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A procedure is introduced to construct 1-D geometrically-nonlinear structural dynam-
ics models from built-up 3-D �nite-element solutions. The nonlinear 1-D model is based
on an intrinsic form of the equations of motion, that uses beam velocities and internal
forces as primary degrees of freedom. It is further written in modal form, which yields a
description of the beam dynamics through ordinary di�erential equations with quadratic
non-linearities. We show that the evaluation of the coe�cients in these nonlinear equa-
tions of motion does not require the generation of a beam �nite-element model. Instead,
they are directly identi�ed in the 3-D model through a process of static condensation of
the dynamics on nodes de�ned along along spanwise stations, as it is done in aircraft dy-
namic load analysis. In fact, the method exploits the multi-point constraints of linear load
models, that are normally used to obtain sectional loads, and we show how it can be inte-
grated in full-vehicle aeroelastic analysis. Finally we illustrate this approach on an isotropic
cantilever box beam modelled using shell elements.

Nomenclature

c(s) cross-sectional compliance matrix
F(s; t) Beam internal forces in material coordinates
f1(s; t) Applied forces/moments per unit length
V(s; t) Beam translational velocities in material coordinates
Ka Sti�ness matrix in reduced set of FE problem
M(s; t) Beam internal moments in material coordinates
Ma Mass matrix in reduced set of FE problem
m(s) cross-sectional mass matrix
q1(t) intrinsic modal coordinates (velocity component)
q2(t) intrinsic modal coordinates (internal force component)
s curvilinear coordinate along reference line
t time
x1(s; t) local velocities state vector
x2(s; t) internal force/moment state vector
�j(s) Mode shape j in intrinsic degree of freedom (velocities/forces)
�aj Discrete mode shape j in reduced set of FE problem

(s; t) Beam rotational velocities in material coordinates
!j Natural frequency of mode j
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I. Introduction

The aeroelastic analysis of the new generation of very-long-endurance UAVs, with exible high-aspect-
ratio wings, requires e�cient computational models that are able to account for geometrically-nonlinear
structural e�ects. They are not captured by the standard linear methods based on the natural vibration
modes of the structure, and the common approach for over a decade has been to construct purpose-built
models from scratch with nonlinear beam elements and lifting-line aerodynamics.1{5 While this approach
has provided substantial insight into the dynamic response of Very Flexible Aircraft (VFA), including the
coupling with the ight dynamics, it is also based on a vehicle representation of much lower �delity than
the (linear) aeroelastic tools commonly used in industrial applications (e.g., NASTRAN or ZAERO). Firstly,
unsteady aerodynamics based on 2-D Theodorsen-type modelling does not include spanwise aerodynamic
interference, interaction between di�erent aerodynamic surfaces, or the e�ect of bodies, as the doublet-lattice
method (DLM) does. This can be overcome {for the case of large wing displacements{ by using generic time-
domain panel methods, such as the the unsteady vortex-lattice method (UVLM).6 It uses the same level of
�delity, and indeed the same panel discretization on the lifting surfaces, of the DLM while accounting for
the actual wing kinematics. UVLM solutions are available either in time-marching solutions7,8 or in discrete
state-space form9 (A pending problem is, however, the ability to capture wing stall in the dynamic response
to gust or other load events, but this issue is common to all methodologies based on potential ow theory).

A second compromise on the existing nonlinear VFA models is the �delity of the beam-based structural
dynamics model. While substantial e�ort has been done in the development of geometrically-exact composite
beam theories and their integration into full-vehicle modelling, the constitutive relations (i.e., the matrices
of mass and sti�ness per unit length) are based on either estimates of section moments of inertia or purpose-
built homogenisation tools based on either cross-sectional10 or unit-cell11 analysis. However, none of those
procedures currently links to the actual detailed 3-D �nite-element (FEM) model of the vehicle which are
built, and re�ned, during several loops in the load design cycle.

A basic question that remains to be answered is then how the nonlinear analysis of exible aircraft
dynamics, which have so far been carried out at the conceptual design level can be adopted in subsequent
stages of the design cycle. A common view, is that the mismatch between the (nonlinear) composite beam
models for conceptual design and the built-up (linear) 3-D FE models routinely used by aircraft designers
in industrial setting is indeed very large. However, there are several practical aspects that bring 3-D FE
results much closer to a beam description in typical dynamic loads and aeroelastic analysis on (needless to
say) high-aspect-ratio-wing aircraft:

� Firstly, the low-frequency vibration modes are indeed bending (in-plane or out-of-plane) and torsion
modes. This is clearly a beam concept;

� Secondly, wing loads are evaluated in terms of resultant forces and moments (another beam concept)
at varying locations, commonly known as monitoring stations, along the wing span.

� A �nal consideration is that production models for dynamic loads and aeroelasticity often use lumped
masses to model inertia, and those are located along the longitudinal axes of wings, fuselage and tail
(although also at the engines, landing gear, etc.). The nodes where they are located become the basis
for static condensation of the equations before the evaluation of natural modes.

