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Computational Aeroelasticity requires a method to transfer displacements and forces
between the fluid and structural grids. Several popular transformation methods are eval-
uated with respect to their sectional shape reconstruction properties, and the impact of
these on flutter predictions. The test cases used are the Goland wing and a model commer-
cial jet wing. The flutter predictions are computed using a fast eigenvalue tracing method.
An approach to transformation for beam models is proposed based on defining additional
information about the ribs to guide the choice of rigid sections.

I. Introduction

There are two main approaches to computational aeroelasticity. One approach uses a
monolithic1 scheme where the model equations are formulated to combine the fluid and
structural equations into one system of equations. This requires a new solver to be written.
The other approach is partitioned2,3 where separate solvers are used for the fluid and
structural systems and these are tied together using a transformation method, allowing
the use of existing solvers. The most common approach is partitioned and is used in the
current paper.

In the partitioned approach the aerodynamic loads need to be transferred to the struc-
ture and the structural deflections need to be transferred to the CFD mesh. This is
complicated by the CFD requiring an accurate description of the surface geometry, and
the structural model is usually defined on a simplified geometry, such as a plate, wing-box
or beam. Despite adequately describing the important structural dynamics, this simpli-
fication produces the problem that there is a mismatch between the fluid and structural
discretisations of the interface between the two models. This means that projection and
extrapolation are usually required in addition to interpolation. Collectively the reconstruc-
tion of the fluid surface grid point locations and velocities from the structural model, and
transfer of forces from the fluid surface grid to the structural grid, is referred to in this
paper as transformation. There are several ways in which the shape of the wing can be al-
tered in a non-physical manner (sectional and planform). Transformation methods should
accurately recover the shape of the wetted surface, exact recovery of translation and rota-
tion, conservation of energy, forces and moments. Reviews of transformation methods can
be found in references.4–7 Farhat et al3 simplified the transfer problem of the F-16 fighter
by defining both the CFD and structure on the same surface using an unstructured Euler
CFD solver and a detailed structural model. However detailed structural models are not
always available and can be difficult to tune to ground vibration tests.

The transformation methods can be grouped into two groups, local and global meth-
ods. Each have their own advantages and disadvantages. Local methods often depend on
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connectivity between the aerodynamic surface and the structural model and do not always
give a smooth surface. However as the name suggests, they only use local information and
have low memory requirements. Global methods are memory hungry and have non-local
effects, but always provide a smooth surface.

The current paper considers an approach to the transformation that preserves key ge-
ometric properties of the aerodynamic shape. The method involves a consideration of the
structural modelling assumptions, and the use of these assumptions to perform the recon-
struction of the aerodynamic shape. It is argued that this approach is preferable to cloud
of point methods that take no account of the structural assumptions.

This paper continues with a review of the formulation of the fluid, structural and aeroe-
lastic stability solvers. Then several popular transfer methods are described, and the new
method is detailed. Evaluation is made of the transfer methods for mode shape reconstruc-
tion and flutter prediction. Finally conclusions are given.

II. Formulation

A. Flow Solver

All the computations presented in this paper were performed using the Parallel Multi-
Block (PMB) flow solver. A wide variety of problems have been studied using this code
including cavity flows, delta-wing aerodynamics, rotorcraft problems, flutter and control
surface buzz. For more information about the solver refer to Badcock et al.8 The governing
equations are discretised using a cell-centred finite volume approach combined with an
implicit dual-time stepping method. In this manner, the solution marches in pseudo-time
for each real time-step to achieve fast convergence. The discretisation of the convective
terms uses Osher’s upwind scheme. Monotone upstream-centred schemes for conservation
laws (MUSCL) interpolation is used to provide nominally third order accuracy and the
van Albada limiter is also applied to remove any spurious oscillations across shock waves.
Central differencing is used to discretise the viscous terms, with the resulting non-linear
system of equations generated being solved by integration in pseudo-time using a first-order
backward difference. A Generalised Conjugate Gradient method is then used in conjunction
with a Block Incomplete Lower-Upper (BILU) factorisation as a preconditioner to solve
the linear system of equations, which is obtained from a linearisation in pseudo-time. A
number of turbulence models are available in the solver as well as large-eddy simulation
(LES) and detached eddy simulation (DES), however for the calculations presented in this
paper the Euler equations were solved. Finally, meshes are moved in response to specified
boundary locations using a spring analogy to move the block vertices, and the transfinite
interpolation for the internal points in the block.

