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Time-accurate solutions of the Euler or Navier-Stokes equations are still nowadays a
computationally expensive approach for applications where a magnitude of parameters has
to be investigated. This work focuses on flight dynamics-related studies. The generation of
several low-order models for the evaluation of unsteady and non-linear aerodynamic loads
are investigated. The validity of low-order models presented is assessed by comparing the
model output with unsteady time-accurate Computational Fluid-Dynamics (CFD) simula-
tions. The test case is the NACA 0012 airfoil. The low-order models considered are: a
non-linear model based on aerodynamic derivatives, a Volterra model, a surrogate-based
recurrence-framework model, linear indicial functions and radial basis functions trained
with neural networks.

Nomenclature

c = mean aerodynamic chord
Cm = pitching moment coefficient
Cmq

+ Cmα̇
= pitching moment damping coefficient

f = dimensional frequency
k = reduced oscillation frequency (k = ω c/(2 U∞))
M = freestream Mach number
N = number of time steps in a CFD solution
NT number of training CFD solutions
q = angular rate
R = residual in the CFD equations
Re = Reynolds number (Re = U∞c/ν)
t = physical time
t∗ = non-dimensional time (t∗ = t U∞/c)
U∞ = freestream speed
W = conservative variables in the CFD equations
x = relevant external inputs for pitching case
y = any longitudinal aerodynamic loads in low-order model equations

Greek

α = angle of attack
α0 = mean angle of attack
αA = amplitude of oscillatory motion
ν = kinematic viscosity of air
ω = oscillation frequency (ω = 2 π f)
Φ, Ψ = function which maps inputs to outputs in low-order model equations
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I. Introduction

Determining the stability and control characteristics of aircraft at the edge of the envelope is one of the
most difficult and expensive aspects of the aircraft development process. Non-linearities and unsteadiness
in the flow are associated with shock waves, separation, vortices and their mutual interaction, which can
lead to uncommanded motion and uncontrollable departure. If these issues are discovered at flight test, the
aircraft development can suffer significant delays, a rise in production costs and detrimental effects on per-
formance. There have been numerous examples of aircraft experiencing uncommanded activity, as reported,
for instance, in.1 Following an extensive resolution process, immediate improvements are typically achieved
by minor configuration changes and modifications to the flight control system and control augmentation
laws. To provide a better fundamental understanding of the flow physics causing degraded characteristics,
computational approaches have been used.2 The development of a reliable computational tool for prediction
of these important issues would allow the designer to screen different configurations prior to building the
first prototype, reducing overall costs and limiting risks.3

There are three traditional approaches to determine the stability and control characteristics. Flight
testing the actual aircraft is the most accurate but also the most expensive of these methods.4 With a
finalized configuration, the aircraft has to be operational and the required time to complete a flight test
program can vary from several months to years. Wind-tunnel testing of scaled models is cheaper than
flight testing yet providing accurate measurements. However, blockage, scaling and Reynolds number effects
together with support interference issues prevent the proper modelling of the full scale aircraft behaviour.5

The final method comprises a combination of data sheets, linear aerodynamic theory and empirical relations.6

Due to its simplicity, this method has received widespread use for predicting aerodynamic derivatives in the
conceptual design. However, the use of this approach is suspect when extended to novel aircraft configurations
and to flight conditions dominated by non-linear aerodynamic effects.

A reasonable compromise between testing procedures and semi-empirical approaches is Computational
Fluid Dynamics (CFD), which represents the state of the art in modelling non-linear flow physics. CFD
solvers have reached a level of robustness and maturity to allow routine use on relatively inexpensive computer
clusters. These techniques have successfully modelled the non-linear aerodynamic behaviour of aircraft at
full scale Reynolds numbers,7 and investigated the transonic regime which is the most critical speed range
for aircraft instabilities. However, the high fidelity realized in a CFD simulation comes with an additional
cost in the execution time, which makes it not suitable for a variety of applications.

With regard to stability and control analysis, forces and moments dependencies on flight and control states
are expressed in tabular form. A reasonable aerodynamic database to cover the expected flight envelope can
easily contain up to about hundred-thousand or even million entries. If CFD is the source of the data and a
”brute force” approach considered to filling the aerodynamic database, this would be prohibitely expensive
even with the access to modern supercomputing facilities. When confronted to viscous CFD calculations of
a three-dimensional geometry, an estimated time of 158 years was suggested for populating a database.8 An
alternative approach was addressed in a previous study based on sampling, reconstruction and data fusion of
variable-fidelity aerodynamic data.9 For a completely new design, it was found that tables can be generated
with about hundred steady-state calculations, and on the order of ten solves when the already existing
aerodynamic database for a given configuration needs to be updated for a new incremented geometry.10

This is most likely the scenario realized in the iterative process of the aircraft design and in the study of
novel configurations.11, 12

