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Dynamic derivatives are used to represent the influence of thaircraft rates on the aerodynamic forces and
moments needed for flight dynamics studies. These values hetraditionally been estimated by processing
measurements made from periodic forced motions applied to imd tunnel models. The use of Computational
Fluid Dynamics has potential to supplement this approach. Tis paper considers the problem of the fast
computation of forced periodic motions using the Euler equéions. Three methods are evaluated. The first is
computation in the time domain, and this provides the benchrark solution in the sense that the time accurate
solution is obtained. Two acceleration techniques in the #quency domain are compared. The first uses an
harmonic solution of the linearised problem (referred to asthe linear frequency domain approach). The second
uses the Harmonic Balance method, which approximates the miinear problem using a number of Fourier
modes. These approaches are compared in the sense of theiildf to predict dynamic derivatives and their
computational cost. The standard NACA aerofoil CT cases, tt SDM fighter model geometry and the DLR
F12 passenger jet wind tunnel model are used as test cases.n@mared to time accurate simulations an order-
of-magnitude reduction in CPU costs is achieved for flows wit a narrow frequency spectrum and moderate
amplitudes, as the solution does not evolve through transigs to reach periodicity.

[. Introduction

In general, aerodynamic models of forces and moments ardimeear functions of the aircraft states. Fortunately,
for flight simulation the model introduced by Brykis often applicable. This model uses a linear relationsbtprben
the forces and moments, and the flight states, with the caeftcreferred to as aerodynamic derivatives. There are
three types of derivative, namely static, dynamic and @dstDynamic derivatives are calculated from observing the
response of aerodynamic forces and moments to translatiadaotational motions. Dynamic derivatives influence
the aerodynamic damping of aircraft motions and are usedaiuate the longitudinal short period, lateral pure roll
and lateral Dutch roll properties of the aircraft.

Aerodynamic forces and moments can be estimated via acallysiemi-empirical, computational fluid dynamics
or experimental methods. A combination of data sheetsatimerodynamic theory, and empirical relations have
met with success due to their simplicity, but their genéyasi limited. The US Air Force DATCOM, for example,
has received widespread use. DATCOM produces aerodynasrii@tives based on the aircraft geometry and flight
conditions, and is based on a database obtained for coonahgircraft configurations, restricting validity. Aiedt
designers use semi-empirical methods such as DATCOM fanashg the static and dynamic derivatives during
conceptual design, while wind tunnel testing is traditibnapplied later in the design cycle.
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Wind tunnel testing has traditionally been used to prodecwdtives for production aircraft based on scale models.
This can be a time consuming and expensive process. Thecphgesalism of wind tunnel data is well known, but can
be limited by blockage, scaling, and Reynolds-number &ffeagether with support interference issues that prevent
the proper modelling of the full-scale vehicle behaviour.

A relatively new tool for evaluating dynamic derivativesGemputational Fluid Dynamics (CFD). Navier-Stokes
CFD solvers have reached a level of robustness and matoistypport routine use on relatively inexpensive computer
clusters. The computation of static stability derivaticas be done with off-the-shelf CFD tools. The prediction of
dynamic derivatives requires the ability to compute the@dgnamic response to time-dependent prescribed motions
which are used to excite the aerodynamics of interest. CFDplogential for complementing experimental testing
techniques for obtaining these aerodynamic parameters.piifasical limitations and kinematic restrictions of wind
tunnel testing including model motion as well as the intenfee effects of the model support are not factors in the
computational analysis. Physical effects can be sepafaiadthe CFD solutions in a way which can be difficult
from wind tunnel or flight test data. However, for predictidygnamic derivatives, significant computer resources are
required since unsteady simulations are needed.

Since many of the traditional wind-tunnel testing techiisjtely on harmonic forced-oscillation tests, it would be
helpful to have a computational tool that takes advantagbeeperiodic nature of the motion to decrease the com-
putational costs incurred by unsteady simulations. Thepgational methods presented in this paper, the Harmonic
Balance (HB) and the Linear Frequency Domain (LFD) methauliple the ability to efficiently approximate the
aerodynamics resulting from small, periodic and unsteaupbations of the geometry of an aircraft configuration.
There is however the question of the influence of the apprations on the derivative predictions. The evaluation of
the computational benefits and the predictive limitatiahe subject of this paper.

The paper begins with a description of the time domain, LFD HB methods. Results are presented then to
compare the dynamic derivative predictions obtained by #i@, HB and time domain methods.

[I.  Numerical Approach

The Harmonic Balance (HB) and Linearised Frequency Domdtbj methods compared in the current work are
implemented in different CFD codes. The approach takenletehmark each against the underlying unsteady flow
solver. In the current section the underlying flow solvess faist summarised, and then the HB and LFD methods
described.

A. Time Domain Formulations
1. University of Liverpool (PMB)

The main features of the Parallel Multiblock (PMB) solvee alescribed in Badcock et alA fully implicit steady
solution of the Reynolds Averaged Navier Stokes (RANS) deEequations is obtained by advancing the solution
forward in time by solving the discrete nonlinear systemafagions

WnJrl _ Wn

N = —R (W™ 1)

The term on the right hand side, called the residual, is therdiisation of the convective terms, given here by Osher’s
approximate Riemann solverMUSCL interpolatiodd and Van Albada’s limiter. Eq.1) is a nonlinear system of
algebraic equations which is solved by an implicit metR¢ile main features of which are an approximate linearisation
to reduce the size and condition number of the linear sysd@chthe use of a preconditioned Krylov subspace method
to calculate the updates.

The steady state solver is applied to unsteady problemawathseudo time stepping iteratfowhich at each real
time step is written as

1 3 R 3wt —gwn 4wt
KA_t a 2At*) ' a_w} AW = - <R(W) T 2AL* > @)

whereAt* is the real time step. Periodicity can be used to approxithataitial solution for the pseudo time stepping
at each real time step. At each iteration a file is written ltdtal disk with the converged solution at that real time
step. On the next cycle this file is read to provide the ing@ution for the pseudo time stepping, and on convergence
to the next real time solution, the original file is overweittwith the updated solution. As the solution approaches a
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periodic state the pseudo time stepping converges qui@dgtse it starts from an excellent initial guess. In this way
results can be obtained from time marching in a very effiaieahner.

2. German Aerospace Center (TAU)

The DLR TAU codé& 0 (TAU) is not one code but a modern massively parallel soféwsystem for the simulation
of flows around complex geometries from low subsonic to hgpeic flow regimes. The different modules of TAU
can be used stand alone or in a more efficient way within a Py#uooipting framework which allows for inter-
module communication without file I/O by using common menaltgcations. The unsteady compressible Reynolds-
Averaged Navier-Stokes (RANS) flow solver is based on hytnigtructured grids with a finite volume discretization.
The flow solver uses an edge-based dual-cell approachr eghevertex or cell-centred, employing either a second-
order central scheme or a variety of upwind schemes witlatineconstruction for second order accuracy.

As for the PMB solver, unsteady simulations uses Jamesam@btine-stepping methddo integrate the time-
dependent equations in the time-domain. Additionally,sblver respects the geometric conservation law both grid
deformation as well as bodies in arbitrary motion can be kiad. For the pseudo time stepping various explicit
Runge-Kutta and a semi-implicit LUSGS (Lower-Upper Synmicgbauss-Seidel) scheme are available by enhancing
convergence acceleration with a geometrical multi-griphbeithm and local time-stepping.

Apart from that, the Tau code includes an adjoint-solverdgi@dient based numerical shape optimization. The
discrete adjoint methdd consists of the explicit construction of the exact flux Jaaos of the spatial discretization
with respect to the unknown flow variables allowing the agj@quations to be formulated and solved and is a main
part of many different linear solvers, i.e. linear frequedomain solver or error estimation methods.

