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This paper considers the ways in which structural model parameter variability can
influence aeroelastic stability. Previous work on formulating the stability calculation (with
the Euler equations providing the aerodynamic predictions) is exploited to use Monte
Carlo, Interval and Perturbation calculations to allow this question to be investigated.
Three routes are identified. The first involves variable normal mode frequencies only.
The second involves normal mode frequencies and mode shapes. Finally, the third, in
addition to normal mode frequencies and mode shapes, also includes their influence on the
static equilibrium. Previous work has suggested only considering route 1, which allows
significant gains in computational efficiency if reduced order models can be built for the
aerodynamics. However, results in the current paper show that neglecting route 2 can give
misleading results for the flutter onset prediction.

I. NOMENCLATURE

Symbols

A Jacobian matrix
E Residual vector of nonlinear eigenvalue problem
p eigenvector
R Residual vector of the fluid and/or structural model
S Schur complement matrix
w vector of fluid and/or structural unknowns

Greek

λ eigenvalue
μ Bifurcation parameter (altitude)
φ normal mode shape
θ Vector containing the uncertain structural parameters
ω normal mode frequency

Subscripts or superscripts

f fluid model
s structural model
0 equilibrium

θ the vector θ evaluated at the mean structural parameters
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e solution vector of the eigenvalue problem
s series approximation

II. Introduction

For in-service aircraft, structural variability arises from several sources, such as man-
ufacturing tolerances, material differences and wear. A study of the McDonnell Douglas
F-4 Phantom II1 quantified the weight and inertia variability for this aircraft, showing
changes in mass and inertias of control surfaces by up to 15%. Simulations which are used
to characterise the aeroelastic stability of an aircraft need to identify the consequences of
the variability or uncertainty in model parameters. A review of this subject was given in
reference.2 Propagation methods for calculating the non-deterministic bifurcation point in-
clude Monte Carlo simulation, the perturbation method, polynomial chaos expansions and
interval analysis. Whichever method is used, there is a significant implication for increased
computational cost when compared with single deterministic calculations. In addition, the
numerical statement of the flutter point uncertainty is unlikely in itself to be sufficient,
even in the form of a probability distribution or interval. The physical mechanisms un-
derlying the distribution/interval are also required to allow decisions to be based on the
predictions. The interpretation in this way is not routinely presented in published research
studies.

For transonic aeroelasticity, for fully convincing analysis, there is a requirement to use
an aerodynamic simulation based on the nonlinear potential, Euler or Navier-Stokes equa-
tions. This brings a very severe implication for the computational cost of non-deterministic
analysis. In consequence there has been much interest in reduced order models for this
purpose. In reference3 where a reduced model was created based on mean parameter mode
shapes. This model was then used at low cost for the non-deterministic analysis. There is
a strong practical reason for adopting this approach. However, it is not evident whether
a reduced order model for the aerodynamics built in this way can account for all of the
important ways in which the structural parameter variability can impact on the aeroelastic
problem. This is the main topic of this paper.

Progress has been made in the development of fast (relative to time domain analysis),
Euler based eigenvalue flutter stability prediction methods.4 The approach, based on an
eigenvalue solution of a coupled CFD-FEM system, reduced the cost of non-deterministic
flutter calculations at transonic conditions.5 As part of an effort to evaluate the influence
of structural variability, stochastic tools to evaluate the effects of structural variability
have been coupled with this eigenvalue method.5 The perturbation method produces a
probability density function (PDF) that allows estimation of flutter uncertainty, assuming
a small variation in the input parameters. An alternative approach is interval analysis,
that requires defined bounds for the variation of the uncertain parameters. An optimisa-
tion procedure finds the worst possible combination, with respect to flutter, of the input
parameters. Finally, Monte Carlo simulation provides a relatively expensive option to
characterise the PDF accurately. In each case the eigenvalue stability method has been
configured to allow the large amount of computation to be done at a feasible cost.