Whilst the prediction of static stability derivatives can be done with present off-the-shelf CFD tools,
computation of dynamic derivatives using CFD requires the ability to compute the aerodynamic response
to time-dependent prescribed motions.13, 14 Typically, a time-accurate CFD analysis employs a dual-time
stepping scheme, and a steady state is marched in pseudo time at each physical time step. Decay of
initial transients in the aerodynamic response can require simulation of several oscillatory cycles, and the
computational mesh is updated at each physical time step to conform to the applied motion. Then, post-
processing of the time domain data becomes necessary to extract dynamic derivatives. Roughly, a time-
accurate solution is as expensive as on the order of hundred steady calculations. While tolerable for a single
point condition, this type of simulation is too expensive when compared to the magnitude of parameters to be
investigated. An alternative to time-marching is offered by spectral methods. The harmonic balance method,
which approximates the non-linear problem using a number of complex Fourier modes, was implemented
and tested in the transonic speed range for a number of two- and three-dimensional configurations.15 While
retaining the fidelity of a non-linear CFD solution to a high degree, a significant reduction in computational
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time was observed.16–18

Previous works19, 20 substantiated the limitations of tabular models when comparing to CFD and flight
tests data, and this motivates the current study. The overall objective is to put in place a framework
of different low-order models for representation of non-linear unsteady aerodynamic loads. In this view,
CFD is combined with predictive modelling techniques of low complexity to allow efficient and accurate
predictions of the stability and control characteristics prior to the costly phases of wind tunnel and flight
testing. The question whether the traditional model based on the concept of aerodynamic derivatives retains
sufficient accuracy in predicting unsteady non-linear phenomena to pay off the significant initial cost incurred
generating the aerodynamic database will be assessed.

The article continues with a description of the CFD solvers used in the cases presented. Several aerody-
namic models are reviewed, and results for a two-dimensional test case are finally introduced.

II. CFD Solver Formulation

A. PMB (University of Liverpool)

The flow solver used at the University of Liverpool is the Parallel Multi-Block (PMB) solver. PMB is a
well-established research code which solves the Euler and Reynolds-Averaged Navier-Stokes (RANS) models
on block structured grids using an unfactored implicit method. The equations are discretised on curvilin-
ear multi-block body conforming grids using a cell-centred finite volume method which converts the partial
differential equations into a set of ordinary differential equations. A wide variety of unsteady flow prob-
lems, including aeroelasticity, cavity flows, aerospike flows, delta wing aerodynamics, rotorcraft problems
and transonic buffet have been studied using this code. Validation studies against flight data for the F-16XL
aircraft,7 a delta wing experiencing shock-induced vortex breakdown21 and multiple vortex flow on an un-
manned combat air vehicle model22 have been conducted with this code. The main features of the CFD
solver are detailed in Badcock et al.23

A fully implicit steady solution of the Euler or RANS equations is obtained by advancing the solution
forward in time by solving the discrete nonlinear system of equations

Wn+1 − Wn

∆t∗
= −R

(

Wn+1
)

(1)

The term on the right hand side, called the residual, is the discretisation of the convective terms, given here
by Osher’s approximate Riemann solver,24 MUSCL interpolation25 and Van Albada’s limiter. Equation (1)
is a nonlinear system of algebraic equations which is solved by an implicit method, the main features of
which are an approximate linearisation to reduce the size and condition number of the linear system, and
the use of a preconditioned Krylov subspace method to calculate the updates.

The steady state solver is applied to unsteady problems within a pseudo time stepping iteration26 which
at each real time step is written as

[(

1

∆t∗
−

3

2∆t

)

I +
∂R

∂W

]

∆W = −

(

R(W) +
3Wn+1 − 4Wn + Wn−1

2∆t

)

(2)

where ∆t is the real time step. Periodicity can be used to approximate the initial solution for the pseudo
time stepping at each real time step. The solution iterates in pseudo time for each real time step to achieve
convergence. In the current application, a key functionality of the CFD solver is the ability to move the
mesh conforming to the motion of the body. Rigid body motions can be treated by moving the mesh rigidly
in response to the applied sinusoidal motion. The mesh is deformed once per real time step during the
unsteady calculation. A curvilinear time dependent formulation is used to formulate the mapping between
the computational space and the physical space.

B. Cobalt

The Cobalt code solves the unsteady, three-dimensional and compressible Navier-Stokes equations. The
Navier-Stokes equations are discretised on arbitrary grid topologies using a cell-centered finite volume
method. Second order accuracy in space is achieved using the exact Reimann solver of Gottlieb and Groth27

and least squares gradient calculations using QR factorization. To accelerate the discretized system, a point-
implicit method using analytic first-order inviscid and viscous Jacobian is used. A Newtonian sub-iteration
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method is used to improve time accuracy of the point-implicit method. The method is second order accurate
in time. Tomaro et al.28 converted the code from explicit to implicit, enabling CFL numbers as high as 106.
Cobalt uses an arbitrary Lagrangian-Eulerian formulation and hence allows all translational and rotational
degrees of freedom. For the control surface simulations, an overset grid capability is available. The code can
simulate both free and specified six degrees of freedom motions.