If a linear beam model (a stick model) of the vehicle were to provide a good approximation to the low-
frequency modes and a good estimation of the dynamic loads at the monitoring stations, then one could
safely replace the original model by the beam equivalent. Indeed such stick models have long been used in
aeroelastic design and provide good accuracy that for large enough wing aspect ratios.12 The obvious next
step is to use geometrically-nonlinear extensions of those beam models to study dynamic loads with large
wing excursions. Those beam models are clearly more tractable for nonlinear analysis that direct use of
the original 3-D FEM model, but they still have much higher complexity than the linear modal equations.
To overcome this, this paper will show a procedure by which the �delity of the original 3-D linear FEM
model is preserved (indeed it uses directly its \exact" linear modes) while introducing the non-linearities as
higher-order corrections on a particular description of the modal equations of motion.

The �rst step will be to identify a suitable nonlinear composite beam theory. Among the myriad of
solutions in the literature, intrinsic formulations13,14 will be particularly useful to our goals. An intrinsic
beam theory draws from Kirchho�’s analogy between the spatial and time derivatives15 to de�ne a two-�eld
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description of the beam dynamics on �rst-derivatives, i.e., strains and velocities. This results in a formulation
that closely resembles that of rigid-body dynamics, with �rst order equations of motion in both beam strains
and velocities and, critically for the goals of this paper, only quadratic non-linearities on those primary
states. As in rigid-body dynamics, the solution process is closed by the propagation equations to obtain
displacement and rotations. The transcendental non-linearities associated to the �nite rotations are then
transferred to that post-processing step (which may be even skipped in many problems in aeroelasticity).16

Previous work by the �rst author17 has the nonlinear vibrations of composite beams using a nonlinear
intrinsic formulation. Following on that work, this paper will investigate the generation of the equations of
motion in intrinsic modal coordinates from built-up 3-D FEM models. The starting point is the assumption
that such a 3-D model of the structure already exists and provides the bases for dynamic load and aeroelastic
analysis based on linear methods. This FEM model is then reduced using static condensation18,19 (Guyan
reduction) to a small set of grid points along the aircraft beam skeleton, those displacements are obtained
from averaging the local degrees of freedom (RBE3 constraints in NASTRAN). The selection of that skeleton
is therefore critical, but it can be done with the same criteria as the monitoring stations where dynamic
loads are evaluated. More sophisticated methods of dynamic condensation are available in the literature20

and they could be equally considered within the proposed approach. However, Guyan reduction is the most
common method for dynamic load analysis and it is readily available in most �nite-element packages, so it
was preferred here. The mode shapes of the full 3-D model on the set of beam nodes will be used to de�ned
directly the linear part of the equation. Identi�cation of the equivalent beam local sti�ness and inertia can
then be carried out to obtain the nonlinear terms of the equations of motion in intrinsic modal coordinates.

II. Modelling Aspects

The intrinsic equations of motion for a geometrically-nonlinear composite beam are described �rst, fol-
lowed by a projection of the equations into a modal space and the description of how those modal equations
are integrated in vehicle analysis.

A. Intrinsic Beam Model

Following Cosserat’s model, a beam will be de�ned as a solid determined by the rigid motion of cross
sections linked to a deformable reference line, �. There are no assumptions on the sectional material or
geometric properties, other than the condition of slenderness. Let s be the arc length, V(s; t) and 
(s; t)
the instantaneous translational and angular inertial velocities, and F(s; t) and M(s; t) the sectional internal
forces and moments along the reference line. All these vectors are expressed in their components in the local
(deformed) material frame. Using this magnitudes, Hodges has14 derived the intrinsic form of the beam
equations, which are written here as16,17

m _x1 � x02 � ex2 + L1(x1)mx1 + L2(x2)cx2 = f1;

c _x2 � x01 + e>x1 � L>1 (x1)cx2 = 0;
(1)

where dots and primes denote derivatives with time, t, and the arc length, s, respectively. The �rst equation
is the actual equation of motion, while the second is a kinematic compatibility condition. The state vectors
x1 and x2 and the force vector f1 are given by

x1 =

(
V




)
; x2 =

(
F

M

)
; and f1 =

(
fa

ma

)
: (2)

The constant matrix e and the linear matrix operators L1 and L2 are

e =

"
0 0

~e1 0

#
; L1(x1) =

"
~
 0
~V ~


#
; and L2(x2) =

"
0 ~F
~F ~M

#
: (3)

where ~� is the skew-symmetric (or cross-product) operator and e1 = f1; 0; 0g>. As this is a beam model,
the only necessary coe�cients in the equations are the matrices of mass, m, and compliance, c, per unit
length, which are full but symmetric matrices. Eqs. (1) need to be solved with a set of boundary and initial
conditions, which are also written in terms of velocities and forces.14

3 of 18

American Institute of Aeronautics and Astronautics



Displacements and rotations are dependent variables, which only appear explicitly if the applied forces
and moments, f1, depend on them. They are obtained either from time integration of the inertial velocities,
as in rigid-body dynamics;21 or from spatial integration of the internal forces and moments (strains),22,23 as
with the Frenet-Serret formulae in di�erential geometry.

