, which include a combination of the pure rotation (due to q) and vertical

acceleration effect (due to α̇), can be measured. The effects of the angle of attack change and

the pitching rate can be separated by performing heave oscillations. In this case, the variations of

the aerodynamic loads are caused by pure angle of attack change, and estimations of the Ciα̇ are

obtained. Note that in Eq. (16), the static derivative Ciα can be computed from a set of steady-state

runs.

The numerical integration of Eqs. (16) and (17) can be achieved using quadrature methods.

An alternative approach is based on the solution of a least squares problem. Further details on

these techniques can be found, for example, in Da Ronch et al. [13] A post-processing utility was
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implemented for the extraction of the zeroth and first harmonic flow solution computed from time-

domain solutions. This was also used for the results presented using the LFD solver.

A different approach was adopted for the HB solver, whose solution is computed at NT =

2NH + 1 equally spaced points in time over one cycle. Then

W (x, y, z, t) ≈ Ŵ0 (x, y, z) +

NH∑

n=1

(
Ŵan

(x, y, z) cos (ω n t) + Ŵbn (x, y, z) sin (ω n t)
)

(18)

where Ŵ0, Ŵan
and Ŵbn are the Fourier coefficients of a flow variable, W (x, y, z, t). This

expression is easily re-written in matrix form as





W1

W2

...

WNT





︸ ︷︷ ︸
Whb

=




1 cos (ω t1) sin (ω t1) . . . cos (NH ω t1) sin (NH ω t1)

1 cos (ω t2) sin (ω t2) . . . cos (NH ω t2) sin (NH ω t2)

...
...

...
. . .

...
...

1 cos (ω tNT
) sin (ω tNT

) . . . cos (NH ω tNT
) sin (NH ω tNT

)




︸ ︷︷ ︸
E−1





Ŵ0

Ŵa1

Ŵb1

...

ŴaNH

ŴbNH





︸ ︷︷ ︸
Ŵ

(19)

where Whb is the vector of the flow variable at 2NH + 1 equally spaced points in time over one

period, Wl = W(t0 + l∆t), and E
−1 is the matrix that is the inverse discrete Fourier transform

operator. The time instances at which the HB solution is known are denoted by ti = t0 + i∆ t,

i = 1, 2, . . . , NT . The Fourier coefficients of the flow variable are computed as Ŵ = EWhb.

Dynamic derivatives, as well as the real and imaginary parts of the flow variable, are determined

directly from the Fourier coefficients without any additional transformation in the time domain.

Finally, it is worth noting that to determine the stability behaviour of the free-to-pitch os-

cillations, the work done by the fluid on the airframe over one single period can be formulated

as

E =

∫ α(T )

α(0)

∆Cm (α) dα

= αA ω

∫ t0+T

t0

(
Ĉma1

cos (ω t) + Ĉmb1 sin (ω t)
)
cos (ω t) dt

= 2 π αA Ĉma1
(20)
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Table 1 Description of the AGARD CT5 conditions for the NACA 0012 aerofoil [40]

Parameter Value

M 0.755

α0 0.016 deg

αA 2.51 deg

k 0.0814

A Fourier series expansion for the pitching moment coefficient, ∆Cm (t) = Ĉma1
cos (ω t) +

Ĉmb1 sin (ω t), was used and the orthogonality of the trigonometric functions (for example,

∫ a

0 cos
(
π x
a

)
cos

(
π x
a

)
dx = a

2 ) was used to simplify the integral expression above. The result in

Eq. (20) shows that the work done by the fluid is proportional to the real part of the aerodynamic

moment, Ĉma1
. Observing further that Eq. (17) is similar to calculating the cosine term of a Fourier

series, it is apparent how the damping term, C̄mq
, is proportional to the real part of the aerodynamic

moment coefficient, Ĉma1
. Hence, for αA > 0, the free pitching oscillation is classified as unstable

if Ĉma1
> 0 (equivalently, C̄mq

> 0), or stable if Ĉma1
< 0 (equivalently, C̄mq

< 0).

III. Two-Dimensional Case

Experimental data for the NACA 0012 aerofoil undergoing oscillatory pitch motions are avail-

able [40]. Measured quantities include the pressure at 30 locations distributed on the aerofoil surface.