III. Model Formulations of Unsteady Aerodynamic Loads

The generality realized in a CFD simulation comes at the expense of computational cost. Routine use
of high-fidelity CFD simulations is costly for a variety of applications involving several independent design
variables, such as in multidisciplinary optimization, aeroelasticity and flight dynamics studies. The analysis
of unsteady flows, in particular, can be a computational challenge due to the time-step size used to accurately
simulate the flow dynamics and the duration time of the simulation. This motivates the need to assess the
benefits and limitations in using low-order models to predict the resulting unsteady aerodynamic loads.

To accelerate the turn-around time of the investigations, the focus of the current paper is on a symmetric
two-dimensional airfoil. While retaining complex flow features due to shock-induced phenomena, the time
required for the unsteady time-domain simulations is drastically reduced when compared to three-dimensional
cases. It is assumed that any consideration on the readiness of the mathematical models can be transferred
to the analysis of more complex geometries.

Low-order mathematical models are used as computationally efficient approximations in place of the
non-linear system of equations described in Eq. (2). Nonetheless, the low-order models require sufficient
informations to be generated using unsteady time-domain calculations. A consideration is for the cost
incurred in the generation of suitable aerodynamic data, and for the selection of appropriate training inputs.

The investigations presented are for the prediction of unsteady aerodynamic loads in response to a
harmonic motion about the pitch axis. The angle of attack as function of time is defined as

α (t) = α0 + αA sin (ω t) (3)

It is also convenient to introduce the non-dimensional reduced frequency of the applied motion, k =
ω c/(2 U∞), based on the mean aerodynamic chord and freestream speed. Low-order mathematical models
are now formulated.

A. Conventional Model based on Aerodynamic Derivatives

The concept of stability or aerodynamic derivatives was introduced by Bryan29 and defines the conventional
model for the representation of the aerodynamic loads in the equations of motion. It is based on the
linearization of the aerodynamic terms using the perturbation approach, discarding higher order terms.30

Forces and moments are assumed functions of the instantaneous values of the disturbance velocities, control
angles and their rates. For slow motions at low angle of attack, static derivatives are typically sufficient to
model the aerodynamic loads. The model limitations are exhibited when confronting to flows with non-linear,
time-history effects including high-frequency components, which represent flows of practical interest.

Without loss in generality, let consider the longitudinal aerodynamic coefficients, e.g., lift, drag, and
pitching moment. The conventional representation of the aerodynamic loads, based on a quasi-steady flow
assumption, is

Cj = Cj 0 + Cjα
∆ α + Cjα̇

c

2 U∞

α̇ + Cjq

c

2 U∞

q + Cjq̇

(

c

2 U∞

)2

q̇ (4)

for j = L, D, and m

Aerodynamic derivatives are evaluated at a reference condition, e.g., trimmed flight condition, and are
assumed to be constant. However, for large amplitude manoeuvres and rapid excursions from the reference
flight condition, it is necessary to extend the linear model to include non-linear terms. Following Da Ronch
et al.,14 a non-linear counterpart of Eq. (4) is formulated as

Cj = Cj 0 (α) + Cjα̇
(α)

c

2 U∞

α̇ + Cjq
(α)

c

2 U∞

q (5)

for j = L, D, and m
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The static term, Cj 0, depends non-linearly on the angle of incidence, and accounts for static non-linearities
in the aerodynamic coefficients. Aerodynamic derivatives, while non-linear functions in the argument, are
linear with respect to the angular rates. In addition, when considering a sinusoidal motion about the pitch
axis, the above non-linear formulation can be recast in the form of Eq. (6).

Cj = Cj 0 (α, . . .) + C̄jq
(α, . . .)

c

2 U∞

α̇ (6)

for j = L, D, and m

The dynamic derivative, C̄jq
= Cjα̇

+ Cjq
, includes a rotary derivative and a translation acceleration deriva-

tive. Dynamic derivatives are traditionally calculated by post-processing the time-history of the aerodynamic
coefficients in response to a sinusoidal motion. Details on the computation of dynamic derivatives can be
found in reference.14 As described in the mentioned study, the dependence of the dynamic derivatives on
motion and flow conditions may be important above the static stall, with a loss in accuracy in the prediction
of the unsteady aerodynamic loads. Investigations into computationally efficient methods for predicting
dynamic derivatives were presented in reference.16, 18 In the present study, unsteady time-domain simula-
tions are used to generate the aerodynamic informations for the model represented by Eq. (6). The static
non-linear term, Cj 0, can be obtained either from a static simulation or from an unsteady time-domain
simulation as a time-averaged value.