B. Nonlinear Equations in Intrinsic Modal Coordinates

The linear normal modes (LNMs) are obtained �rst from the linearisation of the unforced (homogeneous)
equations around a static equilibrium condition (i.e., x1(s; 0) = 0 and x2(s; 0) = x̂2(s)). The LNMs are
obtained in the usual way, as the non-trivial solutions of this homogeneous equation that satisfy the spatial
boundary conditions.

To simplify the argumentation in this paper, it will be assumed that the reference line � is an open
kinematic chain (it has no closed loops) with constant properties, that is, matrices m and c are constant,
and that the LNMs are obtained about the undeformed con�guration (i.e. x̂2 = 0). There is a more general
version of this theory that does not require those assumptions, but it will not be discussed here. Under those
assumptions, the LNMs in the intrinsic degrees of freedom, �j(s), are obtained as17

�j(s) = eA(!j)s�j(0); (4)

with

�j =

(
�1j

�2j

)
and A(!j) =

"
e> �!jc
!jm �e

#
; (5)

and where !j are the natural angular frequencies and �1j(s) and �2j(s)the components of the mode shapes
in terms of linear/angular velocities and internal forces/moments, respectively. �j(0) are the values of the
eigenmodes at the origin for arc lengths (s = 0), which are obtained, except for a normalization constant,
by enforcing the boundary conditions. Modes are normalized asZ

�

�>1jm�1kds = �jk;Z
�

�>2jc�2kds = �jk:

(6)

The previous conditions are actually redundant and only one of them needs to be enforced to normalize
the mode shapes in intrinsic coordinates. This property will be used later in the identi�cation of the modes
from 3-D FEM. The modal expansions will be then de�ned as

x1(s; t) = �1j(s)q1j(t);

x2(s; t) = �2j(s)q2j(t); (7)

where (q1j ; q2j) are pairs of intrinsic modal coordinates. Note that we use Einstein notation to sum over
repeated indices. Since this is a �rst-order theory, each natural frequency will be associated to two generalized
coordinates. This approximation is used now to project Eqs. (1). By substituting Eq. (7) into that equation,
and after using orthogonality conditions on the mode shapes, one obtains the equations of motion in intrinsic
modal coordinates, as

_q1j = !jq2j � �jkl1 q1kq1l � �jkl2 q2kq2l +Q1j ;

_q2j = �!jq1j + �kjl2 q1kq2l;
(8)

with Q1j =
R

�
�>1jf1ds and

�jkl1 =

Z
�

�>1jL1 (�1k) m�1lds;

�jkl2 =

Z
�

�>1jL2 (�2k) c�2lds:

(9)

Note that the �rst order linear equations correspond to the Hamiltonian form of a single degree of freedom
oscillator. The quadratic terms are obtained from the mode shapes and the mass and compliance matrices.
This is the only information required to construct a geometrically-nonlinear description of the problem. As
we will show below, that information can be extracted directly from a built-up 3-D FE model of the actual
con�guration.
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C. Relation with displacement/rotation degrees of freedom

A full description of the beam dynamics has been obtained without any need of the actual position vector
and local orientation of the reference line (provided, as mentioned above, that the applied forces do not
depend on that information). Those can be found for the general nonlinear case elsewhere,14,23 but they
will be introduced here only for the linear problem. For that purpose, we de�ne now a new state vector

x0 =

(
u

�

)
; such that _x0 = x1; (10)

and we will identify the components of this vector as the linear displacement, R(s; t), and linear rotation,
�(s; t), respectively. Note that this has been presented as a de�nition, but one that yields the usual beam
kinematics description in the linear approximation. Consider now the small-amplitude free vibrations of
the structure, that is, the problem with Q1j = 0 and � = 0 in Eq. (8). Solving that problem, and after
recovering the original degrees of freedom through Eq. (7), yields

xlin1 = �j�1j sin (!jt+ ’j) ;

xlin2 = �j�2j cos (!jt+ ’j) :
(11)

where �j and ’j are real constants that depend on the initial conditions. This can be also be written in
terms of the state vector (10). Assume �0j(s) is the displacement/rotation description of the mode shape
associated to eigenvalue !j . It will be

xlin0 = �0j�0j cos (!jt+ ’j) ;

xlin1 = ��0j!j�0j sin (!jt+ ’j) ;

xlin2 = ��0jc�1
�
�00j � e>�0j

�
cos (!jt+ ’j) :

(12)

where the last equation is obtained from the linear approximation to the second equation in (1). Direct
comparison between Eqs. (11) and (12) gives the relation between the mode shapes in the linear displace-
ment/rotations along the beam axis and the modes in intrinsic variables, as

�1j / !j�0j ;

�2j / c�1
�
�00j � e>�0j

�
:

(13)

where the proportionally constant is de�ned for each mode by the orthogonality conditions (6). As a result,
all the coe�cients in the nonlinear equations of motion in intrinsic coordinates, Eqs. (8), can be obtained
from the structure natural frequencies, !j , and mode shapes, given in terms of displacement/rotation, �0j(s),
and the (constant) cross-sectional mass and sti�ness matrices, m and c, respectively. Those will be calculated
next.