These data were collected at several time intervals. No transition tripping was applied in the exper-

iments, and corrections corresponding to a steady interference have been applied to the measured

quantities. There were some questions about unsteady interference effects on the experimental data.

However, the deviation between numerical and experimental data is not the emphasis of the present

work which is instead on the quality of the HB and LFD results compared to the time-domain

predictions.

This paper focuses on the AGARD CT5 case because it is transonic with strong non-linearities

in the aerodynamic loops arising from shock wave motions. The flow conditions for the case CT5

are summarized in Table 1.
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Table 2 NACA 0012: grid influence on static and dynamic derivatives obtained from the

time-domain PMB solution for the AGARD CT5 conditions

CN 0 C̄Nα C̄Nq Cm 0 C̄mα C̄mq

Coarse 3.51· 10−3
7.66 −3.71· 101 −7.58· 10−5

−1.10· 10−1 -3.07

Medium 3.51· 10−3
7.66 −3.72· 101 −6.98· 10−5

−1.03· 10−1 -3.14

Fine 3.51· 10−3
7.66 −3.72· 101 −7.15· 10−5

−1.03· 10−1 -3.14

A. Numerical Setup

A preliminary study was made to test that solutions presented are independent of the grid

used. Three sets of grids were generated. The two-dimensional domain extends fifty chords from

the solid wall to the farfield. A coarsest grid had a total number of 13068 points, with 132 nodes

on the aerofoil, and 36 in the normal direction. The wake behind the aerofoil was discretized

using 36 points in the streamwise direction. A medium grid consisted of 32028 grid points, 212

nodes were distributed on the aerofoil, 51 points were used in the normal direction and along the

streamwise direction for the wake. The finest grid was obtained with a total of 37180 grid points.

The structured grids consisted of six blocks, and were converted to an unstructured format for use

with the unstructured solver TAU.

Note that the three grids were used in combination with each time-domain solver, and numerical

results were compared with tunnel measurements under static [41] and unsteady conditions. Table 2

conveys the grid influence on the dynamic derivatives of the normal force and moment coefficients.

Aerodynamic data of the force coefficient show little sensitivity to the grid used. Values of Cm 0 can

be considered numerically nil and thus grid invariant. For the computations on the medium grid,

dynamic derivatives of the moment coefficient are observed to be identical to the respective values

obtained using the finest grid. Some deviations are identified in the case of the coarsest grid. Based

on this comparison, results presented hereafter are for the medium grid.

Unsteady simulations were run for three periods using 128 time-steps per cycle. A time-step

study was also performed for the unsteady PMB solver, and details are given in Sec. III D. The choice

of the numerical parameters led to well converged solutions in all cases. For TAU, the CFL number

used was 1.5 in combination with a "4w" multigrid cycle. For the LFD, the LU-SGS scheme with
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multigrid was used. The COSA pair used three multigrid levels, performing 10 smoothed Runge-

Kutta cycles on the coarsest level, and 3 on the finest levels. The CFL number was 4 for both the

time-domain and the harmonic balance solver. The implicit CFL number for the PMB solver was

500. A Block Incomplete Lower Upper (BILU) factorization was used with no fill-in for the linear

solver preconditioner.

B. Validation

The Euler solutions presented are for the medium grid, shown in Fig. 1. The flow for the

AGARD CT5 conditions is non-linear, with a shock appearing in the leading edge region and mov-

ing downstream for increasing angle of attack. The shock continues downstream until approximately

forty-five per cent of the chord. Then the shock returns upstream close to the leading edge. The

same pattern is repeated on the opposite side of the aerofoil. The flow remains attached throughout

the cycle of unsteadiness. Since this case features a strong shock on the upper and lower surface,

the question is whether the presence of the dynamic shock has a negative impact on the accuracy

of the frequency-domain solvers. First, a validation study of the unsteady time-accurate solutions

was performed before attempting to compare the spectral methods to the underlying CFD solvers.