The stability behaviour of a free-to-pitch aircraft model is determined by the sign of the dynamic deriva-
tive of the pitching moment coefficient, C̄mq

, which is generally referred to as the damping-in-pitch. In the
dynamic equations of motion governing the free response about the pitch axis, the forcing term on the right
hand side is the pitching moment. This term can be moved to the left hand side, beside the inertia term,
and the dynamic derivative contribution can be interpreted in analogy with a structural damping term. The
free pitching response is stable if and only if the damping-in-pitch term is negative,18 or when the equivalent
structural damping term is positive.

B. Volterra Series

The Volterra theory is a well-known subject in non-linear systems,31 and it has been applied to systems
involving transonic aerodynamics.32 The aim of this work is to extend the use of the Volterra theory to the
area of stability and control.

Let denote each aerodynamic coefficient as y = Cj for j = L, D, m. The output of a continuous-time,
casual, time-invariant, fading memory system in response to an input, x (t), is formulated as

y (t) = Ψ (x (t)) =

p
∑

i = 1

Hi (x (t)) (7)

The output response, y (t), is modeled using the p-th order Volterra series. The term Hi represents the i-th
order Volterra operator, which is defined as a i-fold convolution between the input, x (t), and the i-th order
Volterra kernel, Hi.

Hi (x (t)) =

∫ t

−∞

. . .

∫ t

−∞

Hi (t − τ1, t − τ2, . . . , t − τi)

i
∏

n =1

x (τn) dτn (8)

Based on linear aerodynamic theories, it can be stated that the unsteady aerodynamic loads are functions
of the angle of attack and its time derivatives. This conclusion is important in the sense that the single-input
Volterra model formulated in Eq. (7) may be inadequate even for the representation of loads in the linear
aerodynamic regime. For oscillations about the pitch axis, the relevant external inputs are

x (t) = (α (t) , α̇ (t) , α̈ (t)) (9)

A multi-input Volterra series is then formulated as

y (t) = Ψ (x1 (t) , x2 (t) , . . . , xm (t)) =

p
∑

i =1

H
m
i (10)
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The term H
m
i is the multi-input Volterra operator defined as a mp-fold summation of p-fold convolution

integrals between the inputs and the p-th order multi-input Volterra kernels.33 The output response is
rewritten as

y (t) =

m
∑

j =1

∫ t

−∞

H
xj

1 (t − τ) xj (τ) dτ +

m
∑

j1 =1

m
∑

j2 = 1

∫ t

−∞

∫ t

−∞

H
xj1

, xj2

2 (t − τ1, t − τ2)xj1 (τ1) xj2 (τ2) dτ1 dτ2 + . . . (11)

Note that the superscripts in Eq. (11) identify to which inputs the kernel corresponds. Let consider, as an
example, the second-order kernel H

xj1
, xj3

2 , which correlates the inputs xj1 and xj3 .
The identification of the Volterra kernels is performed using an unsteady time-domain simulation as

source of the data. The CFD solution is discrete in time, and the time-step is indicated by ∆t. Let denoted
x (t) = x (n ∆t) = x[n]. The discrete-time representation of Eq. (11) rewrites as

y [n] =
m

∑

j =1

·
n

∑

k =0

H
xj

1 [n − k]xj [k] +

m
∑

j1 =1

m
∑

j2 = 1

·

n
∑

k1 =0

n
∑

k2 =0

H
xj1

, xj2

2 [n − k1, n − k2] xj1 [k1] xj2 [k2] + . . . (12)

The identification of discrete-time Volterra kernels involves the resolution of an overdetermined system.
Values of aerodynamic coefficients and the time-history of the motion variables are known from the CFD
simulation used as training input. Let y = (y[0], y[1], . . . , y[n])T denote each aerodynamic load computed
using CFD, and let A contain the permutations of input parameters relevant to the unsteady motion.
Equation (12) can be recast in the form

y = Ab (13)

where the vector b contains the unknown Volterra kernels. The matrix A is in general non-square, with more
rows than columns. Several numerical methods are available to solve least squares problems, e.g., direct
inversion of AT A, Gauss elimination, Moore-Penrose generalized inverse approach and the QR factorization.
However, the Moore-Penrose approach and the QR factorization are more accurate than the Gauss elimina-
tion and the direct inversion solutions. The cost of the QR factorization is [o(n2)], and the Moore-Penrose
inversion involves [o(n3)] operations. Note that computational resources attributable to the identification of
the Volterra kernels grow exponentially with order. Increasing the order of the Volterra series introduces a
requirement for a training manoeuvre of sufficient duration. A remedy to this is the use of a simplified form
of the kernel parametric structure.34

H
xj1

, xj2
, ..., xjp

p [n − k1, n − k2, . . . , n − kp] = 0 (14)

for k1 6= k2 6= . . . 6= kp

The simplified form of the Volterra series is not included in this work because of the non-linear character of
the results presented.

Once the kernels are identified, the low-order model formulated in Eq. (13) can be used in place of the
full-order system defined in Eq. (2) to predict the unsteady aerodynamic loads for a novel manoeuvre.