3. University of Glasgow (COSA)

The structured Navier-Stokes solver COSA code is a muttifjnite volume cell-centered code. It solves the integral
conservation laws in generalized curvilinear coordinate&ing use of a second order discretisation method. The
discretisation of the convective fluxes is based on Van kadiJSCL extrapolations and the approximate Riemann
solver of Roe’s flux-difference splitting. The discretisatof the viscous fluxes uses centred finite-differenceg Th
set of nonlinear algebraic equations resulting from thesgliscretisation of the conservation laws is solved with a
explicit approach based on the use of a four-stage Rungexkaotoother. The convergence rate is greatly enhanced
by means of local time-stepping, variable-coefficient canmplicit residual smoothing and a full-approximation
storage multigrid algorithm. When solving problems at viery flow speed computational accuracy and high levels
of convergence speed are maintained by using a carefuligrizEslow-speed preconditionirtg.

In the case of unsteady problems, Jameson’s dual-tim@istgmethod is used to integrate the time-dependent
equations in the time-domain. The interested reader isregfdo referencés# for further details on the COSA
solver and a thorough validation of its inviscid and viscoapabilities for steady and unsteady problems.

B. The Harmonic Balance Method

As an alternative to time marching, the Harmonic Balancehod? allows for a direct calculation of the periodic
state. Write the semi-discrete form as a system of ordindfigrential equations

Nﬂ:m§ﬂ+R@:0 @3)

Consider the solutiokV and residuaR to be periodic in time and a function of

W(t) =~ W + Z ( a,, cos(wnt) + Wb sm(wnt)) 4)
n=1

R(t) =~ Ro + Z ( a,, cos(wnt) + Rb bm(wnt)) (5)
n=1

giving a system ofV = 2Ny + 1 equations inV, unknown harmonic terms and can be expressed as

wAW +R =0 (6)

30f29

American Institute of Aeronautics and Astronautics



whereA is a Ny x Ny matrix containing the entrie&(n + 1, Ng +n+1) =nandA(Ng +n+1,n+1) = —n,
andW andR are vectors of the Fourier coefficients.

The difficulty with solving Eq. ) is in finding a relationship betwedhandW. To avoid this problem the system
is converted back to the time domain. The solution is spti iN discrete equally spaced sub intervals over the
periodT = 27 /w

W(to + At) R(ty + At)
W,y — W (to + 2At) - R(to + 2At) @)
W(to. +T) R(to .+ T)
whereAt = 27/ (Nrw). Then there is a transformation matfixvhich allows Eq. 6) to be written as
wD Wy + Ry =0 (8)

where the components Bf are defined by

Ny

> ksin(2rk(j —i)/Nr)

k=1

2

DiJ‘ = N_T

One can then apply pseudo time marching to the Harmonic Balaquation

dW
T}Lb +wDWpy+Rp, =0
This equation is solved using an implicit metA6dimilar to the one used for the underlying flow solver PMB.
The HB method has also been implemented using the explidiigrid Navier-Stokes solver COSA. The only
difference between the PMB and COSA implementation of theri8&hod is that the latter solves the harmonic
balance system of Eg8) by means of the aforementioned explicit multigrid method.

C. Linearized Frequency Domain Method

The Linearized Frequency Domain (LFD) meth®&is obtained by linearizing Eqs6), in which the residuaR is
considered as a function of the grid point locatianghe grid point velocitiesk, and flow solutionW. Assuming an
unsteady motion with a small amplitude, the unsteady teansde expressed as superposition of a steady mean state
and a perturbation, which is expressed by a Fourier series

W(t) ~ Wo+ W(), IW| < [Wo
X(t) ~ X0+ X(t), X[ < [I%ol|
X(t) X(t).

When linearizing about the steady mean state, B)gsults in the following complex valued linear system ofiaq
tions for then!” mode index

OR/OW  wnl W., | _ OR/0x  wndR/Ox Xa, ©)
—wnl  OR/OW W, —wndR/O%x  OR/Ix Xy, |-
Derivatives of the residual are all evaluated at the stead&nrstate(W<),>2<)), here dropped for convenience. This
system of equations can be written in the form of a linear 8gngA x = b. The accuracy of the result will depend
on the degree to which the dual assumptions of small petioriseand linearity are satisfied.

The JacobiadR/0W has been obtained previously in the context of the discrajgirea method by analytic
differentiating the flow solver. Considerable attentios baen given to ensure that the evaluation of the Jacobian and
matrix-vector products involving the Jacobian are effitiarterms of memory and time and requires no more than
four times the memory requirements of the non-linear codee ffequency domain residual however requires two

products of a vector with the Jacobian, and hence a singlaai@n is approximately 20%-60% more expensive than
a non-linear residual on the same case.
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The termsoR /0x and 0R,/0x, which represent the predescribed small periodic defaomaif the grid, are
evaluated using central finite differences

é;_l;({ - R<VAV0,>A(0+€)?,0)2€R<VAV0,)A(0e)?,O) 10
(‘f;_z(z N R<VAV0,>A(0,€>'?) 26R(VA\/(),)A(O,e):i) a

wheree is a small number chosen to minimize the error. It might bellsereugh to avoid non-linear effects in
the result and large enough so that the numerical noise igitdg. A good practice to get accurate results is the
experimentation with various values.

D. Method of Data Analysis

The prediction of dynamic derivatives based on the time-@iormethods and the LFD solver was performed in the
frequency domain using a cubic Lagrange polynomial appnation of the Fourier integral. More details on the
implemented scheme are found in Da Ronch &P alhe unstructured solvers output the mean value and the first
harmonic of the flow solution without additional postprosiag. A postprocessing utility was implemented for the
extraction of the zeroth and first harmonic flow solution comep from the time-domain solution.

A different approach was adopted for the HB solver, whoset&ni is computed alN; = 2 Ny + 1 equally
spaced points in time over one cycle. In other words,

Ny
ey, 2 0) % Wo e, 2) + Y (Wa, (2., 2) cos(wnt) + Wy, (2, 3, 2) sin(wnt))  (12)
n=1

whereW,, W, andW,_ are the Fourier coefficients of a flow variabW, (z, y, z, t). This expression is easily
re-written in matrix form as

W,
W, 1 cos(wt) sin(wty) ... cos(Ngpwty) sin(Ngwty) W,,
W, 1 cos(wte)  sin(wta) ... cos(Ngwty)  sin(Nywts) Wy, (13)
Wi, 1 cos(wtny) sin(wtng) ... cos(Ngwtn,) sin(Ngwing) VA\/,“\,H
e e Wo,,,
———
w

whereW* is the vector of the flow variable atNy + 1 equally spaced points in time over one period &nd is the
matrix that is the inverse discrete Fourier transform ofgerd he time instances at which the HB solution is known
are denoted by, = tg + i At,i = 1,2, ..., Ny. The Fourier coefficients of the flow variable are computed as

W = EW* (14)

Dynamic derivatives, as well as the real and imaginary pafrtee flow variable, are determined directly from the
Fourier coefficients without any additional transformatin the time domain.

The issue whether the assumptions of the HB and the LFD meihgzhact the prediction of dynamic derivatives
is addressed for a test case that will be presented to soraeeténtthe following sections. The AGARD CT5 case
is selected for the pitching NACA 0012 airfoil. A fully-uresidy calculation was computed using the PMB and TAU
solvers and the pitching moment loops are shown in E{g) and 1(b), respectively. The frequency spectrum was
extracted from the time signals of the moment coefficiente ean value (zeroth harmonic) and the fundamental
harmonic were retained to reconstruct in the time-domairsthnal indicated b§ime Domain - 1 Har in the figure.
The dynamic derivatives of the moment coefficient are olethinom the real and imaginary parts of the first harmonic
component. The signal includes the component of time-aesvaer the simulated cycles and the background motion,
neglecting terms of higher order. The 1 mode HB and the LFDesslwere also run for the same test case and
the corresponding moment coefficient is shown against thgetive time-domain results. The ellipse identified by
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the HB solution has nearly the same shape of that of the 1 hdentione-domain signal. However, the 1 mode
solution fails to predict the location of the shock wave watituracy, as shown in Fig, and the mean value results
slightly underpredicted. The dynamic derivatives prestidor this case are in close agreement with the time-domain
values for the first mode HB solution. The LFD result for th&eping moment coefficient shows a phase shift in
counterclockwise direction which is a-priori not clear whdluence caused that shift.