Figure 2 illustrates the comparison of numerical predictions of integrated aerodynamic loads with

experimental data. The initial transient was removed from the numerical solutions, and two ar-

rows indicate the time evolution. If the arrows are oriented in the counter-clockwise direction, the

contribution from the dynamic derivative is negative, and vice versa. Results compare well for all

time-accurate solutions. It is seen that the force coefficient is harmonic with a phase lag with re-

spect to the forced motion. No contribution from higher harmonics can be detected. The moment

coefficient is influenced by the instantaneous location of the moving shock wave due to its moment

arm with respect to the reference point. A favourable agreement between the tunnel measurements

and the numerical solutions is observed.

Measurements of the instantaneous pressure coefficient distribution were taken at several time

instances in one cycle of unsteadiness, and the nearest angle at which numerical results were com-

puted was used for comparison. Numerical solutions are compared with tunnel measurements in
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Fig. 1 Medium grid used for the NACA 0012 aerofoil (212× 51)
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(b) Pitching moment coefficient

Fig. 2 NACA 0012: predictions of unsteady time-accurate Euler solutions (M = 0.755, α0 =

0.016 deg, αA = 2.51 deg, and k = 0.0814); experimental data from Landon [40]

Fig. 3. The numerical solutions agree well with each other, with minor deviations around the shock

wave. The overall performance and systematic variations from measurements are in line with other

independent numerical investigations, e.g., Batina [42] and Marques et al. [43].

For the range of test cases computed in Da Ronch et al. [13], the dependence of dynamic

derivatives on motion and flow conditions was reported. In the present study, the influence of the

amplitude of the forced-motion, αA, was examined for the conditions given in Table 1. Values of

amplitude presented are between 0.01 deg and 2.81 deg. The variation of the pitching moment
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Fig. 3 NACA 0012: instantaneous pressure coefficient distribution at α = −2.00 deg for in-

creasing angle compared to experimental data of Landon [40]

coefficient dynamic derivatives is shown in Fig. 4. Dynamic derivatives are nearly constant for small

values of oscillatory amplitude, and exhibit a significant variation for values of amplitude larger than

approximately 1.0 deg. Predictions obtained using the LFD solver are included in the figure as a

dotted line, and are closer to the results obtained using time-domain calculations for small amplitude

values. The agreement of the LFD solution with time-domain data is considered adequate for small

amplitude values, with an error in the prediction of few percentage points. Increasing the oscillatory

amplitude of the forced-motion above approximately 1.0 deg causes the periodic appearance and

disappearance of the shock wave on the aerofoil surface, with a considerable impact on dynamic

derivatives. Note that dynamic derivatives computed at the nominal conditions of the AGARD CT5

are also included in the figure.

C. Frequency-Domain Results

To demonstrate the convergence of the HB method to the unsteady solution, cases were run

using up to 7 harmonics. Figure 5 shows the loops of the integrated loads against the instantaneous

angle of attack. The time evolution in the force coefficient was observed to be linear and harmonic

with the forced variation in the motion variable. This reflects the satisfactory agreement achieved

by the frequency-domain methods using one Fourier harmonic, as illustrated in Fig. 5(a). It also

suggests that the motion of the shock wave is harmonic and lags behind the angle of attack change.

17



αA [deg]

C
m

α+
C

m
q.

10-2 10-1 100-0.15

-0.1

-0.05

0

0.05

0.1

Time Domain
LFD
AGARD CT5

(a) In-phase component, C̄mα

αA [deg]

C
m

q
+C

m
α.

10-2 10-1 100

-4

-3.6

-3.2

-2.8

-2.4

Time Domain
LFD
AGARD CT5

(b) Out-of-phase component, C̄mq

Fig. 4 NACA 0012: influence of amplitude of oscillatory motion, αA, on the pitching moment

coefficient dynamic derivatives (M = 0.755, α0 = 0.016 deg, and k = 0.0814)

Increasing the number of Fourier modes in the HB solution had little effect on the result, as most

of the energy is at the frequency of the applied motion. The moment coefficient is illustrated in

the remaining figures for each solver pair, separately. Comparing the harmonic balance solutions

obtained using the PMB-HB and COSA-HB highlights the similarity in the results from the two

solvers, as shown in Figs. 5(b) and 5(c). Observe that including the third Fourier mode in the

HB solution has a far larger impact on improving the correlation to the reference solution than

adding the second mode. This reflects the frequency spectrum of the moment coefficient, due to

the flow conditions and symmetry in the aerofoil geometry, as described below. Higher modes are

not included, but they closely overlap the reference solution. The LFD solution is illustrated in

Fig. 5(d), and indicates a degraded prediction of the moment dynamic dependence. Consistent with

the other data, the LFD predicts a large hysteresis but the loop is rotated in the opposite direction.