C. Surrogate-Based Recurrence-Framework (SBRF)

The non-linear system of equations described by Eq. (2) can be interpreted as a general representation of
a non-linear time-invariant discrete-time dynamical system. The state vector consists of the conservative
variables (density, velocity components, and energy), and its size is proportional to the number of grid
points. In this study, the aerodynamic loads form the vector of outputs, which are not only a function of
the instantaneous values of the inputs, but also a function of the time history of the inputs.

To generate a computationally efficient approximation of the unsteady aerodynamic loads without solving
the expensive equations in Eq. (2), the form of a dynamical system is assumed.35 When the state vector of
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the full-order system is finite in number, which is the case of W, the following non-linear system is equivalent
to Eq. (2).

y (t) = Φ (x (t) , x (t − ∆t) , . . . , x (t − m ∆t) , y (t − ∆t) , . . . , y (t − n ∆t)) (15)

The vector x was previously defined in Eq. (9). The function Φ maps the inputs to the outputs. The terms
m and n represent the number of previous values of the external inputs and outputs, respectively, influencing
the output at the current time instant. These parameters account for time-history effects and phase-lag in
the flow development.

Central to the synthesis of the reduced-order model is the computation of the function Φ. Without a
closed-form analytical expression, a numerical approximation of Φ is constructed using a number of CFD
solutions. For the pitching airfoil case represented by Eq. (3), any motion can be expressed as function of
three parameters, e.g., α0, αA, and k. These independent variables form a parameter space, representing the
envelope of all possible flow conditions that the airfoil configuration is expected to operate. To generate a
consistent set of unsteady aerodynamic loads in response to a given airfoil motion time history, the training
cases at which CFD solutions are calculated should be representative of the expected flow conditions. Several
design of experiment methods are available in the literature. A description of the Kriging-based framework
used in this study is detailed in reference.36 Let NT be the number of training cases for which CFD solutions
are available. Each training case consists of different combinations of the independent parameters,

xi = [αi (t) , α̇i (t) , α̈i (t)] (16)

for i = 1, . . . , NT

and the corresponding aerodynamic loads are indicated by yi (t). The approximation of the function Φ is
obtained by interpolating the sampled data in the form of input/output relationship. Several interpolation
methods are available in the literature, and two of these have been used in the present study. Kriging
interpolation is a common choice, but for increasing number of independent parameters the problem can
result to be ill-conditioned. An alternative approach is the multi-linear interpolation technique, which is in
general faster than the Kriging interpolation.

D. Indicial Function

The buildup in the aerodynamic loads in response to a unit step in one of the inputs can be evaluated by
convolution. Let H (t) be the unit step, defined as

H (t) =

{

1.0 for t ≥ 0

0.0 for t < 0
(17)

The unit response, or indicial admittance, is denoted by a (t). Assuming a linear relationship between the
forcing function and the output, the airloads are defined as the convolution or Durhamel’s superposition37

of the indicial response with the derivative of the forcing function.

y (t) =
d

dt

∫ t

0

a (t − τ) x (τ) dτ (18)

This model can approximate any finite-memory, time-invariant, single input/single output and continuous
linear system.38 The indicial response functions are used as a fundamental approach to represent the unsteady
aerodynamic loads.39, 40 Let Cjα

and Cjq
be the time response in the unsteady aerodynamic loads due to

a step change in the angle of attack, α, and angular velocity, q. If these functions are known, then the
unsteady airloads at time t can be obtained as

Cj (t) =
d

dt

∫ t

0

Cjα
(t − τ) α (τ) dτ +

d

dt

∫ t

0

Cjq
(t − τ) q (τ) dτ (19)

for j = L, D, and m

These models approximate the unsteady lift and pitching-moment in the linear regimes of flight envelope.
For non-linear aerodynamics, the indicial response is computed at several angles of attack. However this adds
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more computational cost for the construction of the model. Linear indicial functions were used in this study.
These functions need to be determined prior to the model construction. Note also that a limited number
of analytical solutions for the indicial functions over flat-plate in low speed aerodynamics is available in the
literature. For compressible and three-dimensional geometries, the only direct method for determination
of the impulse and unit response functions is CFD. Experimental testing of step responses is practically
non-existent.

E. Radial Basis Function

In this approach, the unsteady aerodynamic loads are approximated by learning an input-output mapping
from a set of training data.41The reconstructed state space model was presented previously in Eq. (15). The
term Φ is a vector-valued nonlinear function that maps the inputs to the output. The terms m and n are
integers representing the past values in the output and input, respectively. For ease of programming, the
past values of input and output were assumed to be similar, i.e. m = n. The mapping function, Φ is learned
through Radial Basis Function Neural Network (RBFNN). The remaining problem is how to choose n such
that the reconstructed model accurately represents the state-space model. In this paper the value of n is
selected using ”trial and error” attempts. Design of experiments are often used to select NT combinations
of these variables for training purposes. However, such an approach often needs a large value of NT to cover
the important regimes of the regressor space of the input variables. Ghoreyshi et al.41 reduced number of
manoeuvre simulations using the design of new training maneuvers. This approach was also used in this
study.