D. Integration in aeroelastic analysis

A process to integrate the equations of motion in intrinsic modal coordinates, Eqs. (8), into a full-vehicle
nonlinear aeroelastic analysis is shown in Figure 1. The current displacements, x0, and velocities, x1, de�ne
the instantaneous boundary conditions for the time-domain aerodynamics. They can be a full-�eld solver
(e.g., Euler, RANS) or a geometrically-nonlinear panel method (e.g., UVLM). If deformations were small,
a frozen geometry can be assumed (i.e., constant x0), and the aerodynamics could also be obtained by the
conventional linear methods (e.g., DLM). Also, if a strip model can be used for the aerodynamics, in which
the local forces are given by some unsteady thin aerofoil theory, then only the beam velocities are needed to
enforce the non-penetrating boundary conditions in the aerodynamic solution.16,24

Integration of sectional aerodynamic loads produces the vector of resultant forces and moments, f1, which
can be now projected on the modal space. The resultant modal forces, Q1, are then applied on the structure.
Since the modal equations of motion, Eqs. (8), are written in polynomial form, one can separate the linear and
nonlinear contributions. This provides an avenue for the solution of the problem using the Increased-Order
Modelling25 approach. The beam velocities, x1, are obtained from the corresponding modal coordinates and
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they are �nally integrated in time. Note that Eq. (10) is only valid for the linear case, and in general this
integration needs to be approached by the standard methods of rigid-body dynamics.21 Alternative, the
internal forces and moments, x2 can be used as the main output and the displacements/rotations are then
obtained through spatial integration at each time step.24

Time-domain
aerodynamics

1

T
Φ

1
f

1
Q

Linear
intrinsic

NL terms
( )

2
,b b

1

1
q

2
q

1
Φ

Integrator

1
x

0
x

Figure 1: Flow diagram of nonlinear aeroelastic analysis with structural dynamics solved in intrinsic modal
coordinates.

III. Static condensation of the full 3-D model

We can now focus our attention to the detailed 3-D FEM model. As mentioned in the introduction,
the assumption in this work is that a complex-geometry �nite-element model has been built for the linear
dynamic load and aeroelastic analysis of a full aircraft. The global mass, Mg, and sti�ness, Kg, matrices
of that model are computed by, say, Nastran, and are directly available. A beam skeleton is also de�ned on
the full model that links the master nodes on which the structure will be reduced. Such nodes often exist in
structural dynamics models to extract resultant dynamic loads. The master nodes are added to the original
model and linked to the local structural nodes by means of an interpolation element (RBE3 in Nastran). A
further simpli�cation is obtained if masses are de�ned directly on the master nodes, as it is typically done
for dynamic load analysis, although this is not strictly necessary. A Guyan reduction18,19 is now carried
out on the full equations of motion using the degrees of freedom (three displacements and three rotations)
at the master nodes as the reduced set. That results in reduced matrices Ma and Ka, which, importantly,
are full matrices. As it will be shown with the numerical examples, the slenderness of the structure brings,
however, a block-diagonal structure into the reduced matrices. One can de�ne a matrix of connectivities
between master nodes, T, with takes 1 on the terms corresponding to consecutive master nodes and zeros
between nodes that are further apart. As the slenderness of the primary components on the actual structure
increases, the terms outside the mapping T �Ka will go to zero (where � is the element-by-element matrix
multiplication operator). In the limit in which all the nodes on the omitted set are in�nitesimally closed to
a node in the reduced set (in�nite aspect ratio), then it will be Ka = T �Ka, that is, the reduced matrix
corresponds to the actual beam model.

The reduction process into the nonlinear equations in intrinsic modal coordinates will proceed as follows:

1. Let �aj be the discrete mode shapes in displacement/rotation degrees of freedom obtained in the
reduced set (a-set), that is, from the solution of the eigenvalue problem�

�!2
jMa + Ka

�
�aj = 0: (14)

This equation determines the natural frequencies, !j in Eq. (8), that is, the linear description of the
intrinsic problem (8) is directly based on the results of the static condensation.

2. The coe�cients for the nonlinear terms, given by Eq. (9), need the mode shapes in intrinsic variables
and the distribution of mass and sti�ness. The mode shapes in velocities, �1j , are obtained directly
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from the �rst of Eqs. (13) with the modes approximated by �aj . The mode shapes in internal
forces/moments, �2j can also be obtained from the vibration analysis on the reduced model, using
similar approaches to load analysis.26 Two alternative methods can be considered:

(a) The mode-displacement approach: From the mode shapes in the reduced set, �aj , a static equi-
librium can be computed (under displacement loads), that is,

fextaj = Ka�aj : (15)

Once the equivalent external forces are obtained, the internal forces at any given location are
simply obtained by computing the resultant forces at any given section, as it is done in load
analysis.26