B. Structural Solver

The structure is modelled as linear and so it is possible to model the deformation as a sum
of normal modes. The N degree of freedom structural model is written as a second order
linear ordinary differential equation

[M ]δ̈x+ [C] ˙δx+ [K]δx = f (1)

where [M ] is the mass matrix, [C] is the viscous damping matrix and [K] is the stiffness
matrix, all of size N × N . Here δx is the vector of time dependent displacements on the
structural grid x, and f is the vector of time dependent external forces from the fluid, acting
at the structural grid points. To calculate the undamped free vibration characteristics, Eq.
(1) can be manipulated to an eigenvalue problem

[[A]− λ[I ]]Φ = 0 (2)

where [A] = [M ]−1[K] and λ = ω2. This can be solved to give the eigenvalues λ and mode
shapes Φ. These mode shapes are mass normalised so that [Φ]T [M ][Φ] = 1.

Eq. (1) can be transformed into modal space which leads to the decoupled equations

η̈i + ω2
i ηi = ΦT

i f (3)
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for the ith mode when damping is ignored. This equation can be solved for ηi using a
Runge-Kutta scheme and the structural deformation with p modes retained is given by

δx =

p∑
i=1

Φiηi (4)

C. Schur Solver

The Schur solver9 does a stability analysis based on the coupled system Jacobian, which
includes the Jacobian of the CFD residual with respect to the CFD and structural un-
knowns. It is conventional in aircraft aeroelasticity for the structure to be modelled by a
small number of modes, which leads to the number of the fluid unknowns being far greater
than the structural unknowns. The Jacobian is partitioned into four blocks so that the
Jacobian matrix has a large sparse block Aff surrounded by thin strips for Afs and Asf .
The stability calculation is formulated as an eigenvalue problem, focussing on eigenvalues
of the coupled system that originate from the uncoupled block Ass. The problem can be
formulated as the structural problem modified by an interaction term, which depends on
the eigenvalue itself and can be pre-computed. This formulation leads to a very efficient
method of tracing the aeroelastic eigenvalues as functions of altitude, which in turn provides
stability boundaries.

III. Transfer Methods

A. Types of Structural Model

Plate and beam structural models are used in the current work. The mode shapes are
defined for these models in different ways. For plate models, the displacements δxi are
given directly at the structural grid points xi. For the beam models, the beam is defined
by the points xi. In addition, we define directions along which the wing section is assumed
to be rigid. These directions would be defined by the ribs in the wing structure. Hence,
for each beam point xi, corresponding leading xL

i and trailing xT
i edge points define the

rigid section. Then, the motion of this section is defined by the translation of the beam
point, δxi, and the rotation of any point on the section δαi. The displacement of any point
y on the section can then be derived as

δy = δxi +R(y− xi) (5)

where A is the rotation matrix given by

R =

[
cos δαi − sin δαi

sin δαi cos δαi

]

The fluid grid is defined at yi, and the transformation problem is to define the displace-
ments δyi based on the definition of the displacements on the structural grid.

B. Transformation for Plate Model

First consider doing the transformation for a plate structural model. The fluid points are
first projected onto the surface of the structural grid. Denote these points as yP

i , with
a corresponding displacement δyP

i , referred to here as the projected displacement. The
total displacement δyi is the sum of the projected displacement and the displacement of
the out-of-plane vector, denoted by δyN

i , i.e. δyi = δyP
i + δyN

i .