A recent study6 investigated three routes for the influence of the structural variability
on the aeroelastic response: the influence of the distribution of normal mode frequencies;
the effect of changing the mode shapes together with the frequencies; the influence of
variability of the structural parameters on the aerostatic solution. It was concluded that
for some cases, the source of the flutter uncertainty is mainly restricted to normal mode
frequency effects. This paper aims to complete this study, by examining test cases of
increasing complexity. A systematic approach is proposed that evaluates the routes of
influence for structural variability and the effects on flutter uncertainty.

The paper continues with a brief summary of the aerodynamic, structural and eigenvalue
stability formulation. A notation for discussing the routes for variability influence is then
given. Then results are presented for the Goland wing, a transport wing and a generic
fighter, and are used to consider the importance of the routes. Finally, conclusions are
drawn.
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III. Formulation

A. Aeroelastic Stability

The semi-discrete form of the coupled CFD-FEM system is written as

dw

dt
= R(w, μ) (1)

where

w = [wf ,ws]
T (2)

is a vector containing the fluid unknowns (wf) and the structural unknowns (ws), and

R = [Rf ,Rs]
T (3)

is a vector containing the fluid residual (Rf) and the structural residual (Rs). In the current
work the structure is modelled by a small number of modes. The residual also depends
on a parameter μ (in this paper μ is altitude) which is independent of w. An equilibrium
w0(μ) of this system satisfies R(w0, μ) = 0.

The stability of equilibria of Eq. (1) is determined by eigenvalues of the Jacobian matrix
A = ∂R/∂w. The details of the Jacobian calculation are given in references.7,8 Write the
coupled system eigenvalue problem as[

Aff Afs

Asf Ass

]
p = λp (4)

where p and λ are the complex eigenvector and eigenvalue respectively. Partition the
eigenvector as

p = [pf ,ps].
T (5)

The eigenvalue λ satisfies9 the nonlinear eigenvalue problem

S(λ)ps = λps (6)

where S(λ) = Ass−Asf (Aff−λI)−1Afs. The solution of this problem is discussed in reference,4

and is based on an approximation to the matrix (Aff − λI)−1 given by

(Aff − λI)−1 = A−1
ff + λA−1

ff A
−1
ff + ...... (7)

This series converges for small values of λ, and so in practice a shift is used to ensure this
condition. The details of how to define the shift are described in reference.4

There are a number of dependencies and options for this nonlinear eigenvalue problem
that are relevant in this work. Define the residual of the eigenvalue problem given by Eq.
(6) as

E(w0, λ,ps, φ, ω) = (Ass − Asf (Aff − λI)−1Afs)ps − λps. (8)

Note the dependence of this residual on the static solution w0 through the Jacobian matrices
Aff , Asf and Afs which are all evaluated at the static solution. This residual depends on the
structural normal mode shapes φ through the matrices Ass, Asf and Afs, and the structural
normal mode frequencies ω through the matrix Ass. Also, this residual can be computed
through one linear solve with the matrix (Aff −λI) against the right hand side Afsps, which
represents a manageable cost. Write the series approximation to this residual as

Es(w0, λ,ps, φ, ω) = (Ass − Asf (A
−1
ff + λA−1

ff A
−1
ff )Afs)ps − λps, (9)

which, after the pre-computation of the series coefficients, can be evaluated very cheaply.
The solution vector for the nonlinear eigenvalue problem is written as we = [ps, λ]

T . Then,
two options are available to solve the eigenvalue problem. Both employ Newton’s method
driven by the Jacobian matrix ∂Es/∂we which can be evaluated rapidly. The first uses
the residual E and the second option uses the approximate residual Es. It was shown in
reference4 that the approximate residual can give good results at the cost of the initial
precomputation of the series coefficients.
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B. Structural Variability