(b) A �ctitious-mass approach: Karpel and Presente27 showed that the mode-displacement method
may be inaccurate to compute wing sectional loads and proposed using a penalty method instead.
It collocates three grid points (with 6 degrees of freedom each) at each master node of the reduced
set: Two \outboard" points represents the edges of the beam segments that �nish at that point,
and a \middle" point is loaded by large �ctitious mass matrix, Mf (such that kMfk ! 1),
in all six degrees of freedom. Multi-point constraints now force the (dependent) middle-point
displacements to be equal to the di�erence between the displacements of the respective inboard
and outboard points. The �ctitious masses do not e�ectively modi�ed the LNMs modes of the
original problem, but evaluation of their component at the dependent nodes yields directly the
resultant forces at the node locations, sf , as

�2j(sf ) = !2
jMf�aj(sf ): (16)

Equation (12) also provides important information about the normalization of the eigenvectors. If the
velocity component to the mode shape, �1j , is normalized according to the �rst of Eqs. (6), then
the second equation will be satis�ed automatically by the force component of the mode shape. As
discussed above, this is an important property, since the mass matrix is diagonal in the a-set (that is
Ma = T �Ma) and allows the direct evaluation of the sectional mass matrix, m. This is not the case
for the sectional compliance matrix, c, which requires further attention. This is done next.

3. All terms in Eq. (8) have been already identi�ed except for the compliance matrix, c, which is required
for the �2 coe�cients multiplying the quadratic terms in Eq. (9). Alternatively, the products c�2j

could be directly obtained. Several possible alternatives have been explored here:

(a) A �rst approach, that was already outline above, is the direct identi�cation of terms in T �Ka

with those that would be obtained using linear beam elements between the nodes in the reduced
set. The sti�ness on each equivalent beam element would be

Ke =

Z Le

0

B>c�1Bds (17)

where B is the strain matrix in the linear 2-noded beam element of length Le. Comparing Ke

with the corresponding sub-block in the reduced sti�ness Ka, one can estimate the value of the
constants in the compliance matrix c. Note that this, in particular, imposes no restrictions to
c, that can be a full matrix. Finally, the relative values of the terms that are discarded in this
process serve to estimate the validity of the beam approximation. As it will be seen through
numerical examples, this approach only works well in practice for very-high-aspect-ratio beam
elements.

(b) An alternative method is obtained by directly obtaining the products c�2j , that is, the equivalent
beam strains associated to each mode, since from Eq. (13) they can be obtained directly from
the local derivatives of the mode shapes in displacements.

(c) A third method, valid only for constant section beams, is possible by using the second of the
orthogonality conditions de�ned in Eq. (6) with the known mode shapes.

All these di�erent approaches would give the same outcome in the limit of beams with in�nite aspect
ratio, but each of them approaches di�erently the estimation of the equivalent sti�ness for structures
of �nite cross-sectional dimensions. Their relative performance will be investigated through numerical
examples in the next section.
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IV. A Numerical Example

The previous procedure will be exempli�ed on a simple prismatic thin-walled cantilever with constant
isotropic properties (E = 106, � = 0:3, � = 1). The box beam has length L, width w, height h, and walls of
thickness t (with t << w; h). In this case, an assuming a large aspect ratio of the beam (L >> w; h), there
is an analytical solution to the problem that can be used as reference. Finite-element models have also been
built using shell elements, such as the one shown in Figure 2. In all the results that follow it was t=0.01,
w=1.

Figure 2: FEM model for L = 10 and h = 1, showing rigid links (RBE3) to interpolate sectional displace-
ments/rotations on nodes along centre line.

A. Solution for constant cross-sections

The analytical solution of the intrinsic beam problem with constant cross-section is presented �rst. The
relevant sectional constants in this problem are those of Euler-Bernoulli beam, that is,

m = diag f�A; �A; �A; �I1; 0; 0g ;
c�1 = diag fEA; 0; 0; GJ;EI2; EI3g :

(18)

Its LNMs in intrinsic degrees of freedom can be now obtained.16

1. Axial and torsional modes

The eigenvalues of the axial problem are !j =
q

E
� �j , with �j = 2j�1

2
�
L and j = 0; 1; 2; :::;1. The

corresponding eigenvectors, after normalization, are

�V1j =

r
2

�AL
sin (�js) ;

�F1j = �
r

2EA

L
cos (�js) :

(19)

The same results are obtain for the torsional modes, with GJ replacing EA and I1 instead of A.

2. Bending modes

The natural frequencies in the x-z plane are !j = (�j)
2
q

EI2
�A , where �j are the solutions to the well-known

equation,
cos(�jL) cosh(�jL) + 1 = 0: (20)
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The corresponding eigenvectors are

�V3j =
1p
�AL

[cos(�js)� cosh(�js)� �j(sin(�js)� sinh(�js))] ;

�
2j =
�jp
�AL

[sin(�js) + sinh(�js) + �j(cos(�js)� cosh(�js))] ;

�F3j = �j

r
EI2
L

[sin(�js)� sinh(�js) + �j(cos(�js) + cosh(�js))] ;

�M2j =

r
EI2
L

[� cos(�js)� cosh(�js) + �j(sin(�js) + sinh(�js))] ;

(21)

with

�j =
cos(�jL) + cosh(�jL)

sin(�jL) + sinh(�jL)
: (22)

These functions can be now used to obtain the coe�cients in the modal equations of motion, Eqs. (8).