This is quantified calculating the system response between the prescribed angle of attack and the

aerodynamic loads. Let us denote x and y, respectively, the input and the output of interest. Then,

the system response is

G (j ω) =
F [y (t)]

F [x (t)]
= R (ω) ej φ(ω) (21)
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where R (ω) and φ (ω) indicate, respectively, the amplitude ratio and the phase lag, and are defined

as

R (ω) =
‖ỹ (j ω) ‖
‖x̃ (j ω) ‖ (22)

φ (ω) = ∠ ỹ (j ω) − ∠ x̃ (j ω) (23)
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Fig. 5 NACA 0012: normal force and pitching moment coefficients dynamic dependence

(M = 0.755, α0 = 0.016 deg, αA = 2.51 deg, and k = 0.0814)

Values from the one-mode HB and the LFD solutions are summarized in Table 3, along with

the reference solution. In the table, the subscript and superscript indicate, respectively, the input
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Table 3 NACA 0012: amplitude ratio and phase angle of the fundamental harmonic between

the input, α, and the outputs, CN and Cm

RCN
α φCN

α , [deg] RCm
α φCm

α , [deg]

Time Domain 0.144 -21.6 4.80 · 10−3 -112.1

PMB-HB, 1 Mode 0.143 -21.5 4.86 · 10−3 -112.1

COSA-HB, 1 Mode 0.145 -21.4 4.98 · 10−3 -116.3

LFD 0.145 -21.5 5.60 · 10−3 -85.2

and the output, and the phase angle is measured in degrees. Apart from the satisfactory agreement

observed for the force data, a discrepancy is detected in the phase angle of the moment coefficient.

For a sinusoidally varying input, a phase angle of -90 deg corresponds to shifting the response to a

cosine function. The positive mean curve slope of the LFD solution in Fig. 5(d) reflects a phase lag

in the moment dynamic dependence greater than -90 deg. On the contrary, a larger phase angle, in

absolute value, reflects a negative mean curve slope, consistent with the one-mode HB solution.

To get further insights on the performance of the frequency-domain methods, the first harmonic

unsteady surface pressure coefficient distribution is presented in Fig. 6. Results on the left side

of the figure are for the one-mode HB and the LFD solutions, and the axis of rotation is also

illustrated, while the right side illustrates the effect of retaining higher Fourier modes. Due to

the similarity with the trends defined by the PMB-HB results, the COSA-HB solutions presented

include only one Fourier mode. Figure 6(a) shows the zeroth harmonic, that is, the average value

of the pressure coefficient through a cycle of unsteadiness. The HB solutions are identical for the

two solvers, and are significantly different from the LFD solution. The asymmetric shock pattern

on the lower and upper surfaces is attributable to the use of one Fourier mode and the actual

location of the three time instances computed, which form a solution base sampled at uniformly

spaced temporal intervals. Note that two snapshots feature a shock wave on the lower side, and

on the upper surface for one snapshot, giving the over-prediction of the shock strength on the

lower side and the under-prediction on the upper surface, in combination with a more upstream

and downstream location, respectively. The mean solution of the LFD method corresponds to a

steady-state analysis, and shows a good agreement away from the reference shock location. The
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dynamic conditions of the prescribed forced motion moves the averaged shock position backward

from its static position, determined at the mean angle of attack, by nearly twenty per cent of the

aerofoil chord. Convergence to the time-accurate solution is obtained when increasing the number

of modes in the HB method, as shown in Fig. 6(b). The real and imaginary parts, shown in

Figs. 6(c) and 6(e), respectively, exhibit the already mentioned asymmetric pattern of the one-mode

HB solution. Large spikes in the LFD solution are located around the steady-state shock position,

and indicate a linear harmonic motion of the shock wave. The results for increasing number of

harmonics are illustrated in Figs. 6(d) and 6(f). Note the different vertical scales used with respect

to the prior set of corresponding figures. While consistently converging to the time-accurate solution,

the rate of convergence is hindered by oscillations around the shock. Considering that three modes

were adequate to approximate the moment dynamic dependence, this case illustrates the greater

difficulty in converging a local quantity than an integrated one.