The approach taken to evaluate the influence on aeroelastic stability follows refer-
ence5and is summarised here. We assume that the values of some structural parameters
θ are uncertain, defined either through a probability density function or by an interval
of equally possible values. In either case we can define a mean or midpoint value. The
building block for the propagation of the uncertainty in the structural parameters to the
uncertainty in the aeroelastic eigenvalues is the ability to evaluate the eigenvalue at low
cost for any desired value of the parameter vector θ. This is done in the following way. The
matrices for the series approximation in Eq. (7) are first evaluated at the mean or midpoint
value for θ. This series approximation is then used to drive the Newton convergence to the
aeroelastic eigenvalues for any mode set derived from the required value of θ. The residual
E must be evaluated using the full evaluation since the series approximation is only valid
for the mean or midpoint structural parameters. In this way the aeroelastic eigenvalue for
a modified mode set can be obtained in a small number of additional linear solves once the
mean parameter series approximation to S is calculated. This approach is at the heart of
the propagation methods used.

The interval analysis requires definition of a range for the uncertain structural param-
eters, and then computes the possible range for the aeroelastic eigenvalues. A range for
each of the important structural parameters is chosen, and then an optimisation problem
must be solved to find the range on the critical eigenvalue. A minimisation function in
Matlab (fmincon), that solves a constrained non-linear multivariate problem, is used. This
method requires the parameter constraints (i.e. intervals) and a scalar objective function.

C. Variability Routes

For two reasons the way that the variability in structural parameters influences the flutter
stability needs to be understood. First, this understanding can possibly lead to improved
propagation methods. More fundamentally, without this insight the meaning of the results
of the analysis is not clear. To allow a systematic investigation of this problem three ways,
or routes, for influence are defined as

1. Normal mode frequency - the variability changes the normal mode frequencies

2. Normal mode shape - the variability changes the normal mode shapes

3. Static equilibrium - the change of normal mode shapes and frequencies changes the
static equilibrium.

In the notation already introduced the following scenarios can be considered by applying
the approach for treating structural variability in different ways:

• Route 1 can be computed by solving the nonlinear eigenvalue problem defined by
the residual Es(w̄0, λ,ps, φ̄, ω). The series residual is evaluated with the normal mode
frequency regarded as dependent on the variable structural parameters, but at the
mean structural parameter normal modes (denoted φ̄), and the equilibrium calculated
at the mean normal modes and frequencies, denoted w̄0.

• Routes 1 and 2 combined can be computed by solving the nonlinear eigenvalue problem
defined by the residual E(w̄0, λ,ps, φ, ω). This was the problem solved in reference,5 and
used the mean parameter equilibrium, and with both the normal mode frequencies
and mode shapes dependent on the variable structural parameters.

• Routes 1-3 can be combined by solving the nonlinear eigenvalue problem defined by
the residual E(w0, λ,ps, φ, ω). In this case the equilibrium is also considered dependent
on the normal mode frequency and shapes which depend on the variable structural
parameters.

From a computational perspective, route 1 is by the far the cheapest to compute. In
previous work3 a reduced model was computed for the mean structural parameter mode set,
i.e. only accounting for route 1, and was used to study the effects of structural uncertainty
on flutter. However, it has also been pointed out20 that some reduced models require
further information on the modified structural models, i.e. using routes 2 and 3. Therefore
it is of practical interest to understand when routes 2 and 3 are important.
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IV. Results

A. Goland Wing

The Goland wing, shown in Fig. 1(a), has a chord of 1.8m and a span of 6m. It is a
rectangular cantilevered wing with a 4% thick parabolic section. The structural model
follows the description given in reference.10 The CFD grid is block structured and uses
an O-O topology. The fine grid has 250 thousand points and a coarse level was extracted
from this grid, which has 40 thousand points. Grid refinement results reported previously
in reference4 showed that the coarse grid gives accurate aeroelastic damping predictions.
Four mode shapes were retained for the aeroelastic simulation, the first and second bending
and torsion modes.