B. Evaluation of coe�cients from 3-D problem

Models for the reference box beam are built using 4-noded shell elements in MD Nastran (v2012.1.0). The
discretization for L=10 and h=1 is shown in Figure 2. The �gure includes the connections between nodes
at each spanwise location and the master nodes (25 in total) along the beam axis where displacements are
interpolated. Masses are lumped on the master nodes.

10
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B
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d
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id
th
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Figure 3: Bandwidth of the truncated reduced sti�ness matrix vs. truncation threshold for the prismatic
bar. The dotted line marks the bandwidth of the corresponding beam model [h=1 and two beam lengths].

The reduced mass matrix, Ma, is thus diagonal. We �rst investigate the bandwidth on the reduced
sti�ness matrix, Ka. This is shown in Figure 3 for h =1 and for two di�erent beam lengths, L = 10 and 100.
This bandwidth is determined after terms below a given truncation threshold are cancelled. The truncation
is de�ned through comparison of the absolute value of coupling terms in the matrix with the corresponding
coe�cients in the diagonal. The size of the reduced matrix in this problem is 150 and it has non-zero terms
in all its coe�cients. As one can see in Figure 3, however, the o�-diagonal terms have small magnitude
and, as the threshold increases the bandwidth of the resulting matrix rapidly reduces. The dotted line in
the �gure shows the maximum half-bandwidth (that is, 12) of a model made of beam elements that would
connect the master nodes. Thus, for a very slender beam (L =100), a beam-like sti�ness matrix is obtained
by truncating o�-diagonal terms smaller than 5%, while for L =10 the required truncation increases to 15%.
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This metric gives a good estimation of the error associated to modelling the actual structure using beam
elements.

The linear coe�cients in Eqs. (8) (that is, the natural frequencies {and the corresponding mode shapes{)
can be obtained directly from the model obtained from Guyan reduction, as in standard aeroelastic analysis.
The nonlinear terms, de�ned by Eqs. (9) depend on the mode shapes at the master nodes, which are also
obtained from the reduced model, with results post-processed with Eq. (13), and the identi�cation of the
sectional sti�ness coe�cients in the truncated reduced sti�ness matrix of the problem. The reduced mass
matrix is diagonal since the masses have been already concentrated at the master nodes. In this example,
only the axial and torsional terms have been obtained.
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Figure 4: Di�erence between the beam sti�ness constants obtained from Ka and the constant-section
solution for a thin-wall beam [h=1].

For this simple geometry, the analytical results introduced above allow a direct evaluation of the approx-
imation obtained by the present method. This comparison is carried out in Figure 4 for the axial (EA) and
torsion (GJ) coe�cients obtained for the prismatic bars under consideration. The numerical results in the
�gure are normalized with the constant-section expressions. Tesults get closer to the analytical expressions
as the length of the beam increases, but it is obvious that the direct identi�cation of sectional sti�ness in
Ka does not produce satisfactory results. The biggest di�erence appears for the torsional coe�cient for
the shorter beam (L =10) where the di�erence outside the beam boundaries is about 18%. This number is
consistent with the truncation threshold of the reduced sti�ness matrix matrix (which was established above
at 15%) that gave a metric of the error introduced when obtaining a beam model from the actual structure.
For the case with extremely large aspect ratio, the comparison is excellent, which con�rms that in the limit
L!1, the stifness matrix Ka is indeed a block diagonal matrix. After this preliminary investigation, the
next sections will compute the di�erent coe�cients on the nonlinear equations of motion for this box beam
con�guration.

1. Natural frequencies and mode shapes

The natural frequencies were �rst obtained for a geometry de�ned by L=20 and varying cross-sectional height,
h. They are selected such that their eigenvectors span the whole space of possible nonlinear deformations.
Therefore, the �rst few modes in bending, twisting and axial deformations are included, even when they are
at very high frequencies. The list of relevant modes here is is listed in Table 1 for h=0.01 and h=0.05, and
it includes the number in which they appear in the reduced-set solution of the FEM model. The �rst three
out-of-plane bending mode shapes, in intrinsic coordinates (i.e., velocities and internal forces) are shown
in Figure 5 for h=0.01. Results compare the modes on the reduced problem with those obtained from the
constant-section beam solution and the modes are normalized as in Eq. (6). As it was mentioned above,
there is no need to know the sectional compliance matrix, c, to normalize the component of the modes in
internal forces/moments �2, since they are obtained from the same set of modes in displacements, �0, as
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the modes in velocities, �1. The comparison between both sets of modes is excellent.