IV. Results

The NACA 0012 airfoil is the test case. An inviscid and viscous model were used in the present work. The
inviscid grid for use with the PMB solver, illustrated in Fig. 1(a), is structured. The grid consists of 32028
grid points, 212 nodes were distributed on the airfoil, 51 points were used in the normal direction and along
the streamwise direction for the wake. The two-dimensional domain extends fifty chords from the solid wall
to the farfield. A preliminary study was made to guarantee solutions presented are independent of the grid
used. A time-step refinement study was also performed, and further details on the inviscid grid for the PMB
solver can be found in reference.18 The viscous grid for use with Cobalt has a rectangular computational
domain with the airfoil geometry centrally located. The farfield is located twenty chords from the solid wall.
The unstructured mesh with prisms in the boundary layer and tetrahedra elsewhere is shown in Fig. 1(b).
Note that numerical results were compared with tunnel measurements under static and unsteady conditions,
and providing further details on the validation is beyond the scope of the present study.

(a) Inviscid grid (PMB) (b) Viscous grid (Cobalt)

Figure 1. Inviscid and viscous grid for the NACA 0012 airfoil
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A. Conventional Model based on Aerodynamic Derivatives

The experimental conditions of the AGARD CT5 case42 feature a harmonic motion about the pitch axis in
transonic conditions, at a freestream Mach number of 0.755. The mean angle of incidence and the oscillatory
amplitude are 0.016 and 2.51 degrees, respectively, and the reduced frequency is 0.0814. Details on the
validation of the PMB solver for this case are reported in reference.16, 18 The flow solution is non-linear,
and consists of a shock appearing at the leading-edge and moving downstream for increasing angles. For
decreasing angles, the shock moves upstream close to the leading-edge and disappears. The same pattern
is observed on the opposite side of the airfoil. The flow remains attached throughout the entire cycle of
unsteadiness.

The non-linear model based on the aerodynamic derivatives was used to predict the resulting unsteady
aerodynamic loads. Aerodynamic informations for the model represented by Eq. (6) were obtained from
a number of small-amplitude sinusoidal oscillations at the same flow conditions of the test case presented.
The dynamic derivative of the pitching moment coefficient is illustrated in Fig. 2(a). Data presented were
computed from sinusoidal motions for an amplitude of one degree. Note that calculations were repeated for
a smaller oscillatory amplitude of 0.5 degrees, with identical aerodynamic informations obtained. The reason
for this may be due to the amplitude values considered, and the fact that the flow development for a small
oscillatory motion may be linear or quasi-linear. It is considered that deviations in aerodynamic derivatives
will be observed when increasing the oscillatory amplitude.

Figure 2(a) conveys the variation of the damping-in-pitch term with the angle of attack. Increasing
the mean angle of attack results in a continuous increase in the aerodynamic damping term, and above
two degrees this term becomes positive. In the case of free pitching oscillations, the system is dynamically
unstable. With computed aerodynamic informations, the non-linear model formulated in Eq. (6) was used
for the prediction of the pitching moment dynamic dependence for the AGARD CT5 case. In Fig. 2(b),
the unsteady time-domain simulation is referred to as ”CFD”. The initial transient was removed from the
numerical solution, and two arrows indicate the time evolution. If the arrows are oriented in the counter-
clockwise direction, the contribution from the dynamic derivative is negative, and vice versa. For the sake
of clarity, experimental data are not included (see reference16, 18 for a comparison). The non-linear model is
denoted in the same figure by ”Model”. Deviations between the prediction and the reference solution are
observed throughout the entire cycle, and two cross-over points are observed in the model results which are
not contained in the reference solution. This suggests that the model of aerodynamic derivatives is incapable
of correctly representing the aerodynamic loads for this case, due to significant non-linear features in the
flowfield solution. This corroborates the need to consider alternative modeling techniques in cases for which
the conventional model based on aerodynamic derivatives exhibits a loss in accuracy.

B. Volterra Series

The discrete-time multi-input Volterra model formulated in Eq. (12) was used to model the force and moment
dynamic dependency for a large-amplitude oscillatory motion in the transonic regime. The Mach number
was set to 0.764 and the reduced frequency to 0.10. The mean angle of attack was zero, and the amplitude
of 8.5 degrees was selected to excite non-linear aerodynamics due to shock-induced separation. This testcase
is also considered in the next sections.

For the identification of the Volterra kernels, a training manoeuvre of sufficient duration time was gener-
ated using CFD as source of the data. The variation of the angle of attack with time is shown in Fig. 3(a).
Note that the training input is at the reduced frequency of the manoeuvre to be simulated, and the oscil-
latory amplitude varies linearly up to fourteen degrees. The dynamic dependence of the pitching moment
coefficient computed using CFD is illustrated in Fig. 3(b). The Volterra model is also included in the same
figure for comparison with the training signal used in the identification process. The overall agreement is
reasonable. However, deviations can be observed at both ends of the time interval.