0.024 - 0.024 -
[ . Time Domain: PMB L . Time Domain: TAU
N ——— Time Domain - 1 * Har r ———— Time Domain: 1 * Har
0.018 [ ——¢—-— HB -1 Mode 0.018 - —-——-= LFD
0012 0012
0.006 [ 0.006 |-
£ - £ [
o - o r
oF or
-0.006 |- -0.006 |-
0.012| -0.012 |
_ NI AN WS S S W : IR AN SN AN W W
0018k -+ - 5 2 3 0.018 3 2 - 0 2 3
A0A [deg] AoA [deg]
(a) PMB and HB results (b) TAU and LFD results

Figure 1. Comparison of the first harmonic pitching moment cefficient for the time-domain, HB and LFD solutions for NACA 0012; the
test case is the AGARD CT5
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Figure 2. Mean value of pressure coefficient distribution fo the PMB and the 1 Mode HB solutions for NACA 0012; the test cas is the
AGARD CT5

Significantly different results were obtained for the AGARDS5 case using the LFD and the 1 mode HB solution.
Our understanding is that the step at which the harmonic#tion is done impacts the solution. The LFD method
consists of the linearization of the equations governirgftbw with respect to a small perturbation superimposed
over a base flow. The base state is the steady solution forRERerbethod. It takes into account reference states,
like a shock at a define location, but cannot model dynamiéanaif shock waves as observed for the AGARD CT5
case. For the HB method, the truncation to a finite numberwhbaics is done in the resolution of the equations and
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the base state is a time-average solution over the periodiomm As will be demonstrated, non-linear phenomena
featuring shock wave motion and vortical flow developmeatsioe handled by the HB method.

I1l. Results and Discussion

A. NACA 0012 Airfoll

Experimental data for the unsteady aerodynamics of the NAGA2 airfoil undergoing oscillatory pitch motions
are availablél-??> Measured quantities include the pressure at 30 locatigishiited on the airfoil surface. These
data were collected at several time intervals. No transitippping was applied in the experiments, and corrections
corresponding to a steady interference have been appltbd toeasured quantities. There were some questions about
unsteady interference effects on the experimental datavelder, the deviation between numerical and experimental
data is not the emphasis of the present work which is insteati@quality of the LFD and HB results compared to
the time domain predictions.

Two challenging cases were selected among the availabledfiofigurations in the AGARD data set for the NACA
0012 geometry pitching at one-quarter of the chord. The flomdd@ions related to the AGARD CT2 and CT5 were
retained to provide a comparison for numerical results. fBlsecases summarized in Talll@re characterized by
high pitching amplitudes and low frequencies. The flow fi¢lishe two cases are characterized by the formation of
a strong and highly dynamic shock wave experiencing Tijdearad Seebasg%type-B shock motion. However, for
case CT2 the steady state solution does not feature a shagk \ltds observed that the magnitude of the periodic
change in shock strength is larger than the mean steady shrecigth and, thereby, the shock wave disappears during
a part of its background motion. For case CT5, the steadyisolincludes a virtually symmetric shock wave which
periodically appears and disappears on the upper and lafacss as consequence of the harmonic motion.

The HB and the LFD methods were compared with the time-dorRMB, COSA and TAU solutions and the
available experimental measurements. To investigatentheence of the number of modes on the accuracy of the HB
solution, calculations were performed using up to 7 Fouriedes.

AGARD CT2 CT5
Mach number) 0.6 0.755
Mean incidenceg 3.1¢ 0.016
Pitch amplitudeq 4 459 2.57°
Reduced frequency, 0.0811 0.0814

Table 1. Description of the NACA 0012 test cases

The block structured grids and the unstructured grid of tA&N 0012 airfoil are shown in Fig3. The two-
dimensional domain extends 15 chords to the farfield for lineet-block structured grid. The C-type mesh has 97
nodes on the airfoil and 33 points in the normal directione Wake behind the airfoil is discretised using 17 points
in the streamwise direction. The total number of points i8@86An unstructured mesh was generated for use with
TAU. The farfield is circular and located at 100 chords from dlirfoil surface. The unstructured grid consists of 2280
points, 4300 prisms in the domain and 130 quadrilateralseatvall. The structured grid for the COSA solver consists
of 7425 points, 33 points in the normal direction and 180 saxtethe airfoil. The farfield is located at 20 chords from
the solid wall.

The periodic motion of the aerofoil is defined by the anglettdek as a function of time by

a(t) = ap + aasin(wt) (15)

whereqy is the mean incidence;y the amplitude of pitching oscillation, angdthe angular frequency of the motion
which is related to the reduced frequericlpy

k=wc/(2Ux) (16)

The airfoil chord and the free-stream speed are denotgakctgely, byc andU.
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(a) Three-block structured grid for the PMB(b) Unstructured grid for the TAU and LFD (c) Structured grid for the time-domain and HB
and HB solvers solvers COSA solvers

Figure 3. View of the grids for the NACA 0012

1. Numerical Setup

The primary objective of the work is to assess the accuratiyeoHB and LFD solutions compared to the respective
time-domain methods. However, the computational effigienderms of CPU time is also addressed to establish if
the acceleration techniques represent feasible alteesat the time-accurate solver with a favourable time rédnc

To this purpose, the choice of the numerical parametergalglimportant. The main numerical parameters used in
the test cases are summarized in Table

The choice of the numerical parameters for all solvers ledeth converged solutions for all test cases. Time-
domain analyses were simulated for 3 oscillatory cyclest the PMB and TAU solvers, 100 real time steps per
period were considered. For the time-domain COSA analyst&time intervals per period were used. Preliminary
calculations using the time-domain PMB solver were runifoetsteps per cycle up to 1024. The increasing number
of time steps did not noticeably influence the predictiomsfbtest cases and virtually identical results were olgdin
A reduction of the L2 norm of the residual by 8 orders of magpiét was the stopping criterion for the PMB and TAU
analyses, whilst for the COSA analyses the multigrid iraeign was stopped when the maximum root-mean-square
of the residuals of the four equations was smaller thant©.

For the implicit HB solver, it was found that the use of a loadbptive CFL number in pseudo-marching the
HB equations had a favourable outcome on the overall run.tifiee increase in CPU time for large CFL numbers
was caused by the degradation of the preconditioner asnigesiep was increased. To avoid this negative issue, the
CFL number was limited up to a maximum value. The maximum CEimber was progressively reduced as more
harmonics were retained in the solution because of theasektime for the evaluation of each pseudo iteration.

All time-domain and HB COSA analyses were carried out ushmg multigrid solver with 3 grid levels, and
performing 10 smoothed Runge-Kutta cycles on the coaregst.| On the finest and medium levels, 5 smoothed
Runge-Kutta cycles were instead performed. In all casesC#L number was held constant from the beginning to
the end of the calculation. The initial conditions of the¢itomain and HB COSA analyses were the same as those
used for the corresponding PMB analyses.

The L2 norm of the residual for the HB, LFD and HB COSA solvers shown in Fig.4 for all test cases.
Convergence to the prescribed tolerance required mowiiies for the AGARD CT5, due to a more complex flow
physics. The steady state solutions are also included ferenrece. Nearly the same number of pseudo-iterations in
the HB solver were required to reach convergence for allyaeal except for the 7 modes, for the first test case. For
the second test case, the number of iterations increasétcfeasing number of retained Fourier modes. For the HB
COSA results, the number of multi-grid iterations did natreese with the number of harmonics and, in particular,
the poorest performance was obtained for a different numtmodes in the two test cases. A final remark is that the
performance of the LFD method did not change noticeably.