1. Projected Displacement

Different approaches are available for calculating the projected displacement:

1. Weighted Averages in a Triangle10

Each projected point is associated with a triangle in the structural grid defined by
three points x1, x2 and x3. Then, defining the vectors a = x2 − x1, b = x3 − x1 and
c = yP

i − x1, the following weighting factors are defined

w1 = 1− w2 − w3,
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w2 =
|b|2(a.c)− (a.b)(b.c)

|a|2|b|2 − (a.b)(a.b)

w3 =
|a|2(b.c)− (a.b)(a.c)

|a|2|b|2 − (a.b)(a.b)
.

Then
δyP

i = w1δx1 + w2δx2 + w3δx3

Two methods to do the association with projected points to triangles in the structural
grid are described in reference.2 For this work a hybrid method of fluid point assign-
ment was used. The fluid points in the region of interpolation were assigned to the
structural elements using an area-search and the points in the region of extrapolation
were assigned using a nearest centroid approach. The limitation of this method is
that the definition of the projected point displacements are only C0 continuous, with
changing slopes between triangles.

2. Inverse Isoparametric Mapping11

Each projected point is associated with a quadrilateral in the structural grid, de-
fined by the vertices x1, x2, x3 and x4. A pair of generalised coordinates (ξ, η) are
defined on the quadrilateral using shape functions so that

x = Σ4
i=1Ni(ξ, η)xi

where the shape functions are defined as

N1(ξ, η) = (1− ξ)(1− η)/4

N2(ξ, η) = (1 + ξ)(1− η)/4

N3(ξ, η) = (1 + ξ)(1 + η)/4

N4(ξ, η) = (1− ξ)(1 + η)/4

Then for the projected coordinates xp, two equations can be solved for the corre-
sponding values of (ξP , ηP ). The projected point displacements are then evaluated
as

δyP
i = Σ4

i=1Ni(ξ
P , ηP )δxi

This method again only has continuity in the displacements as we go from quadrilateral
to quadrilateral, but the interpolation is now bilinear which is an improvement on
the weighted averages on triangles. Due to the shape functions the orientation (and
therefore the ordering of the structural point) is now important. Again the definition
of the point displacements is only C0 continuous.

3. Infinite Plate Spline12

Here the displacements of the projected point are calculated from a solution of the
differential equations for a flat plate under an applied load. Note here that only the
displacements normal to the plate (denoted here as δz) are calculated. The load is
chosen to result in the known displacements at the structural points, and to display
required behaviour as |x| becomes large. The displacement is written as

δzP = a0 + a1x+ a2y + ΣN
i=1Fir

2
i lnri

where N is the number of structural nodes, ri = |x| and a0, a1, a2 and Fi are all
calculated from the equations

ΣN
i=1Fi = 0

ΣN
i=1Fixi = 0

ΣN
i=1Fiyi = 0

δzi = a0 + a1xi + a2yi + ΣN
i=1Fir

2
i lnri.

This method provides smooth interpolation, however because IPS is derived from an
infinite plate and then applied to a finite plate, this may cause IPS to produce non-
smooth deformation at the edges. This is discussed in Sadeghi et al.7 IPS also suffers
when used for extrapolation, it has been documented that IPS creates distortions or
oscillations in extrapolated regions.13
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4. Radial Basis Function14

The radial basis function interpolant has the form

δy =

M∑
j=1

αjφ(|yP − xj |) + p(δy) (6)

where φ is the basis function and xj are the locations of the centres of these ba-
sis functions. The linear polynomial p(y) is used to ensure that translations and
rotations are recovered. The coefficients αi are found by requiring the exact re-
covery of the deflections at the structural node positions. The basis function used
in this work was Wendland’s C2 defined as φ(‖{r}‖) = (1− ‖{r}‖)4+ (4‖{r}‖ + 1) where
(.)+ = max(0, .). A support radius is usually used which allows the control over the
area of influence of each centre and is applied by φ(‖{r}‖/ρ) where ρ is the sup-
port radius. Norm-biasing is sometimes used to improve the result and is defined
by ‖{x}− {xi}‖ =

√
kx(x− xi)2 + ky(y − yi)2 + kz(z − zi)2 where the coefficients kx, ky and

kz are changed to improve the interpolation result.