Table 4 summarizes the dynamic derivatives for the force and moment coefficients. A satisfac-

tory agreement for the force dynamic derivatives is noted. For the moment values, the PMB-HB

results illustrate that the one-mode solution provides a good estimation of the information needed

for flight dynamics. The predictions of the LFD are reasonable for the aerodynamic damping term,

while the in-phase component features a large inaccuracy. The contrasting sign reflects the ob-

servation that the moment loop was rotated in the opposite direction, indicating a longitudinal

static instability. A consideration is that the steady-state shock wave, shown in Fig. 6(a), is located

near the reference point at one quarter of the chord, and makes the moment data sensitive to any

upstream or downstream variation of the resulting centre of pressure.

The frequency spectrum of the moment coefficient is presented in Fig. 7. Data for the time-

domain solution are shown up to the seventh harmonic component. The LFD and the one-mode

HB solutions show a good agreement for the magnitude term. The phase angle of the LFD solution

differs by about thirty degrees from the HB counterpart. For the frequency range included, the

amplitude of any odd harmonic is lower than the amplitude of the accompanying even harmonic.

This arises from the symmetry of the aerofoil section and the nearly zero mean angle of attack.
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Fig. 6 NACA 0012: zeroth and first harmonic unsteady surface pressure coefficient distribu-

tion (M = 0.755, α0 = 0.016 deg, αA = 2.51 deg, and k = 0.0814)
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Table 4 NACA 0012: normal force and pitching moment coefficient dynamic derivatives (M =

0.755, α0 = 0.016 deg, αA = 2.51 deg, and k = 0.0814)

C̄Nα C̄Nq C̄mα C̄mq

Time Domain 7.66 −3.72· 101 −1.03· 10−1 -3.14

PMB-HB, 1 Mode 7.63 −3.70· 101 −1.04· 10−1 -3.17

PMB-HB, 2 Modes 7.63 −3.72· 101 −1.06· 10−1 -3.19

PMB-HB, 3 Modes 7.64 −3.72· 101 −1.02· 10−1 -3.14

PMB-HB, 4 Modes 7.65 −3.72· 101 −1.04· 10−1 -3.15

PMB-HB, 5 Modes 7.65 −3.72· 101 −1.03· 10−1 -3.14

PMB-HB, 6 Modes 7.65 −3.72· 101 −1.03· 10−1 -3.14

PMB-HB, 7 Modes 7.65 −3.72· 101 −1.03· 10−1 -3.14

LFD 7.73 −3.73· 101 0.27· 10−1 -3.93
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Fig. 7 NACA 0012: magnitude and phase of pitching moment coefficient (M = 0.755, α0 = 0.016

deg, αA = 2.51 deg, and k = 0.0814)

D. Computational Efficiency

Figure 8 conveys the computational efficiency of the spectral methods with respect to the under-

lying time-domain simulation. For the comparison, the solutions were obtained using 128 time-steps

per cycle and were simulated for 3 periods. In this case, the LFD solution was obtained in about

5% of the time of the corresponding time-domain solver. While achieving the largest computational
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saving time, a loss in accuracy was observed in the LFD-based predictions of dynamic derivatives.