2. TestCase 1: AGARD CT2

The flow field of the AGARD CT2 case is characterised by the fatiam of a strong and highly dynamic shock wave
experiencing Tijdeman and Seeba&stgpe-B shock motion. The magnitude of the periodic changhatk strength
is larger than the mean steady shock strength and, thehebghbck wave disappears during a part of its background
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AGARD CT2 CT5
Time Domain: PMB

Number of cycles 3 3

Number of time-steps per cycle 100 100

CFL number 500 500

HB (1-7) (1,2) @k @& 6 (67)
Max number of pseudo-iterations 300 300 300 300 300 300
Min CFL number 50 50 30 25 20 10
Max CFL number 500 500 300 250 200 150
Time Domain: TAU

Number of cycles 3 3

Number of time-steps per cycle 100 100

CFL number 20 20

Relaxation solver LU-SGS LU-SGS

LFD

CFL number 20 20

Relaxation solver LU-SGS LU-SGS

Modal amplitude factor 10 1074

Time Domain: COSA

Number of cycles 3 3

Number of time-steps per cycle 128 128

CFL number 3 2

HB—-COSA

CFL number 3 1

Table 2. Numerical parameters for the NACA 0012 test caseshe values in parenthesis indicate the number of harmonics tained in the
HB solution

motion. The normal force and the pitching moment coeffideaterred to body axes are considered for the comparison
of the HB and the LFD methods with the time-accurate soltidine loops of the integrated aerodynamic coefficients
against the instantaneous angle of attack are shown ibFithe HB solution is included for 1, 2, 3 and 7 modes. The
convergence of the time-domain solution to a steady harormriput was achieved within the first cycle of motion. As
can be seen from the lift force coefficient, Figa), for the time-accurate simulation, non-linear effects@esent for

the dynamic derivatives already and which appear in théapitcmoment coefficient, Fig(b), as harmonics of more
than second order. The solutions computed using 2, 3 and @sragtee well in predicting the force loop. However,
the solutions retaining only the first harmonic miss soméefetails of the flow time-history. The moment coefficient
has non-linear features that cannot be captured by retpévien the first 2 harmonics in the solution. The solutions
including higher harmonics are in good agreement with edlsbrand with the time-domain solution. Nevertheless,
it is observed that the 3 mode HB result slightly overpredibe moment coefficient during part of the downstroke
motion. Experimental dathare also included in Figs. Deviations between numerical and experimental resudts ar
likely to be associated with the neglect of viscous forcesamcertainties in the experimental data. The time-domain
and the HB COSA solutions are also included and comparedstgaiperimental data. Similar considerations to those
given for the relative performance of the HB solver with mspo the respective time-domain method are observed
for the COSA solutions.

Analyses of the frequency spectra of the integrated aemdiscoefficients computed by the time-domain solu-
tion provide a way of interpreting these considerationshasvn in Fig 6. Although of moderate magnitude, the force
coefficient spectrum comprises th&’zharmonic. The frequency content of the moment coefficieséen to extend
up to the 4" harmonic frequency. The magnitude of thi& 2and 3¢ harmonics is 40% and 10%, respectively, the
magnitude of the fundamental harmonic. The magnitude dfdrifrequencies is limited to less than 5%.
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Figure 4. Convergence of the L2 norm of the residual for the NAA 0012 test cases

Dynamic derivatives were calculated for all computatioesiults and are summarized in TaBléor the normal
force and pitching moment coefficients. The values obtafneah the time-domain solution are taken as reference
values. Because the frequency content of the force coeffitime-history is dominated by the first 2 harmonics,
the agreement in the prediction of the in-phase and outafp components is excellent when 2 or more modes are
retained in the solution. The spectrum of the moment coeffictontains 3 harmonics whose magnitude is larger
than one tenth the magnitude of the fundamental harmonpaming the deviations in the prediction of dynamic
derivatives for the solutions using less than 3 modes. Tkdigted values using 3 and 7 modes are in excellent
agreement with each other and with the values from the tiomain solution. The percent error in the predicted
values of dynamic derivatives using the HB solution with 3d@®is limited to less than 2% the reference values. For
the normal force, the 1 mode HB and the LFD solution achieverg similar and good agreement, instead the pitching
moment could be resolved by the HB better, where the LFD iganfyom any linear assumptions which can be seen
furthermore in Fig5(b).

CNa 7 k2 CN@ CNLI + CNQ Cma 7 k2 Cmd Cmq + Cma

Time Domain 6.63 -15.5 0.108 -2.49
HB - 1 mode 6.67 -13.1 0.146 -3.41
HB - 2 modes 6.67 -15.8 0.112 -2.54
HB - 3 modes 6.65 -15.8 0.105 -2.49
HB - 7 modes 6.64 -15.6 0.106 -2.49
LFD 6.72 -15.7 0.065 -2.02

Table 3. Test Case 1: dynamic derivatives for NACA 0012

The instantaneous pressure coefficient distribution frieennumerical results at the mean angle of attack, which
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Figure 5. Test Case 1: normal force and pitching moment coeffient loops for NACA 0012

is included in the HB time intervals, for increasing anglesveampared with experimental data from the AGARD
CT2 case. The mean angle of attackvis = 3.16° and the nearest angle at which the pressure was measured is at
« = 2.38° for increasing angle. In Fig/(a)the time-domain solution and the HB solutions obtainedgi4in2 and

3 modes are included. An excellent agreement is observagbatthe time-domain and the HB solutions, as well as
with the experimental data. The reason the numerical solstappear to overpredict the pressure coefficient on the
upper surface, and underpredict on the lower side, is liteelye caused by the different instantaneous angle of attack
available from the AGARD CT2 case. To investigate the efféthe number of modes on the accuracy of the solution,
the mean values and the first harmonic of the unsteady sysfassure coefficient were computed from the numerical
solutions. The solutions computed using 3 and 7 modes aredd ggreement for the mean quantities on the lower
surface, whereas the solutions computed using 1 and 2 madesame of the details of the flow on the upper side
of the airfoil. This is shown in Fig7(b). For example, the location of the strong gradient in thequrescoefficient is
predicted to be slightly further downstream for 1 and 2 haric& The peak value of pressure on the upper surface is
also underpredicted for 1 harmonic. For the LFD result, tleamvalue of surface pressure coefficient is shown and
represents the steady-state solution. In a steady flow,afdyge suction region near the leading edge is identified
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Figure 6. Test Case 1: magnitude of normal force and pitchingnoment coefficients for NACA 0012

and no shock wave is observed. The LFD solution is in agreemi¢im the surface pressure coefficient distribution
obtained in a steady state analysis using time-domain i0lviene HB solution is a time-average solution over the
steady state analyses. It is recognized that the main €liféer between the LFD and the 1 mode HB solutions is that,
at least, one of the Ny + 1 steady state solutions for the HB method features a shock aad the resulting mean
value contains most of the non-linear features shown by-tior@ain methods. On the lower side in Figthe real and
imaginary parts of the first harmonics are shown. The saistmbtained using 3 and 7 modes are in good agreement
with the time-domain solution. For 3 harmonics, howevememf the details cannot be captured in the real part of
the surface pressure distribution. Nevertheless, theeawgat of the 3 modes solution with higher harmonics and the
time-domain solution is within engineering accuracy. A myagreement is achieved by the LFD solution, which
overpredicts the magnitude and underpredicts the widtheopeaks. Similar inaccuracies were recently obséfied

the viscous simulation of transonic flow past oscillating ften the NACA 0012. The first harmonic unsteady pressure
coefficient using the LFD method represents the local smutalculated around the mean angle of attack for a small
perturbation of the grid movement. For a small perturbatibha solution is linear with respect to the perturbation.
A preliminary calculation was run with the time-domain nadhk for a small pitch amplitude and the corresponding
first harmonic solution was in agreement with the LFD sohutid he large peaks in the first harmonic components
represent changes in the pressure coefficient distribngan the leading edge and are not connected with any moving
shock wave. For this test case, no shock wave is predicteaiglyRD solution.

Fig. 8 includes a set of results computed using the time-domaintteadiB COSA methods. The overall per-
formance of the HB method compared to the time-domain CO3¢tisa is similar to that of the HB and the PMB
solvers. Nonetheless, spurious oscillations around tbekstvave are observed and are visible in the 7 modes HB
solution. This feature may be due to some inaccuracies imtpeementation of the flux limiter in COSA, and the
matter is currently being investigated.

3. Test Case 2: AGARD CT5

For the AGARD CT5, the flow solution is non-linear, with a sk@ppearing in the leading edge region and moving
downstream. The shock continues downstream until appiteiin45% of the chord. Then the shock returns upstream
close to the leading edge. The same pattern is repeated opplasite side of the airfoil. The flow remains attached
throughout the cycle of unsteadiness. Since this caserésatustrong shock on the upper and lower surface, the
guestion is whether the presence of the shock has a negafeet on the accuracy of the time-linearized code.