2. Out-Plane

For each of the four methods for calculating the projected displacement, the following
method can be used to calculate the displacement of the out-plane component. As with
the weighted average in triangles, each aerodynamic point is associated with a triangle in
the structural grid. Using the notation defined above, the normal displacement vector is
defined for the undeformed case as

dy = yi − yP
i

By definition of the projected point this vector is normal to a and b. Then, it is assumed
that the displaced point yi+δyi remains normal to the vectors a+δa and b+δb, and that the
magnitude is constant. This results in the perfect preservation of pure rotational motions.
Define the normal vector after deformation as dx = ±(a + δa) × (b + δb) where the sign is
chosen to orientate the normal in the same sense as the vector dy. This vector is then
rescaled as

d∗
x = dx

|dy |
|dx| .

Finally, the out-plane displacement can then be written as

δyN
i = d∗

x − dy .

C. Transformation for Beam Structural Models

For a beam structural model it is possible to use an intermediate step of defining a plate,
so that any of the transformation methods described above can be used. The default way
of doing this is to assume that the chord-wise sections have a fixed shape. A more general
approach is to use points along the leading and trailing edges which define the ribs, and
then base the intermediate plate definition on these points.

The IIM provides a straight forward approach, as follows. This method is referred to
as the rigid section method.

1. form a quadrilateral mesh defined by the beam, leading and trailing edge points

2. project the aerodynamic point onto this mesh

3. using the inverse iso-parametric mapping, calculate η in the element

4. calculate the beam point displacement and rotation for this value of η

5. using the origin coordinates of the aerodynamic point, apply Eq. 5 to calculate the
displacement
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IV. Test Cases

There are some questions of interest that this paper aims to answer. First, what influence
does C0 continuity (as for CVT and IIM) have on the section shapes? Secondly what is
the contribution of the out-of-plane component on the section shapes? Finally, what is the
influence of any shape distortion on the flutter predictions. Two test cases are used to shed
light on these questions. These are now described.

A. Goland Wing

The Goland wing, shown Fig. 1, is a rectangular wing that has a chord of 6 feet and a span
of 20 feet. The aerofoil section is a 4% thick parabolic section. The CFD grid used was
a coarse version with 35 thousand points and is block-structured using an O-O topology.
This allows points to be focused in the tip region, which is the most critical region for the
aerodynamic contribution to the aeroelastic response.

In this study three structural models were used. The original structural model is a
wing-box that follows the description in reference15 and includes a lumped mass tip store.
A plate model is calculated from the wing-box by averaging upper and lower surface values
onto a mid-plane using RBE3 elements. This model is referred to as the original plate.

The second model is an extension of the first. Points are added along the leading and
trailing edges and also at the tip. These points are tied to the first plate model using
RBAR elements. The element properties of the plate model have no rotational degrees of
freedom, which are required by the RBAR elements for extrapolating the mode shapes. In
order to recreate the mode shapes the points on the leading and trailing edges as well as
the tip have their correct displacements extrapolated linearly using a Matlab script after
being extracted from the NASTRAN output. Due to the positioning of the structural
model inside the wing, the only areas of extrapolation are at the trailing edge and a small
area at the tip. This model is referred to as the extended plate.

The final model was derived from the first model and is a beam stick model. The
mid-plane points for the centre spar were chosen to be the beam points. The rotations
at the beam points were calculated from the first and third spars using a Matlab script.
The displacements of the leading and trailing edges were calculated in Matlab using Eq.
5. This model is referred to as the beam stick model (BSM). The structural models are
shown in Figure 2.

The sections used in the shape comparisons are at 98% of the span and the position
as well as the section is shown in Figure 1. This section is translated and rotated to the
original orientation to allow for easier evaluation of the shape change introduced by the
transformation.