Table 1: Natural angular frequencies after static condensation in the 3-D FEM. NFEM is the mode number
in the FEM model. They are compared with Euler-Bernoulli beam results [L=20].

h=0.1 h=0.5

Mode type NFEM !beam !FEM NFEM !beam !FEM

1st x-z bending 1 0.426 0.411 1 1.94 1.86

2nd x-z bending 2 2.67 2.56 3 12.15 11.43

3rd x-z bending 4 7.47 7.11 6 34.01 29.92

1st x-y bending 3 2.76 2.65 2 3.28 3.15

2nd x-y bending 7 17.29 16.51 4 20.53 19.32

3rd x-y bending 13 48.41 45.70 9 57.48 51.29

1st torsion 5 13.95 13.33 5 37.50 29.50

2nd torsion 10 41.83 32.94 7 112.49 45.48

1st axial 21 78.54 77.07 13 78.54 77.08

2nd axial 47 235.62 230.78 58 235.62 230.78

A comparison of the �rst two axial and torsional mode shapes for that same geometry is shown in Figure
6. The comparison with the axial modes is also excellent. Note from Table 1 that the second mode is a
very high frequency mode, but it is retained to provide a basis for capturing in-plane deformations in the
nonlinear beam dynamics. As one would expect, only the �rst torsional mode is approximately captured
by the Euler-Bernoulli beam model; the natural angular frequency of the second torsional is substantially
over-predicted by this analytical model. Indeed, end e�ects become signi�cant for shorter wavelengths and
require 1-D solutions that include warping restriction methods. It is important to emphasize however that
the constant-section beam solution is included here only as a reference, since for this simple geometry that
solution is readily available. The nonlinear model here will be directly based on the results from the 3-D
FEM and those are the frequencies and mode shapes that will be used. In other words, the present method,
being based on an actual built-up geometrically-accurate model of the structure, naturally includes end
e�ects due to kinematic restrictions on the real geometry.

Once the modes in intrinsic coordinates, �j , and their angular frequencies, !j , and the sectional mass
matrix m have been obtained, the average sectional sti�ness matrix can be obtained from the second Eq.
(6). This can be obtained from all ten modes in Table 1 by means of a least squares solution. To obtain
the coe�cients of beam theory, however, it is better to limit the minimum number of them (the �rst two
bending modes in each axis, and the �rst axial and torsion modes). Results for the same case as before, that
is, L=20, w=1, h=0.1, t=0.01, give a diagonal matrix within the accuracy of the problem, which can be
compared to the analytical expressions from beam theory. The coe�cients are (with beam theory constants
in parenthesis) EA = 2:21 � 105 (2:22 � 105); GJ=66.9 (69.9), EI3=56.2 (51.7), and EI2 = 2:35 � 103

(2:17 � 103). The comparison between both cases is acceptable, but it is less satisfactory than the one
on reduced frequencies in Table 1. However, the assumption of constant sti�ness is indeed not needed.
In fact, as it was mentioned in section III, the compliance matrix is actually not directly needed, and we
only need to compute the product c�2j for each mode shape. This physically represents the force and
moment strains (curvatures) of the modes. The curvatures for the �rst out-of-plane bending and torsional
modes, obtained from a �nite-di�erence approximation to the second of Eqs. (13), are shown in Figure
7. Results are compared against the constant-section beam solutions. As before, bending mode compare
well, while restrained warping on torsional modes is not included in the beam model and creates signi�cant
di�erences at both ends in Figure 7a, which increase with the mode shapes. Note that the beam solution
is the approximation to the solution from 3-D FEM and not the other way around. At this stage, we can
obtain all the coe�cients of equations of motion in intrinsic modal coordinates, Eqs. (8), directly from linear
3-D �nite-element analysis.
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lines) and the constant-section beam model (dashed) [L=20, h=0.1].
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Figure 6: First two axial and torsional modes in intrinsic coordinates from the reduction from 3-D FEM
(continuous lines) and the constant-section beam model (dashed) [L=20, h=0.1].
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Figure 7: Curvature of the mode shapes, c�2j , as obtained from 3-D FEM (continuous lines) and the
constant-section beam model (dashed) [L=20, h=0.1].

C. Geometrically-nonlinear beam dynamics

Once the coe�cients for the geometrically-nonlinear equations of motion have been identi�ed, the beam
dynamics can be investigated. The geometry in this section is again de�ned as L=20, w=1, h=0.1, and
t=0.01, for which all mode shapes in intrinsic variables were shown in the previous section. The simulations
correspond to free vibrations for a parabolic initial velocity distribution, given as x1(s; 0) = x10( sL )2, where
x10 will be the parameter in the di�erent test cases. An explicit 4th-order Runge-Kutta was used to solve the
implicit equations (8) with a time step �t=0.02 and no structural damping. Translational/angular velocities
and internal forces/moments are then obtained using the modal expansions in Eq. (7). Finally, as shown
in Figure 1, the material velocities are integrated at the point of interest using the equations of rigid body
dynamics.