With a performance similar to the LFD solver, the HB formulation was seen to be adequate for the

prediction of stability characteristics and local flow variables. By retaining more Fourier modes,

the HB method rapidly loses favor relative to solving the time-dependent equations. The com-

putational efficiency of the HB method depends on the numerical integration method. Using an

explicit integration strategy like the multigrid iteration implemented by COSA, the computational

cost for solving the HB equations grows linearly with the number of harmonics. This is because

the convergence rate of the multigrid solver is fairly independent of the number of harmonics and

the cost of each multigrid iteration is proportional to the number of harmonics. In the case of

the fully implicit integration of the HB equations implemented in the PMB code, conversely, the

computational cost associated with each iteration required to solve the linear system arising at each

step of the implicit integration is proportional to the square of the number of harmonics. Since

the overall number of linear iterations for solving the HB equations does not vary significantly with

the number of harmonics, the overall solution cost is proportional to the square of the number of

harmonics. These considerations explain why the COSA-HB solver becomes more efficient than the

PMB-HB solver when more than two harmonics are used.
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Fig. 8 NACA 0012: CPU time speed up of the frequency-domain methods with respect to

the underlying time-domain method

A detailed quantification of the computational efficiency of the HB method compared with the

24



underlying unsteady solution was undertaken for the PMB solver pair, and following the procedure

outlined in reference [44]. To assess the sensitivity of the temporal discretization used, unsteady

solutions were obtained using 8, 16, 32, 64, 128, 256, 512 and 1024 time-steps per oscillatory cycle.

All cases were run using the same solver parameters. To reduce the effects of the initial transient

on the solution, eleven cycles were simulated. The damping-in-pitch term was taken as the figure

of merit, which is of interest for this work. For each run, the dynamic term was determined from

the last cycle of the solution computed, and compared with the reference value obtained from the

most accurate simulation, that is, using 1024 time-steps. The norm

En = |C̄n
mq

− C̄1024
mq

| / |C̄1024
mq

| (24)

indicates the temporal error. The procedure was also adopted for the PMB-HB results, and the

seven-mode solution was assumed the reference solution. Figure 9(a) shows the error levels for

the two solvers. The intersection of the PMB-HB lines with the PMB curve indicates the temporal

resolution needed in the unsteady simulation to achieve an equivalent error level. To match the error

level defined by the one-mode PMB-HB solution, 50 time-steps per oscillation are required for the

time-domain simulation, increasing to 90 to guarantee a similar error level as for the three-mode HB

solution. A convergence study was then performed to identify the number of oscillatory cycles needed

to obtain asymptotic convergence. Results for the two time-steps are shown in Fig. 9(b). The curves

converge to an error level representing the minimum error achievable using the corresponding time-

step size. Convergence is observed after 3 oscillatory cycles for the larger time-step size, increasing

to 6 in combination with the finer step increment. Data are summarized in Table 5. It was found

that the execution time of the HB solution using one-mode is about 11 times faster than the time

required for the unsteady results. The time saving decreases to less than 3 times when three-modes

are retained in the solution. Increased work associated with the linear solver as the number of modes

is increased contributes to increased cost.

IV. Three-Dimensional Case

The second test case is for a civil passenger transport aircraft tested at the German Aerospace

Center (DLR), and referred to as the DLR-F12 model. Extensive tunnel investigations and nu-
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Fig. 9 NACA 0012: error norm in the prediction of the damping-in-pitch obtained using the

PMB solver pair; in (b), the term tsc indicates the number of time steps per cycle

Table 5 NACA 0012: time reduction of the PMB-HB solution compared to unsteady PMB

solution using the damping-in-pitch as the figure of merit; the terms tsc and nc indicate,

respectively, the number of time-steps per cycle and the number of oscillatory cycles

PMB-HB PMB Speed-Up

(tsc× nc)

1 Mode 50× 3 10.9

3 Modes 90× 6 2.6

merical simulations were made for low speeds and low angles of attack [39, 45–48]. The emphasis

in the current work is for a transonic cruise condition, which has been investigated in a previous

work [49] using the Euler and Reynolds-averaged Navier-Stokes equations. Given the large number

of investigations focussed on linear aerodynamics, it is disappointing that only the study detailed

in reference [49] looked at flow regimes of interest for a transport configuration.

A. Numerical Setup

Two Euler grids for the half-configuration of the wind tunnel model were used for the PMB and

TAU pairs, shown in Fig. 10. A structured grid including 300 blocks was generated with around 2

million grid points, and 1.8 million points were used for the unstructured grid. A detailed comparison
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Table 6 Description of the conditions for the DLR-F12 aircraft model

Parameter Value

M 0.73

α0 0.70 deg

αA 0.50 deg

k 0.034

h 6000 m

of the structured and unstructured grids can be found, for example, in Mialon et al. [46].