B. MDO Wing

The second test case is the multi-disciplinary optimisation (MDO) wing,16 this is a com-
mercial transport wing with a span of 36m. The wing was optimised to fly at a certain
altitude and Mach number and has a thick supercritical section. The CFD grid used was
a coarse grid with 81 thousand points. The geometry and CFD grid is shown in Figure 3.
For this work the in-plane mode is neglected.

In this study two structural models were constructed. The original structural model is
a wing-box model and this was converted into two beam stick models. The MDO wingbox
model has a set of points that resemble a beam that acts as the connection points for the
lumped masses. The points are attached to the wing-box ribs though RBE3 elements, with
one point with mass for each rib. These points were chosen to be the beam in the new
beam model and the displacements and rotations were extracted directly from NASTRAN.

This serves as the basis for the two models. For the first model the points on the leading
and trailing edges are chosen so that the rigid ribs are approximately perpendicular to the
beam, matching the ribs on the wing-box model. The second model has the points on the
leading and trailing edges so that the rigid ribs are parallel to the x-axis. These models
are referred to as the perpendicular and parallel rib models respectively, and are shown in
Fig. 4.

The section used in the shape comparisons is taken at 98% of the span perpendicular
to the beam and the position as well as the section is shown in Fig. 3.
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Chord = 6 Feet

Span = 20 Feet

4% Thick Parabolic Section

(a) Geometry (b) CFD Surface Mesh

Figure 1. Goland Wing Geometry and CFD Grid

V. Evaluation of Transfer - Shape

The transfer methods were implemented and are tested in this section in terms of the
mapped mode shapes. To test the transformation methods shape comparisons are shown for
several cases of increased complexity. The test section in each case is translated and rotated
back to the original orientation to allow evaluation of the shape distortion introduced by
the transformation.

A. Case 1 - In-plane

For this case the fluid grid is defined as a plane which is on the same surface as the
structural grid and with the same planform as the Goland wing. The fluid grid is chosen
to be much finer than the structural grids and this case tests the in-plane treatment of the
transformation methods only. Both the original plate and extended plate are compared in
this case. Fig. 5 shows the slice at 98% of the span for the third mode shape, which is the
second torsion mode.

The CVT section exhibits a saw-tooth shape for both structural models, but passes
through all of the NASTRAN points. This can be attributed to the lack of derivative
continuity between structural elements. For the original plate, once the trailing edge
of the structure has been reached, CVT extrapolates linearly. The IIM section passes
through all of the NASTRAN points and provides linear extrapolation parallel to the
element edges. The fact that IIM is only C0 continuous does not show in the sections.
IPS has trouble in the region of extrapolation for the original plate model where it flicks
up to an unrealistically large deflection. Also throughout both structural models there
are non-local extrapolation effects. There is a well known problem with IPS6, 7,13 that it
cannot recreate rigid rotations. IPS performs much better when there is no extrapolation.
The RBF support radius was chosen to be 1.0 in order for the first mode shape to pass
through the NASTRAN points, and no norm-biasing was applied. The RBF result shows
the same problem with extrapolation as IPS. The observed additional camber has been
seen in other papers17 (incorrectly attributed to fuselage interference) and Rendall et al14

(where it was reduced by using norm-biasing).
This case highlights the differences between the local (CVT and IIM) and global (IPS

and RBF) methods. The local methods exhibit a problem with slope discontinuity that
the global methods do not suffer from. The global methods however fail to extrapolate
realistically and have non-local effects due to extrapolation that is reduced when there
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(a) Original
NASTRAN
Model

(b) Original
Plate

(c) Ex-
tended
Plate

(d) Beam
Stick Model

(e) Refined Original Plate (f) Refined
Extended
Plate

Figure 2. Goland Wing Structural Models

Span = 36m

Thick Supercritical Section

(a) Geometry (b) CFD Surface Mesh

Figure 3. MDO Wing Geometry and CFD Grid
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(a) Original NASTRAN
Model

(b) Perpendicular Ribs (c) Parallel Ribs

Figure 4. MDO Wing Structural Models

are no extrapolation regions. All the transformation methods performed better on the
extended plate than the original plate for this reason.
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(a) Original Plate at 98% of the Span

X

Y

0 0.2 0.4 0.6 0.8 1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Original
CVT
IIM
IPS
RBF
NASTRAN

(b) Extended Plate at 98% of the Span

Figure 5. Case 1: Section at 98% span for the third Mode Shape, rigidly translated and rotated back to the
original orientation.