The case we consider here has a mass added to the wing tip to represent the presence of
a tip store. The baseline position is 7.5cm from the leading edge. The store is offset 52.5cm
from the elastic axis, (ea), and has a total mass of 328.3kg, which represents 1/10 of the
total wing mass (corresponding to the mass of one rib). The baseline location is indicated
in Fig. 1(b). For the baseline case the flutter boundary is shown in Fig 1(c) and shows
that stability is rapidly lost at a Mach number of 0.92. This is due to the strengthening of
a shock wave located towards the trailing edge, shown at this Mach number in figure 1(d).

Chord: 1.83m

Span: 6.1m

Tip: 4% Thick circular arc

Root: 4% Thick circular arc

ea

0.292cU∞

X

(a) Geometry (b) Schematic of Store Mass Location
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(c) Flutter Boundary - Baseline Case (d) Surface Pressure Distribution

Figure 1. Goland Wing+. In part (c), flutter boundary for baseline store mass location; for part (d), M=0.92,
α = 0◦

The case selected for studying variability was at Mach 0.91 and zero degrees incidence,
close to where stability is rapidly lost with increasing Mach number. The store mass
location is regarded as the uncertain parameter. Note that the wing is symmetric and the
angle of attack is zero and so the static solution is independent of the store mass location,
and hence only variability routes 1 and 2 are relevant for this case.

The mean parameter modal interaction is shown as a function of altitude in Fig. 2(a) and
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(b). Stability is lost at 7200m, with modes 3 and 4 (second torsion and bending respectively)
interacting and mode 3 going undamped. Note that modes 1 and 2 (first bending and
torsion respectively) are also interacting strongly, with mode 1 going undamped at a lower
altitude. The variation with the store mass location of the real part of the four aeroelastic
eigenvalues at an altitude of 9000m (just above the flutter value for the baseline case) is
shown in Fig. 2(c) and (d). As the store mass is moved aft the damping of modes 3 and 4
is insensitive. However, the damping of mode 1 is rapidly lost.

Altitude[m]

R
ea

l

4000 5000 6000 7000 8000 9000

-0.015

-0.01

-0.005

0

0.005

Route 1
Route 2 - Mode 1
Route 2 - Mode 2
Route 2 - Mode 3
Route 2 - Mode 4

Altitude[m]
Im

ag
4000 5000 6000 7000 8000 9000

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Route 1
Route 2 - Mode 1
Route 2 - Mode 2
Route 2 - Mode 3
Route 2 - Mode 4

(a) Baseline Store Location

x/c

R
ea

l

0 0.1 0.2 0.3 0.4

-0.03

-0.02

-0.01

0

0.01

0.02 Mode 1
Mode 2
Mode 3
Mode 4

x/c

Im
ag

0 0.1 0.2 0.3 0.4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55 Mode 1
Mode 2
Mode 3
Mode 4

(c) Real part variation (d) Imaginary part variation

Figure 2. Goland Wing+, M0.91, α = 0◦; parts (a) and (b) - variation with altitude for baseline store mass
location; parts (c) and (d) - variation with store mass location at an altitude of 9000m

A variability analysis was next carried out to examine the importance of the different
routes of influence. A normal distribution was assumed for the store location, with the
mean at the baseline location and a coefficient of variations of 2.8%. Finite differences were
used to compute the derivative of the real part of the aeroelastic eigenvalues with the store
mass location, and these values are shown in Fig. 3(a). The derivatives were calculated
assuming routes 1 and 2, and the parameter and real part values are normalised with their
mean values in the derivative calculation. Recall that route 1 includes the influence of
the store mass location on the normal mode frequencies only, and that route 2 includes
the influence on normal mode frequencies and mode shapes. It is seen that the sign of
the derivative for mode 1 (i.e. whether the predicted damping increases or decreases) is
different with the two assumptions. In this case the exact values are for route 2 since there
is no dependence of the steady state on the store location, as commented above. Hence, the
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route 1 results are misleading. This is further illustrated in Fig. 3(b) where a histogram
of the real part is shown. The histogram was formed by counting the number of values
falling within equally spaced intervals. Note that the distributions are not very different
for routes 1 and 2. However, if the values from the two routes are cross-plotted, as shown
in Fig. 3(c), the perturbation results are confirmed as it is clear that the relationship has
a negative slope. If the predictions of the two routes are in perfect agreement then this
graph will result in a line of slope 1. Hence the agreement of the histograms is fortuitous.