The normal force and the pitching moment coefficients refeto body axes are considered for the comparison
of the HB and the LFD solvers with the time-accurate solwgiorhe loops of the integrated aerodynamic coefficients
against the instantaneous angle of attack are shown in9Fig.he HB solution was obtained using 1, 2, 3 and 7
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Figure 7. Test Case 1: pressure coefficient distribution foNACA 0012; solutions are included for the PMB/HB and TAU/LFD solvers; the
term up in parenthesis indicates the direction increasing agle; experimental data were measured atv = 2.38° for increasing angle

modes. The solutions computed using 1, 2, 3 and 7 modes agieimpredicting the force loop. The LFD solution
of the lift force coefficient shows good agreement in congaarito the time-accurate TAU simulation. The moment
coefficient has non-linear features because of the movingkstvave that cannot be captured by retaining the first
2 harmonics in the solution. The LFD and the HB results forftret harmonic shows that both solutions will not
be able to give accurate predictions. Furthermore, botthisif moment curves indicate a phase shift to the time-
accurate solutions. The solutions computed using highendiaics are in good agreement with each other and with
the time-domain solution. Nevertheless, it is observetlttiia 3 modes HB result slightly misses some of the flow
features at the highest and lowest angles of attack. The HBACSblutions are in agreement with the respective
time-domain method increasing the number of modes and riicpkar, have a similar performance to that of the HB
solver. Furthermore, the initial transitory in the timezarate solution from the steady state analysis is nearhtick
for the PMB and COSA methods.

Analyses of the frequency spectra of the integrated aemdiscoefficients provide a way of interpreting these
observations, as shown in Fi§j0. The frequency spectrum of the force coefficient, as expelsyethe excellent
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Figure 8. Test Case 1: pressure coefficient distribution foNACA 0012; solution is included for the time-domain and HB COSA solvers;
the term up in parenthesis indicates the direction increasig angle; experimental data were measured at = 2.38° for increasing angle

matching for the first harmonic, is defined solely by the fundatal harmonic. The frequency band of the moment
coefficient extends up to thé’Sharmonic. However, one can see that the amplitude of tHén@rmonic is far lower
than the amplitude of the"8 harmonic. Similarly, the amplitude of any odd harmonic iwéo than the amplitude
of the corresponding even harmonic at higher frequenciecomsidering Fig9, it is observed that, apart from a
small adjustment in the mean slope, no significant improvesare achieved between the HB solutions using 1 and
2 modes in the prediction of the moment loop. However, wharsictering the 3! mode the solution contains most
of the non-linear features of the time-domain solution j@dhg a good overall agreement. The reasons behind this
observed feature are not clear yet; nonetheless, the nearities in the moment coefficient at approximately 1/7 and
2/3 of one period seem to be related to the shock wave movistyegm toward the leading-edge and the forming
shock wave moving downstream toward mid-chord.

Dynamic derivatives were calculated for all computatiaesults and are summarized in TaBléor the normal
force and pitching moment coefficients. The values obtaineah the time-domain solution are taken as reference
values. Because the frequency content of the force coefftitiime-history is characterised by th& harmonic only,
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Figure 9. Test Case 2: normal force and pitching moment coeffient loops for NACA 0012

the agreement in the prediction of the in-phase and outiabe components is excellent regardless of the number
of modes. Although the spectrum of the moment coefficiedtiohed more harmonics whose magnitude was larger
than one tenth the magnitude of the fundamental harmonidtamdow is transonic, the agreement is good. The
predicted values using 2, 3 and 7 modes are in excellentimgreevith each other and with the values from the time-
domain solution. The percent error in the predicted valdetynamic derivatives using the HB solution, regardless
of the number of modes, is limited to less than 2% of the refegevalues. The predictions of the LFD consist of a
reasonable value for the out-of-phase component, whilentpbase component highlights a large inaccuracy.

The instantaneous pressure coefficient distribution frieennumerical results at the mean angle of attack, which
is included in the HB time intervals, for increasing anglesveampared with experimental data from the AGARD
CT5 case. The mean angle of attackvis = 0.016° and the nearest angle at which the pressure was measured is at
a = —0.54° forincreasing angle. In Fig.1(a)the time-domain solution and the HB solutions obtainedgi&ir2 and
3 modes are included. An excellent agreement is observegbatthe time-domain and the HB solutions, as well as
with the experimental data. However, the location of theckhweave is predicted to be slightly further upstream for one
harmonic. The mean values and the first harmonic of the uthgtaface pressure coefficient were computed from the
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Figure 10. Test Case 2: magnitude of normal force and pitchig moment coefficients for NACA 0012

C'N,,t — k2 CNd C(Nq + CN@ Grna — k2 Cmd qu + Grnd

Time Domain 7.58 -37.8 -0.127 -3.09
HB - 1 mode 7.55 -37.7 -0.128 -3.16
HB - 2 modes 7.56 -38.2 -0.130 -3.13
HB - 3 modes 7.57 -38.1 -0.126 -3.10
HB - 7 modes 7.57 -38.1 -0.127 -3.11
LFD 7.55 -30.4 0.005 -3.24

Table 4. Test Case 2: dynamic derivatives for NACA 0012

numerical solutions. The solutions computed using 2, 3 ambdes are in good agreement for the mean quantities,
whilst the solution computed using 1 mode misses importetaild near the shock wave location. An important
remark is for the different shock pattern on the upper ancetasurfaces for the 1 mode HB solution, which is not
seen otherwise using a larger harmonic base or time-dometimad. The reason for overpredicting the shock strength
on the lower side and underpredicting it on the upper suffilaicthe 1 mode HB solution is found on tReVy + 1
snapshots included in the HB method which are a solution basgled at uniformly spaced temporal points. It is
observed that 2 snapshots feature a shock wave on the ladeeast the remaining snapshot on the upper surface,
resulting in the mean value shown in Fid.(a) Fig.11(b)presents the mean pressure distribution and additiorfadly t
initial steady state solution used for the LFD solver. In$baic and transonic regions of the flow, the mean surface
pressure is in good agreement with the HB and time-domairnisak. However, the pressure coefficient peak across
the shock is not resolved good, being distributed over a mglerdwise location while the steady state distribution
for the LFD method displays no shock wave which is included ordinary steady state analysis using time-domain
methods. A reason for the unexpected poor agreement in the vadue can be the use of a too coarse grid not adapted
to accurately resolve a shock wave, although the time-doifyl solution is in agreement with the PMB result. The
real and imaginary parts of the first harmonics are also shiowig. 11(c)and Fig.11(d) The solutions obtained
using 3 and 7 modes are in agreement with the time-domaiti@oluHowever, for 3 harmonics oscillations can be
seen slightly further upstream of the shock wave locatia@m.tike LFD solution, similar considerations to those given
for the AGARD CT2 case can be drawn. The large gradients iptbssure coefficient are associated with a moving
shock on the airfoil surface because the steady state coligatures a flow discontinuity.

Fig. 12 shows the solution using the time-domain and the HB COSAesslvFor the snapshot of instantaneous
pressure coefficient, similar considerations to thosergfee the HB and PMB solvers are valid. It is noted that the
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time-domain COSA method predicts a stronger shock wavesilplgsdue to the better mesh refinement. As more
Fourier modes are retained in the solution, convergendeettrne-domain results is achieved. It is not possible yet to
identify the reasons of spurious oscillations around tleeklvave when 7 complex harmonics are included in the HB
COSA solution. As previously explained, the spurious desttiins around the shock are possibly due to some aspects
of the implementation of the flux limiter which are currentlging investigated.
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Figure 11. Test Case 2: pressure coefficient distribution foNACA 0012; solutions are included for the PMB/HB and TAU/LFD solvers;
the term up in parenthesis indicates the direction increasig angle; experimental data were measured a = —0.54° for increasing angle

4. Computational Efficiency and Overall Performance

Fig. 13 shows the speed up of the HB, LFD and HB COSA solvers compartgetrespective time-domain methods
as a function of the number of Fourier modes. For the LFD nukttie run times for the two cases are nearly identical
achieving a speed up of about 10. A similar performance iaiobtl by the 1 mode HB solver, with a limited loss of
efficiency for the AGARD CT5 case for which the flow physics isnecomplex. As more Fourier modes are retained
in the solution, the run times grow exponentially. Above Bnhanics, the HB solutions result more computationally
expensive than the solution obtained by the time-domaivesolTimings for the acceleration techniques are only
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Figure 12. Test Case 2: pressure coefficient distribution foNACA 0012; solution is included for the time-domain and HB COSA solvers;
the term up in parenthesis indicates the direction increasig angle; experimental data were measured a = —0.54° for increasing angle

indicative and numerical parameters were not optimizedafbest performance. It was mentioned that for the HB
solver a local adaptive CFL number procedure was adoptedlafge CFL numbers, the increase in CPU time was
caused by the degradation of the preconditioner as the tigpevgas increased. To avoid this negative issue, the
CFL number was limited up to a maximum value. The maximum CEinber was progressively reduced as more
harmonics were retained in the solution because of theasektime for the evaluation of each pseudo iteration.