B. Case 2 - Goland Wing In-plane

For this case the fluid grid is now defined on the correct wing profile, but the fluid points
are projected onto the structural plane. The transformation methods are used to define the
displacements at the projected points and then these displacements are applied without
modification to the wing points. This tests the discrepancy introduced by failing to calculate
the out-of-plane component. Again only the original and extended plate models are used.

Figure 6 shows a slice through the two plate models at 98% of the span for the third
mode shape. All of the methods show the same behaviour as seen for case 1, but now on
the wing section. CVT shows the C0 continuity effect which leaves the aerofoil nonsmooth.
Interestingly IIM shows no sign of this problem which may be due to higher order inter-
polation used within elements. RBF and IPS both display the same behaviour as case 1
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with the trailing edge failing to be extrapolated correctly.
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(a) Original Plate at 98% of the Span
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(b) Extended Plate at 98% of the Span

Figure 6. Case 2: Section at 98% span for the third Mode Shape, rigidly translated and rotated back to the
original orientation.

C. Case 3 - Goland Wing Out-of-plane

Next, the CVT out-of-plane component is added to the in-plane components calculated
from each method. Fig. 7 shows the transformed slice. There is no significant change to
the mode shapes between cases 2 and 3. It does seem to have the effect of thickening the
section slightly. This is confirmed when the IIM result for case 2 is cross plotted with the
IIM result for case 3, shown in Fig. 8. Since the out-of-plane components come from CVT
there is a slight discontinuity introduced in the slope. It can be seen that the effect of the
out-of-plane component is small.

To complete the picture of the performance of the plate transformation methods a
refinement of the structural grid was undertaken, and is shown in Fig. 9 for the extended
plate model. For the original and refined plate models each element was split into four
elements and the displacements were linearly interpolated using a Matlab script. For
all cases except IIM a significant improvement can be observed. For IIM there was no
improvement shown, which implies that the IIM solution is already grid independent. For
CVT the slope discontinuity problem persists, but its severity is less for both models.
IPS is improved in the regions of grid refinement. The RBF follows the same story as
it also benefits in the region of refinement and the extrapolation is also effected by the
refinement. However although the improvement is significant for the RBF the sections are
still the worst of the methods used.

D. Case 4 - Goland Wing Beam Stick Model

Finally the beam stick model is used and all the non-IIM methods calculate their out-of-
plane contributions from the CVT method. The IIM results are from the rigid section
method. The other results are defined using a grid defined by the beam points and the
leading and trailing edge points that define the rigid sections. Figure 10 shows a slice at 98%
for the third mode shape. The non-IIM methods are effectively using a coarsened extended
plate model, since the BSM has one less row of structural points in the span-wise direction
that corresponds to the trailing edge of the wing box in the other structural models. The
sections are significantly worse as the trailing edge is approached for all methods except
IIM. The rigid section results preserve the section very well.
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(a) Original Plate at 98% of the Span
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(b) Extended Plate at 98% of the Span

Figure 7. Section at 98% span for the third Mode Shape, rigidly translated and rotated back to the original
orientation.
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Figure 8. Sections through the Mode 3 Mode Shape for IIM comparison for cases 2 and 3, rigidly translated
and rotated back to the original orientation.
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Figure 9. Refined Plate Results for the extended plate model, rigidly translated and rotated back to the
original orientation.
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Figure 10. Case 4: Sections through the Mode 3 Mode Shape rotated and translated back to the original
orientation.