Figure 8 shows the velocities and displacements at the free end of the box beam for small initial velocities,
x10 = (0; 0:002; 0:002; 0; 0; 0). In this case, the response is in the linear regime and can be compared directly
with that obtained from Nastran after the static condensation. The intrinsic solution is based on the 10
modes shown in Table 1. As the modes in the intrinsic method are directly obtain from the 3-D model,
the comparison is excellent. The small di�erences are simply due to the modal truncation in the intrinsic
solution.

As the amplitude of the initial velocities increases, geometrically-nonlinear become more important.
Figure 9 shows the displacements and velocities at the free end, s = L, with x10 = (0; 2; 2; 0; 0; 0). Maximum
tip displacements in this case are about 25% of the beam length. The �rst thing to observe is that we need a
larger modal basis to obtain converged results. Figure 9 compares the results obtained using the 10 (selected)
modes used for the linear case, which were su�cient for that problem, the �rst 18 modes plus the �rst two
axial modes in Table 1 (N =20) and the �rst 50 modes of the reduced set on the 3-D FEM. The shift in the
frequency of the in-plane motions would not be capture with on the small modal basis. The bigger basis is
not needed because there are higher frequencies present in the response, but mostly because of the additional
mode shapes are needed to approximate the instantaneous deformed shapes in the nonlinear response. In
particular, as it has been already shown,17 if no axial modes were included, there would be no couplings
in the deformations on the beam principal bending planes. As it can be seen from Figure 9, results have
converged for the case N =20. This is further investigated in Figure 10, which shows the time history of the
�rst 20 modal amplitudes (force component, q2) for the same geometry and initial conditions. Modes 1-10
are in black and the rest in blue and all visible modes in table 1 are included. Note that the torsional modes,
which are not excited in the linear case, are rather signi�cant and their amplitude is essentially modulated by
the �rst bending mode in each plane. This �nite-rotation e�ect occurs when there is simultaneous bending
in both axis and disappears for planar deformations.

It is interesting to compare those results with those that would be obtained with bending motions in
only one plane. Figure 11 shows the tip displacements and the modal amplitudes for initial conditions in
the x-z plane. The displacement values show results for small and large initial velocities and a comparison
between the present method and those obtained by the constant-section beam models (both using an in-
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trinsic description and a standard FE solution). Since the constant-section models overestimate the natural
frequencies, there is a small di�erence in the results, but the agreement is very good beyond that change on
the period of the oscillations. The modal components are more interesting and show that only the �rst two
bending modes and the �rst axial mode (mode 21 in Table 1) are excited. Similar results would be obtained
for the motions in the x-y, and, of course, none of them show the coupling with the torsional modes that
appears when the initial condition includes both bending components, as it was seen in Figure 10.

Finally, Figure 12 compares the previous converged results (with 50 LNMs) for initial conditions x10 =
(0; 2; 2; 0; 0; 0) (motion in both planes) with those obtained from the constant-section beam equations. Those
equations were solved using an intrinsic description (with, as before, the LNMs de�ned as in section IV.A) and
through standard �nite-elements based on nodal displacements and rotations. The �nite-element solution is a
converged geometrically-nonlinear solution using 200 B31 elements in Abaqus with a time step �t=0.01. Very
good agreement can be observed between both beam models, which may serve to validate our implementation
of the nonlinear intrinsic beam solver, but, as before, more signi�cant di�erences are seen when the coe�cients
in the intrinsic equations are obtained from the reduced model. They are mostly due to the di�erent
frequencies of the LNMs, but they are also magni�ed here by the relatively poor approximation to the
torsional modes in the constant-section models. As it was discussed above, the constant-section beam
should be considered only as a �rst approximation to the results based on 3-D information obtained by the
present method.

V. Conclusions

The paper has shown a procedure to obtain compact geometrically-nonlinear descriptions from the de-
tailed 3-D �nite-element models used for full-vehicle aeroelastic and load analysis. The condition for this
is that the static condensation in the structural model is carried out into grid nodes along a virtual beam
skeleton of the original structure. This is in fact just exploiting the usual approach to obtain \interest-
ing quantities" in load analysis, but it does not preclude the possibility of branches that link the spanwise
reference line to, for instance, ailerons or engines.

The formulation is modal and it uses directly the linear normal modes of the reduced structure. As a
result, there is no loss of accuracy in linear analysis beyond that of the Guyan condensation. It is intrinsic,
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which means that it transforms the mode shapes from displacements into their spatial derivatives (strains,
or internal forces) and time derivatives (velocities). We show however how this does present major obstacles
in the integration into a standard time-domain nonlinear aeroelastic analysis. Indeed in the limit to small
deformations it converges to standard linear aeroelastic analysis, what allows tackling the problem using an
Increased-Order-Model approach.

Numerical results have been presented for a cantilever box beam. It is �rst shown that the nonlinear
equations of motion can be built directly from the shell model and it has identi�ed that the best method
to obtain the nonlinear coe�cients is probably the direct computation of curvatures for each mode, which
removes the estimation of the sectional compliance matrix. Results were presented against nonlinear beam
models and showed the relatively-large impact that the improved description in capturing the torsional modes
and the corresponding couplings that apppear 3-D nonlinear beam dynamics.
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