Table5 summarizes for the multigrid solver convergence infororaifor the Test Case 1 and 2. The variable
labelledRelative CPUis the ratio between a single MG iteration per elemental loaimin the framework of the
HB solution and that required for a single MG iteration in frEmework of the time-domain solution. The former is
obtained by dividing the overall CPU-time needed for the Hilgsis under consideration by the overall number of
multigrid iterations an@ Ny + 1, whereNy is the number of complex harmonics.

The first comment on the data reported is that the CFL numh#d @ kept at the relatively high value of 3 for both
the time-domain and the HB analyses for Test Case 1. Thegdilysinore complex flow associated with Test Case 2,
however, required the use of lower CFL numbers for both tifomain and HB analyses. More specifically, the CFL
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number of the HB analyses had to be lowered to 1 in order totaiainumerical stability. The CFL number used for
the time-domain analysis could instead be 2. Indeed the diomeain analysis of Test Case 2 could be performed also
with a CFL of 3, but in this circumstance the maximum residaidd to converge ta0~'° in less than 1000 multigrid
iterations for a small number of physical times. The secomglortant remark is that for both test cases the number
of multigrid cycles required to achieve the prescribed esgence level of0~1° did not increase monotonically with
the number of harmonics used in the analysis. A conclusiyéaestion for this behavior cannot be provided yet.
Asymptotic spectral analysis of the preconditioned HB iguili operator for problems with different types and levels
of nonlinearities solved by using different number of hanies may shed some light on this aspect. The cost of the
HB multigrid interation increases with respect to that &f time-domain multigrid iteration as the number of complex
harmonics increases. This is because of the cost assouidtethe matrix-vector product required to compute the
first term of the left-hand-side of E(8); Such a cost clearly increases with the number of complaxabaics.

——— - Time Domain ———— - Time Domain

22 A —a— HB 22 —=— HB
\ @) LFD @ LFD
20 \ — —A— - COSA-HB 20 — —A— - COSA-HB

[
N

U LS LN B AN RN REEE RERE BAEE RN RERE nunnnann |
[
N

U LS LN B AN RN REEE RERE BAEE RN RERE nunnnann |

4 4
Nr Har Nr Har

(a) Test Case 1 - AGARD CT2 (b) Test Case 2 - AGARD CT5

Figure 13. CPU time speed up for the HB, LFD and HB-COSA method compared with respective time-domain methods for the NACA
0012 test cases

Nr of Harmonics
1 2 3 4 5 6 7

AGARD CT 2
MG cycles 1030 780 650 1310 920 1140 920
RelatveCPU 123 135 150 161 176 187 2.08

AGARD CT 5

MG cycles 2790 1270 1990 3050 4050 2230 2690
Relatve CPU 124 137 152 165 179 194 213

Table 5. Convergence informations for the HB COSA method fothe NACA 0012 test cases
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B. Standard Dynamics Model Aircraft

The Standard Dynamics Model (SDM) is a generic fighter condition based loosely on the F-16 planform. The
model includes a slender strake-delta wing, horizontahemtical stabilizers, ventral fin and a blocked off inlet.i§h
geometry has been used at various wind tunnel facilitie®liect data using different measurement technicfaes.
Further details on the geometry can be found in Hu&ng.

This model has been used for two previous studies relategriardic derivatives. First, the development of a
flight dynamics aerodynamic model using CFD was reportedtioréyshi et af® Forced manoeuvres were used to
evaluate the applicability of the dynamic derivative modEhe results of a study that considers the variation of the
dynamic derivatives with various aerodynamic and motiorapeeters, based on time domain simulations is reported
in Da Ronch et af°

A block structured mesh was generated for the use with the BMBHB solvers and it is shown in Fij4 along
with the unstructured mesh for the TAU and LFD solvers. Thengetry was slightly simplified by removing the
blocked off intake and the ventral fins. The structured meas @btained with 701 thousand points. The unstructured
grid consists of 59542 points, 310156 tetrahedra and 2724&ce triangles. The COSA solvers were not run for this
configuration.

(a) Block structured grid for the PMB and HB solvers (b) Unstructured grid for the TAU and LFD solvers

Figure 14. Surface grid for the SDM model geometry

To assess the use of the HB, LFD and time-domain methods sasigiiest case at low angles of incidence is first
considered. The Mach number is 0.3 and the mean angle ok#&ta€’. A numerical study was carried out to evaluate
the influence of the amplitude of motion on the aerodynana@d$dfor amplitudes from 2°Qup to 5.0. It was observed
that the motion with an amplitude of 2.@nsures a virtually linear aerodynamic response. Workbéyad-authors: 30
have pinpointed the presence of vortical features in the fleld at 15.0 angle of incidence. The superposition of
a pitching motion on the background state results in theodérimotion of the vortices, stressing the non-linearities
of the flow solution. Demonstration of the non-linear cafiaés of the HB method in capturing the aerodynamic
frequencies excited by the harmonic boundary conditiongement is presented. Experimertaand numeric&f
investigations of the damping in pitch derivative throupk transonic regime were conducted. Assessment of the
numerical techniques is performed for Mach numbers betWegmip to 1.1 at 0.0angle of incidence, with a finer
step increment near Mach 1 where a significant change in denvailue was observed. The reduced frequency was
constant, so that an increment in the freestream speed Wawdd by a proportional increment in the frequency of
motion. With a flowfield featuring the formation of shock wawnd their time-dependent motion, a time step study
was undertaken to evaluate the influence of the time resolath the flow solution. It is demonstrated that 20 time
steps per pitching cycle are adequate for these cases fdirmain method€’

The flow conditions for all test cases are summarized in Tabldne moment reference point and the rotation point
are located at the centre of gravity. The choice of main nicabparameters guarantees well converged analyses for
all cases. A first remark is that the CFL number used for ungirad solvers was 1.2 for all cases. For the PMB and
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HB solvers, it is held constant to 100 for all cases whose Maghber was lower than 0.9, for the remaining analyses
lowered to 15.

TestCasel TestCase?2 TestCase3

Mach number) 0.3 0.3 0.4uptol.l
Mean incidenceg, 0.r 15.0 0.

Pitch amplitudeq 4 2.0 5. 5.0
Reduced frequency, 0.0493 0.0493 0.0493

Table 6. Description of the SDM test cases

1. Numerical Results

Test Case 1: Subsonic

The test case is run at low speed and, because of the smaltashepdf motion, the flow is linear or quasi-linear.
The aerodynamic loops for the time-domain solvers and thehriBthe LFD methods are included in Fich for the
normal force and pitching moment coefficient. The PMB andTiRd solutions predict linear responses to the input
motion. The HB results match closely the PMB solutions fathtforce and moment coefficients. Most importantly,
the results exhibit little variation over the range of Feanmodes and one time varying mode provides a solution
convergent to plotting accuracy.
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. Time Domain: PMB . Time Domain: PMB

o Time Domain: TAU o Time Domain: TAU
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Figure 15. Test Case 1: normal force and pitching moment coé€ient loops for the SDM model geometry

Table7 summarizes the dynamic derivatives for the force and moreeificients for the time-domain, HB and
LFD solutions. The 1 mode HB results agree well with the PMBaiyic derivatives and convergence to the time-
domain values is observed increasing the number of modascumacies for the LFD solution are seen for the moment
coefficient.