E. Case 5 - MDO Wing

Next, results are shown for the two structural models of the MDO wing. The transfor-
mation methods are compared in terms of the vertical displacement calculated in Fig. 11.
The rigid rib results are considered exact in this comparison since all methods only have
access to the beam structural model, and the rigid rib method exploits this information
exactly by design. For the two structural models CVT and the rigid ribs predictions are
in close agreement. In contrast IIM and IPS shown a very non smooth behaviour which
is associated with the out-of-plane displacements. Further, the predictions from the two
structural models using CVT are compared. These shown that the parallel rib model leads
to significantly larger trailing edge deflections for this mode.

F. Summary

• In-plane contributions usually dominate.

• CVT has discontinuities in slope because it is only C0 continuous, but IIM does not
suffer from this problem. This problem has a large influence on the section shapes.

• IPS and RBF are dependent upon the structural mesh density.

• The assumed rib orientation changes the sectional displacements.

VI. Flutter Evaluation

Having evaluated the influence of the transformation methods on the sectional shape,
the impact of the distortions is now evaluated for the aeroelastic stability predictions.
The Schur eigenvalue method is used to trace the aeroelastic eigenvalues as a function of
altitude.

The Goland wing mode tracking at a Mach number of 0.80 and zero degrees incidence
for all modes using CVT and the original plate model is shown in Figure 12. It can be seen
that modes 1 and 2 interact, with mode becoming undamped between 10 and 15 thousand
feet. The evaluation of the influence of the transformation methods is presented below for
the real part of mode 1.

The mode tracking for the MDO wing at a Mach number of 0.85 and an incidence of one
degree based on the beam model with perpendicular ribs, and with the CVT transformation
used, is shown in Fig. 13. Modes 1,2 and 4 participate in the instability, with mode 1 going
undamped first between 5000m below sea level and sea level.

First the predictions are compared for each method and the different structural models.
These are shown for the Goland wing in Fig. 14. Consistent with the shape results
presented above, the IIM shows the least spread of results between models. CVT and
IPS show considerable spread, particularly where the interaction is strong as the mode
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Figure 11. Case 5: Vertical Displacement of Sections for the Mode 5 Mode Shape.
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becomes undamped. RBF shows a large spread, particularly for the original plate where
extrapolation is involved. Next the results from different methods are compared for each
model in turn and this is shown in Fig. 15. The predictions from IIM and CVT are close,
with considerable differences between the global methods observed. These differences can
be reduced by refining the plate in the structural model.
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Figure 12. Goland Wing Mode Tracking for All Modes Using CVT
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Figure 13. MDO Wing Mode Tracking for All Modes Using CVT

The MDO wing flutter mode tracking (in terms of the first mode, which goes undamped)
is shown in Fig 16 for the different structural models using CVT. It is seen that there are
significant differences in damping between the two structural models, even if the crossing
at about the same altitude. The comparison of the predictions from the different transfor-
mation methods is shown in Fig. 17. The CVT and rigid rib predictions are very similar as
expected from the displacement comparisons. There is a significant spread of results from
the other methods, even more so than comes from the two structural models.
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Figure 14. Goland Wing Mode Tracking for Mode 1 for the different Structural Models (Real Part)
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Figure 15. Goland Wing Mode Tracking for Mode 1 for the different Structural Models (Real Part)
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Figure 17. MDO Wing Mode Tracking for Mode 1 for the different Structural Models (Real Part)
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VII. Conclusions

The performance of transformation methods for computational aeroelasticity was eval-
uated. Several common methods were compared for two test cases in terms of their pre-
dictions of the mode shapes on the CFD grid, and the influence of this on the aeroelastic
damping. The lack of slope continuity from local methods was observed. In contrast the
global methods were smooth, but required a finer structural grid to avoid oscillatory be-
haviour. The global methods also had problems in extrapolating beyond the support of
the structural grid.

A new approach, referred to as rigid ribs, to preserving sectional shape when using
beam structural models was proposed which requires the explicit definition of sections
along which the wing profile is assumed to be rigid. The rib definitions are used to guide
the association between fluid points and points on the beam.

Results suggest that the rigid rib method performs well, and that, despite the lack of
derivative continuity inherent in the local methods used, the local methods provide more
reliable flutter predictions.
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