Calculations presented in this paper are for a cruise condition at an altitude of 6000 m, Mach

number of 0.73 and trim angle of attack of 0.7 deg. The analysis is performed on the clean config-

uration with undeflected control surfaces. This was considered a reasonable simplification because

the required trim elevator deflection is lower than one degree and, consistent with the traditional

mathematical formulation, forces and moments are expanded in a Taylor series around the equilib-

rium level flight condition to obtain the stability and control derivatives. Data for the oscillatory

pitching motion are summarized in Table 6. The mean aerodynamic chord of the wind tunnel model

is c = 0.2526 m. The rotation point and the model centre of gravity are coincident and located

at 46.7% of the fuselage length from the foremost point. The moment reference point is set at the

aircraft nose.

Unsteady simulations were run for three periods using 128 time-steps per cycle. Note that all

time-domain calculations were repeated for a smaller time-step that has twice the number of points

per cycle, with identical results obtained. For the TAU solver, a GMRES Krylov solver was used

in combination with a "3v" multigrid cycle as preconditioner at a CFL number of 10. The PMB

calculations were also run at a constant CFL number of 10. The HB method was run with one

Fourier mode only. The COSA solver was not run for the current configuration.

B. Results

Results obtained using the PMB and TAU solvers are illustrated in Fig. 11. Aerodynamic loops

are similar in shape, and in this case the shock motion does not introduce a large distortion from
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Fig. 10 Structured and unstructured grids for the DLR-F12 model

a harmonic time response, when compared with the aerofoil case. For the pitching moment, the

contribution from the dynamic derivative is negative, and the slope is also negative. This guarantees

that the aircraft is statically and dynamically stable in the longitudinal plane. When comparing

Figs. 11(b) and 11(d), a deviation in the values of the pitching moment at the lower end of the angle

of attack range can be detected, indicating some grid dependence in the solutions.

Frequency-domain calculations are illustrated for comparison to the underlying CFD solver in

Fig. 11. It is observed that the HB solution reproduces the force and moment dynamic dependence

well, whereas the LFD solution underpredicts the hysteresis in the moment data. As shown below,

this deficiency of the LFD is attributable to underpredicting the real part of the first harmonic

pressure coefficient distribution on the horizontal tail.
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Fig. 11 DLR-F12 model: normal force and pitching moment coefficients dynamic dependence

(M = 0.73, α0 = 0.70 deg, αA = 0.50 deg, k = 0.034, and h = 6000 m)

Stability characteristics relative to the nominal flight conditions are summarized in Table 7,

which includes static and dynamic derivatives. Frequency-domain results are in agreement with

the respective time-domain results, with the exception of the LFD method in the prediction of

the damping-in-pitch term. However, the HB solution performs well, with deviations within 7%

of the PMB time-domain values. A consideration is that the reduction of the hysteresis in the

aerodynamic loads for relatively small values of the reduced frequency leads to a difficulty in the

accurate prediction of the damping terms because of a reduction in the aerodynamic load increments.

This poses significant practical challenges for wind-tunnel testing and for numerical simulations [14,
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Table 7 DLR-F12 model: normal force and pitching moment coefficient dynamic derivatives

(M = 0.73, α0 = 0.70 deg, αA = 0.50 deg, k = 0.034, and h = 6000 m)

CN 0 C̄Nα C̄Nq Cm 0 C̄mα C̄mq

PMB 2.11· 10−1 7.59 1.17 −9.00· 10−1 -34.7 −20.1

PMB-HB, 1 Mode 2.11· 10−1 7.60 1.65 −8.99· 10−1 -34.7 −21.6

TAU 2.10· 10−1 7.16 2.80 −9.41· 10−1 -32.7 −28.1

LFD 2.10· 10−1 7.26 3.28 −9.41· 10−1 -33.1 −17.7

45]. Also note that differences in the force data computed by time-domain solvers are amplified in

calculating dynamic derivatives by a factor 1/k, where for this test case k = 0.034. While reducing

substantially the computational cost compared to a time-accurate solution, one single calculation

with a frequency-domain method provides both static and dynamic derivative information. In

this case, the frequency-domain solutions based on the HB and LFD methods were obtained in

approximately 3% of the time required for a time-accurate simulation. This corresponds to a speed

up of about 30. Due to the computational cost of the time-accurate method, an objective evaluation

of the computational efficiency of the frequency-domain methods, similar to that outlined for the

aerofoil case, was not performed.