Test Case 2: Subsonic with vortical flow

At low speed and 5.0° mean angle of attack, strake and wing vortices develop aediict. It was found that the
amplitude of the sinusoidal motion has critical influencdlmaerodynamic loops. Studies based on the PMB solver
were carried out for amplitudes 2f0°, 3.5° and5.0°. While the aerodynamic loops had an ellipse-like shapehfer t
smallest amplitude, non-linearities in the loops appe#ved.5° amplitude. The case with an amplitudl®° is used
to assess the validity and limitations of the non-linear H&mod. The LFD solver was not run for this case because
of vortical flow developments and vortices dynamics whiahlaeyond the assumptions of the method.

21 0f29

American Institute of Aeronautics and Astronautics



C'N,,t - k2 CNd C(Nq + CNd Cm,,t - k2 Cmd Grnq + Cmd

Time Domain: PMB 3.39 7.90 0.23 -5.95
HB - 1 mode 3.39 8.20 0.23 -5.82
HB - 2 modes 3.39 8.16 0.23 -6.01
HB - 3 modes 3.39 7.99 0.23 -5.97
Time Domain: TAU 3.44 10.99 0.07 -6.81
LFD 3.30 9.38 0.43 -7.39

Table 7. Test Case 1: dynamic derivatives for the SDM model genetry

The normal force and the pitching moment coefficients agalvesinstantaneous angle of attack are included in
Fig. 16. The HB solutions, including up to 4 harmonics, are compavig the respective time-domain solutions. For
the HB solver, the solutions using 3 and 4 harmonics agrekinvptedicting the force loop. However, both of these
results fail to represent the inflection in force coefficigating the upstroke motion, evident at the instantaneogkean
of attack of16.0°. This consideration suggests that the force coefficienttsp®m might contain an harmonic compo-
nent that is not modeled by the 4 modes HB solution, therebsidelof this frequency range. Consistent differences
can be noted for the pitching moment coefficient. A charéstiershape of "eight” at around8.0° appeared. The
solutions using 1 and 2 harmonics achieve a poorer agreemperedicting the moment loop. However, the solutions
retaining 3 and 4 harmonics predict well the main featurelutfing the shape of "eight”.

13 0.12
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(a) Normal force coefficient (b) Pitching moment coefficient

Figure 16. Test Case 2: normal force and pitching moment coé€ient loops for the SDM model geometry

Fig. 17 shows the frequency spectra of the normal force and pitamiagnent coefficients computed by the time-
domain solutions. It is observed that the normal force fezmpy spectrum contains th&2and 3¢ harmonics, whose
amplitude is 11% and 3%, respectively, the amplitude of timeldmental harmonic. While thé&*4and 3" harmonics
are less than one percentage point, tHet@rmonic has an amplitude slightly less than 2%. It is pdsshat this
harmonic component, not included in the available HB sohgj is responsible for the deviations of the 3 and 4 modes
HB solutions during the upstroke motion. The frequency spet of the moment coefficient includes up to tHé 6
harmonic frequency, whose magnitude is around 5% the matmitf the 1 harmonic. It is identified that the”2
and 3¢ harmonics greatly affect the moment loop since the mageitsid6% and 18%, respectively, the magnitude
of the fundamental harmonic.

Dynamic derivatives of the normal force and pitching momesefficients are summarized in Talflefor all
numerical results. However, the out-of-phase componetiteoforce and moment coefficients measured in different
wind tunnel facilities is included to assess the numeriealilts against experimental data. The experimental data
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Figure 17. Test Case 2: magnitude of normal force and pitchig moment coefficients for the SDM model geometry

for the normal force damping derivative were measured ircth@inuous, open circuit transonic wind tunnel of the
aerodynamic lab at IHU, Iraff. The pitch damping derivatives were measured in the low speesked circuit Ankara
wind tunnel?” The time-domain damping derivatives agree well with theegixpental values. Because of the broad
frequency content of the force and moment coefficient, dievia are expected in the predicted values of dynamic
derivative for solutions using 1 and 2 modes. One can se#thaercentage error in the prediction is reduced as more
harmonics are retained in the HB solution. Using as few as @asica percentage error lower than 10% with respect
to the time-domain values is achieved. The error is furtbduced to less than 4% when 4 modes are included in the
HB solution.

C'N,,t - k2 CNd C(Nq + CNd Cm,,t - k2 Cmd Grnq + Cmd

Experimental - 18.7 - -5.62
Time Domain: PMB 3.11 15.4 -0.29 -5.12
HB - 1 mode 2.98 20.5 -0.36 -2.05
HB - 2 modes 2.98 16.6 -0.35 -4.51
HB - 3 modes 3.11 14.5 -0.28 -5.57
HB - 4 modes 3.08 14.9 -0.30 -5.31

Table 8. Test Case 2: dynamic derivatives for the SDM model genetry; experimental date?”-28 are also included

With strong non-linearities and vortical flows developmenthallenging test case was considered to assess the
validity and limitations of the HB method. It was demonstdhthat the integrated aerodynamic loads contained sev-
eral modes that were excited by the combination of flow camutand prescribed oscillatory motion. Nonetheless,
the prediction of the aerodynamic loops revealed a goodeaggat for the solutions using 3 and 4 modes. Similarly,
the prediction of the dynamic derivatives using the samebrmof Fourier modes achieved a deviation of less than
4% with respect to the reference values.

Test Case 3: Transonic regime

The acceleration methods and the time-accurate solutiens tested for the prediction of the damping in pitch
derivative for the SDM in the transonic regime. The numeriegults are compared with experimental data. The flow
conditions given in Tablé feature a Mach number from 0.4 up to 1.1 at a constant valuecafaed frequency. The
flow field solutions at the steady state conditions at highaciVinumbers contain oblique shock waves forming over
the sharp leading and trailing edges. The applied motiosesathe motion of the shocks.
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Fig. 18 shows the damping in pitch derivative as a function of the IMaember. The values based on the time-
accurate solutions and the LFD and HB results using 1, 2 aratf®dnics are included. A comparison is also done
against available experimental data from wind tunnel andealata of Winchenbach et%lAn excellent agreement
between the time-domain and the HB solutions is achieveditifrout the transonic regime. The solution using 3 har-
monics exactly reproduces the values from the unsteadulesiten. The solution using 2 modes is virtually identical
to that using 3 modes. The pitch damping derivatives aréttjigverestimated (less negative) for 1 harmonic, how-
ever the dip value is in good agreement with other values.pFagsent numerical results agree well with experimental
data, clearly showing the sudden increment in the dampiag Mach 1. Converged solutions were obtained for the
TAU and the LFD methods up to Mach 0.9.
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Figure 18. Test Case 3: damping in pitch derivative throughat the transonic regime for the SDM model geometry
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C. DLR-F12 Wind Tunnel Model

Within the European Research Project SimSAC, experimemgalsurementdwere obtained on the F12 wind tunnel
model from the German Aerospace Center (DLR). Wind tunnt btecluded static and dynamic force measurements
and steady and unsteady pressure distribution measurenidm investigations on the DLR-F12 wind tunnel model
were performed in th8m x3m atmospheric low speed wind tunnel of the German—Dutch Tisn{zNW-NWB)

in Braunschweid'. A benchmark of aerodynamic predictions based on time-dos@utions was reported for the
DLR—-F12 configuratiori*

The model consists of wing, body, horizontal and verticél {Bhe DLR—F12 wind tunnel model is a 1:40 scale
development model of a passenger jet. The CAD model inclad#tailed blend at the wing root and an advanced
supercritical aerofoil section. The fuselage nose, tHestafaces and the wing were equipped with transition deyice
made from self-adhesive aluminium tape(o2mm thickness. Wind tunnel wall corrections were applied tdista
force and pressure distribution measurements. Wall coorecfor the dynamic tests were not available in DNW-
NWB. Static tests were performed in the closed test sectiile dynamic tests were run in the slotted test section
with a slot ratio of 6%.

The surface grids for the PMB and HB solvers are shown inFgThe structured grid consists in total of 299320
grid points and the number of surface blocks is 120. A stirgjde modeled. Comparison against wind tunnel data is
made for the PMB and HB solvers only.