As the airfoil is symmetric and oscillates around zero degrees mean angle of attack, the resulting aero-
dynamic loads are odd functions of the angle of attack change. As a result, any odd kernel was neglected
in the identification process. The Volterra model used in the results presented includes kernels up to third
order as follows

Hα
1 H α̇

1 H α̈
1

Hα, α̇
2 H α̇, α̈

2

Hα, α̇, α̇
3 H α̇, α̇, α̈

3 Hα, α, α̈
3

(20)
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Figure 2. NACA 0012: predictions of pitching moment dynamic dependence for the AGARD CT 5 case
(M = 0.755, α0 = 0.016◦, αA = 2.51◦, and k = 0.0814); in (a), dynamic derivative of the pitching moment; in
(b), ”Model” refers to the non-linear model based on aerodynamic derivatives
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Figure 3. NACA 0012: training manoeuvre for the generation of a discrete-time multi-input Volterra model
(M = 0.764, α0 = 0.0◦ and k = 0.10); in (a), variation of angle of attack with time; in (b), ”Model” refers to
the discrete-time multi-input Volterra model
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The upper bound of the integer k in Eq. (12), which indicates the number of previous time-steps to account
for, was set to 1 for the terms Hα

1 and H α̇
1 . For the other kernels, it was set to 0.

The effect of including more terms in the model was assessed during the identification of the Volterra
model, and in the subsequent comparison for the novel manoeuvre. The error norm was defined as

E =

∑N

i =0 | ycfd [i] − yrom [i] |

ycfd
max − ycfd

min

· 100 (21)

where N is the total number of time-steps used in the CFD simulation, and the superscripts cfd and rom
indicate, respectively, the full-order and the reduced-order model. Including first order kernels, the error in
the prediction of the large-amplitude manoeuvre was 6.78%. Second order kernels were then added to the
first order kernels, and the Volterra model deviated by 6.87% from the CFD solution. By introducing third
order kernels, the error norm slightly decreased to 6.18%.

Figure 4 conveys the unsteady pitching moment coefficient for the large-amplitude manoeuvre. The CFD
solution exhibits non-linear characteristics at the higher angles of attack. The Volterra model including the
kernels shown in Eq. (20) is illustrated in the same figure for comparison. Despite using kernels up to third
order, the agreement is not excellent. The overall fit of the model is reasonable, but there is no sign of the
prediction of any non-linear feature.
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Figure 4. NACA 0012: predictions of pitching moment dynamic dependence (M = 0.764, α0 = 0.0◦, αA = 8.5◦,
and k = 0.10); ”Model” refers to the discrete-time multi-input Volterra model

The mediocre performance of the Volterra model may be attributable to two aspects. To obtain a
robust enough predictive model, in combination with kernels of the second and third order, the influence
of the previous time-history on the current time instant was limited. Second, the training case considered
may be not optimal for the model identification. In general, a suitable training manoeuvre is designed to
allow sufficient representative data to create a low-order model with predictive capabilities within a desired
parameter space. Previous research focused on training manoeuvres development,43, 44 but it is argued that
an appropriate manoeuvre used to predict stability and control characteristics is not primarily given by its
frequency content or power density spectra.45 As the low-order model is used to predict the aerodynamic
behaviour within certain flight and control states, a sufficient coverage of the parameter space should be
realized by the design manoeuvre to be effective. The downside of this consideration is the likely non-
physical nature of the training inputs used for the Volterra model, constraining the model primarily to
numerical simulations.

C. Surrogate-Based Recurrence-Framework

The results presented in this section correspond to modeling the unsteady aerodynamic loads for the large
amplitude manoeuvre considered for the Volterra model. The Mach number is 0.764, the reduced frequency
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is 0.10, and the amplitude is 8.5 degrees for sinusoidal oscillations around zero degrees mean angle of attack.
The SBRF model was constructed from CFD solutions corresponding to 30 different combinations of αA,

constrained to vary between 0.0◦ and 10.0◦. With an increment in αA of 0.25◦, the parameter space was
initially covered for 75% of all the possible combinations. Figure 6 depicts the carpet plot of the pitching
moment coefficient for each value of the parameter αA obtained using the SBRF model. The axis ”Iteration”
indicates the time evolution through the last cycle of the simulations.