Again, the zeroth and first harmonic of the pressure coefficient distribution at a spanwise section

Y/s = 0.148 is shown in detail in Fig. 12. The selected spanwise section intersects both wing and

horizontal tail, and features a periodically moving shock wave on the wing. The left and right

side of the figure illustrates, respectively, the wing and horizontal tail station. The steady-state

solution based on the LFD solver and the time-averaged solution are in good agreement, as seen

in Figs. 12(a) and 12(b). This is indicative of less significant dynamic effects due to the limited

oscillatory amplitude. Two considerations are noted for the real part of the first harmonic, shown

in Figs. 12(c) and 12(d). The contribution from the wing is much smaller than the contribution

which originates from the horizontal tail. This is expected because of the finite time to convect

downstream changes in aircraft attitude. On the horizontal tail, a difference between time-accurate

solutions occurs around the suction peak, where the formation of a shock wave of limited extent was

observed during part of the sinusoidal cycle. At this section, the LFD solution differs substantially
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from the reference solution, and this causes the underprediction of the hysteresis in the moment

loop observed in Fig. 11(d). This shows the limitations of the LFD method in cases featuring

dynamic non-linearities not present in the steady-state reference solution. A better correlation of

the frequency-domain methods to the underlying method is observed for the imaginary part. As

expected, the response on the wing is larger in this case when compared to the real part of the

pressure distribution.

V. Conclusions

The current work explored the capabilities and limitations of the Harmonic Balance and Linear

Frequency Domain methods in predicting aircraft stability characteristics in a computationally

efficient way. Two test cases were presented, a NACA 0012 aerofoil and a wind tunnel aircraft

configuration based on the DLR-F12 wind tunnel model. To stress the potential of the frequency-

domain methods in conditions of practical interest for aircraft applications, flow conditions were in

the transonic regime. For the formation of moving shock waves, the energy of aerodynamic modes

redistribute at higher frequencies than the predescribed frequency of motion. While a time-domain

calculation supports a continuum of frequencies up to the frequency limits given by the temporal

and spatial resolution, the Harmonic Balance and Linear Frequency Domain methods resolve only

a small subset of frequencies typically restricted to include one Fourier mode at the frequency at

which dynamic derivatives are desired.

For the aerofoil case, it was noted that the Harmonic Balance method was able to predict

dynamic derivatives very accurately. For the Linear Frequency Domain method, a loss in accuracy

may be experienced whenever amplitudes increase and moving shocks appear. In terms of pressure

distribution, convergence to time-accurate results was assessed for an increasing number of Fourier

modes in the Harmonic Balance solution. It was demonstrated that the dynamic conditions of the

prescribed forced motion moves the average shock position downstream from its static position by

nearly twenty per cent of the aerofoil chord. In this case, a loss in accuracy of the Linear Frequency

Domain method is expected. Numerical experiments for these cases demonstrate that the Harmonic

Balance and Linear Frequency Domain methods are an order of magnitude more efficient than
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Fig. 12 DLR-F12 model: zeroth and first harmonic unsteady surface pressure coefficient

distribution at Y/s = 0.148 (M = 0.73, α0 = 0.70 deg, αA = 0.50 deg, k = 0.034, and h = 6000 m)
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time-accurate methods.

Similar considerations were noted for a three-dimensional configuration based on the DLR-F12

wind tunnel model, for which a comparison of static and dynamic stability derivatives was presented.

One single calculation with a frequency-domain method provides both static and dynamic derivative

information at a fraction of the calculation time of a time-accurate simulation. In this case, the cost

of the frequency-domain method was approximately 3% of the unsteady counterpart.
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