(a) Block structured grid for the PMB and HB solvers

Figure 19. View of the surface grids for the DLR—F12 wind tunrel model

The wind tunnel model dimensions are summarized in Teblenhe reference length for calculating the static and
dynamic coefficients of the roll, pitch and yaw moments iswlireg reference chord;. The reduced frequency of the
oscillatory pitch motion was defined with respect to the maarodynamic chord;. The numerical solutions were
computed for half model configuration by use of symmetry dtioras. In the experimental tests, the reference point
for the moments and the rotation centre are coincident. boadinate system where x-axis extends from the fuselage
nose to the tail, y-axis points toward the right wing, andisalirected upward the symmetry plane, the reference
point has dimensional coordinatgs0400008m, 0.0m, —0.030285m,).

Reference surface, 0.44414 i
Mean aerodynamic chord, 0.2526 m
Full wing spanp 2.018 m

Table 9. Reference values of the DLR-F12 wind tunnel model

The PMB and the HB predictive capabilities are validateddoced oscillations in pitch. Experimental measure-
ments are included for two values of freestream speed and @uagle of attack between 0.Qp to 6.0. Several

aht t p: / / ww. dnw. aer o/ honme. aspx
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values of frequency of motion were also considered. Nurakr&sults were performed for several permutations of
motion parameters, as summarized in TalfleFor the HB method, up to 3 harmonics were retained in theyaaal

Test Case 1 Test Case 2 Test Case 3

Freestream speetl, 56 m/s 70 m/s 70 m/s

Mean incidencegy, 0.°upto 6.0 0.°upto6.0 0.0°

Pitch amplitudeqs 4.5° 3. 4.5

Frequency/f 2.4Hz 3.0Hz 0.5Hz up to 3.0Hz

Table 10. Description of the DLR—F12 test cases for small anfifude pitch oscillations

Fig. 20 shows the damping derivatives for the force and moment ciesfis. A first comment is for the good
agreement achieved by the time-domain results for all st The small offset between time-accurate and experi-
mental data is due to wind-tunnel interference effects hadheglect of viscous forces in the numerical modelling. At
the higher end of the mean angle of attack range, the 1 modelBa overpredicts the magnitude of the damping
values. The energy of the aerodynamics modes extends bdlyerkcitation frequency predescribed by the model
motion because of moderate non-linear features that weseredd in static analyses as well. The energy redistributio
at higher frequencies is predicted well retaining 2 Foumedes. Most importantly, the predictive capabilities @& th
2 mode HB solution is equivalent to time-accurate solutiofise increasing deviations in damping values for the 1
and 2 mode HB solutions at the lower end of the frequency rang@xpected. It is well established that the higher
the frequency of motion the higher the hysteresis in thedaramic loops because of the time lag in the flowfield
adapting to changes in geometry. For slow motions, the logghsce to a line overlapping the static curve with a small
out-of-phase component. These considerations posed ffagtamt question to synchronize the balance and position
data to less than 1@ during experimental measuremetits.

V. Conclusions

Capabilities of the Harmonic Balance method, in the franméved an implicit and explicit multigrid implemen-
tation, and the Linear Frequency Domain method are denaiesdtfor several AGARD CT cases for the pitching
NACA 0012 airfoil. For the formation of moving shock wavebgtenergy of aerodynamic modes redistribute at
higher frequencies than the predescribed frequency ofomotin general, the HB method is able to predict the dy-
namic response data very accurate. In case of the LFD it caedre that the prediction is less accurate whenever
amplitudes increases and compressibility effects apam fhe initial steady state solution appear. In terms of-pres
sure distribution, convergence to time-accurate ressiiédsio assessed for increasing number of Fourier modes in the
HB solution. Differences for the zeroth harmonic unstearBspure distribution and the steady state solution with
the presence of strong dynamic non-linearities demomrsttagat the assumptions of the LFD method may experience
a loss in accuracy in predicting dynamic response data aggbspre distributions. Numerical experiments for these
cases confirm that the HB and the LFD methods are an order afitndg more efficient than time-accurate methods.

The motivation for selecting three-dimensional probleorsiie flow around a generic fighter configuration and a
civil jet aircraft is to highlight the presumed advantagéthe HB methodology over the conventional time-domain
approach when a fine time discretization is required. Theatestnation of the non-linear HB method is stressed in
conditions featuring onset of vortical structures and ugh#high transonic range for the SDM. A benchmark against
experimental data for the DLR-F12 is also considered foigmefiows. Choosing not to resolve all the temporal
modes in the solution, the HB method achieves a computdtidiiciency of three orders of magnitude compared to
dual-time stepping methods. When the Fourier base incluggs 3 harmonics, the speed up is still as high as one
order of magnitude. For the DLR-F12, the reduced order mshelvs the practical application of complementing
extensive wind tunnel campaign.

V. Acknowledgements

The work at Liverpool was supported by the SImMSAC projectaridnding from the Sixth Framework programme
of the European Union, and the Engineering and PhysicahBegResearch Council and the Ministry of Defence
under EP/D504473/1, and the ECERTA project under fundingfthe Sixth Framework MArie Curie Excellence

26 of29

American Institute of Aeronautics and Astronautics



40 or
F ——e— ExpData F —e— ExpData
F — —0O— - Time Domain: PMB s — —0O— - Time Domain: PMB
35F HB - 1 Mode I e — HB- 1 Mode
F HB - 2 Modes 10k - -~ HB-2 Modes
30?_ HB - 3 Modes F HB - 3 Modes
F 15
. °F L 2ofF
4 - £ I
o _F o [ -— —e—
+_ 20F +_ 25
gk y
15 %0 F
r 35F
10F [
F -0 -
5F 45
:\\\I\\\I\\\I\\\I\\\I\\\I\\\I\\\I :\\\l\\\l\\\l\\\l\\\l\\\l\\\l\\\l
01 0 2 3 4 5 6 7 507 0 2 3 4 5 6 7
A0A [deg] Ao0A [deg]
(a) Normal force coefficient damping, Test Case 1 (b) Pitching moment coefficient damping, Test Case 1
40 - or
F ——e— ExpData r ——e—— ExpData
F — —O— = Time Domain: PMB sk — —O— = Time Domain: PMB
35 - - HB-1Mode F - - HB-1Mode
o - - HB-2 Modes 10F - - HB-2 Modes
E HB - 3 Modes F HB - 3 Modes
30F r
r -15F
LUBF o, 20F
=4 o E N
o _F o [
¥ 20F +_-25F
2 F z F
o F 0k
15 I
T T asf
0F  eemumnmr=t T o
F = =7 40 |-
5F s
:\\\I\\\I\\\I\\\I\\\I\\\I\\\I\\\I _:\\\I\\\I\\\I\\\I\\\I\\\I\\\I\\\I
0-l 0 1 2 3 4 5 6 7 50-1 0 1 2 3 4 5 6 7
AoA [deg] Ao0A [deg]
(c) Normal force coefficient damping, Test Case 2 (d) Pitching moment coefficient damping, Test Case 2
40 - or
F ——e— ExpData r ——e—— ExpData
F — —O— = Time Domain: PMB sk — —O— = Time Domain: PMB
ES HB - 1 Mode 3 e — HB- 1 Mode
o HB - 2 Modes 10F —-—+—:= HB-2 Modes
E HB - 3 Modes F HB - 3 Modes
30F r
r -15F
sF L-20F
-2 F N, g F
O F \, () F
¥_20F N +_-25F
2 F . z F
o F 0k
15 ~F
g 35
10 F
o -40 |-
5F s
:\\\\\l\\\\\l\\\\\l\\\\\l\\\\\l\\\\\l\\\\\l N :\\\\\|\\\\\|\\\\\|H\Hl\\\\\l\\\\\l\\\\\l
00 1 15 2 25 3 35 500 05 1 15 2 25 3 35
f[Hz] f[Hz]
(e) Normal force coefficient damping, Test Case 3 (f) Pitching moment coefficient damping, Test Case 3

Figure 20. Dynamic derivatives for DLR—-F12 wind tunnel geonetry undergoing forced oscillations in pitch for Test Case XU = 56m/s,,
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