Next, the number of initial training CFD solutions was iteratively reduced to focus on the predictive
capabilities of the model. Four CFD solutions were eventually retained, and these are included as large
spheres in Fig. 6. Note that two training cases are located at the borders of the parameter space to avoid ex-
trapolation. The remaining two cases were automatically sampled by the algorithm described in reference.36

Note also that there is no close proximity of the four training cases to the amplitude of 8.5 degrees.
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Figure 5. NACA 0012: carpet plot of the pitching moment coefficient (M = 0.764, α0 = 0.0◦, and k = 0.10);
large spheres indicate the 4 CFD solutions used to construct the SBRF model

For the results presented in Fig. 6, the SBRF model was constructed from four CFD solutions illustrated
in Fig. 6. The reduced-order model closely approximate the reference solution, featuring the very similar
non-linear characteristics at higher angles. Little or no sensitivity was found for the value of m, introduced
in Eq. (15), while the value of n had a larger impact on the predictions. The values used in this study are
m = 2 and n = 1.

D. Indicial Function and Radial Basis Function

The indicial responses of the airfoil with a unit step change of angle of the attack and pitch rate are shown in
Fig. 7. The figure shows the responses per radian as a function of non-dimensional time. The lift responses
have an initial peak followed by a falling trend. This can be explained based on the energy of acoustic
wave system created by the initial perturbation.37 The initial peak becomes smaller as the Mach number
increases. It was found that translating the grid (angle of attack response), has larger effects on the lift
changes compared with rotating motions. Note that the pitching moment has a negative peak as the grid
starts to move. The computational cost for each response is around the cost of 10 steady-state calculations.

The design of a new manoeuvre allows to reduce the number of training motions. The training manoeuvre
used in this study is a spiral maneuver which consists of a sweep in the amplitude, described as

α (t) = αA t sin (ω t) (22)
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Figure 6. NACA 0012: predictions of pitching moment dynamic dependence (M = 0.764, α0 = 0.0◦, αA = 8.5◦,
and k = 0.10); ”Model” refers to the surrogate-based recurrence-framework
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Figure 7. NACA 0012: indicial responses of pitching moment coefficient to step change in angle of attack and
pitch rate (M = 0.764 and Re = 3.0 · 106)
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The spiral motion eliminates the need of repeating motions for different values of amplitude. However, for
reduced frequency effects, the motion with different values of ω need to be considered. In this study a spiral
motion was defined starting from zero degrees angle of attack at reduced frequency of 0.10. The simulation
was run for 35 oscillatory cycles, which is about 40 times the cost of a single steady-state solution. As in the
case of Fig. 3(b), the aerodynamic loads are non-linear with respect to angle of attack change. For RBFNN
training, the number of calculated data was reduced on the order of thousands using an interpolation scheme.
This allows a faster network training and avoids any out-of-memory error. The reduced spiral data were
rearranged according to Eq. (15) and then the network performance was tested for different values of n.
The results showed that using n = 2 and n = 4 is sufficient for modeling the lift and the pitching moment,
respectively.

Low-order models based on indicial functions were created using Eq. (15). Also, the networks were
trained using training data in the form of Eq. (15). The validity of these models is now tested for several
motions. For a pitch oscillation in the linear regime, the results of the reduced order models compared well
with the unsteady time-domain solution. This is not unexpected because for a small amplitude, e.g., one
degree, the aerodynamics is mostly linear. Figure 8 conveys the non-linear results for the large amplitude
pitch oscillation. The results show that indicial functions is off since the model formulation is valid only in
linear regimes. On the other hand, the RBFNN predicts the overall trend of the pitching moment.
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Figure 8. NACA 0012: predictions of pitching moment dynamic dependence (M = 0.764, α0 = 0.0◦, αA = 8.5◦,
k = 0.10, and and Re = 3.0 · 106); in (a), ”Model” refers to the linear indicial functions, and in (b) to radial
basis functions

V. Conclusions

Previous works of the authors demonstrated that the traditional model formulation of aerodynamic
loads based on aerodynamic derivatives may experience a loss in accuracy for flow conditions of practical
interest. The present work reflects the demand for exploring alternative mathematical formulations for the
prediction of unsteady airlods. The testcase is the NACA 0012 airfoil to allow a fast turn-around time of
the investigations. The purpose of considering a pitching airfoil at transonic conditions is to establish the
effectiveness of the reduced-order models in a non-linear regime of the flow envelope. The non-linearities are
attribuitable to shock-induced separation.

Several modeling formulations were presented. A non-linear model based on aerodynamic derivatives,
a multi-input discrete-time Volterra model, a surrogate-based recurrence-framework model, linear indicial
functions and radial basis functions trained with neural networks were considered. To assess the predictions,
low-order models were compared to unsteady time-domain Computational Fluid-Dynamics (CFD) simula-
tions for oscillatory pitching motions.The conventional model based on aerodynamic derivatives exhibited
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large deviations from the reference solution. While retaining higher order Volterra kernels, the multi-input
discrete-time model achieved a mediocre agreement, not pinpointing any non-linear feature in the aerody-
namic loads. The use of linear indicial functions demonstrated inadequate for the conditions considered.
The remaining two models, e.g., surrogate-based recurrence-framework and radial basis functions, achieved
a good agreement with the CFD solution. In particular, these models were generated at a cost similar to
the cost of computing the aerodynamic information for the conventional model of aerodynamic derivatives.
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