To explain the differences between route 1 and 2 predictions the influence of the store
mass location on the normal modes was characterised by plotting the variation of the
normal mode frequencies and mode shapes with the store mass location. The frequency
variation is shown in Fig. 3(d) in terms of the change from the mean parameter values.
The mode shapes are characterised by the leading edge tip bending and tip torsion, and
are again plotted in terms of the change from mean parameter values in Figs. 3(e) and (f)
respectively.

For the route 1 perturbation result, the damping of mode 1 increases with the aft
movement of the store. Mode 1 is interacting with mode 2. Looking to the behaviour of
the normal mode frequencies with the aft movement of the store, the frequency for mode
1 is insensitive, but the frequency of mode 2 is increasing, meaning that the difference in
frequencies between modes 1 and 2 is increasing. This leads to an increased damping of
the first aeroelastic mode, as indicated by the perturbation analysis.

The route 2 results also include the change of mode shapes with changing store location.
The modes interacting are the first bending and torsion modes, and an aft movement of the
store mass moves the centre of gravity aft which tends to make the system more unstable,
taking a two dimensional pitch-plunge aerofoil system as a guide.11

B. MDO Wing

The MDO wing is a commercial transport wing, with a span of 36 metres, designed to fly
in the transonic regime.12,13 The profile is a thick supercritical section. The geometry is
summarised in figure 4. The structure is modelled as a wing box running down the central
portion of the wing. The problems of mapping this reduced planform to the full planform
CFD model are considered in reference.14 The CFD grid used has 81 thousand points.
Results generated using the inverse power method to track eigenvalues were previously
shown.15 The eigenvalue formulation used in this paper was applied to the MDO wing in
reference.4 In the current work seven modes are retained and the mapped modes which
particate in the aeroelastic instability are shown in Fig. 5.

Here we consider the case with a freestream Mach number of 0.85 and an angle of attack
of 1 degree. The wing density, Young’s modulus and Shear modulus are considered uncer-
tain. The aeroelastic eigenvalues of the original model were traced with altitude and are
shown in Fig. 6. Note that in this case the steady state does depend on altitude and so all
three routes are potentially relevant for the influence of uncertainty. The aerostatic deflec-
tion moves the tip up and twists it nose down which initially has the effect of alleviating the
shock wave. This has the effect of moving the altitude where instability is encountered to a
lower value compared with the jig shape. The lines on the figure for the mode tracking are
based on the series solution and so jump when the aerostatic solution (and subsequently
the Schur matrix) is updated. The symbols always represent the nonlinear solution for the
correct aerostatic solution at each altitude. Modes 1, 2 and 4 participate in the aeroelastic
instability mechanism, with stability lost in mode 1 at around 4750m.

Variability results are shown for mode 1 which goes unstable first for the mean structural
parameters. Again normal distributions were assumed for the density, Young’s modulus
and Shear modulus, with mean values of 2700 kg/m3, 7.1 ×1010N/m2 and 2.7 ×1010N/m2

respectively. A coefficient of variation of 2.5% was used in each case. Routes 1,2 and 3 are
now considered. The derivatives of the real part of the first mode eigenvalue are shown
in Fig. 7(a) with respect to the three structural parameters considered. The derivative
with respect to density is positive in all three cases (indicating that the wing becomes
less damped as the density increases), whereas it becomes more damped with increasing
Young’s and Shear modulus. Considering the different routes leads to most difference in
the values from the density, where route 1 gives the largest value, route 2 a significant
reduction, and additionally route 3 a further small reduction.

The histograms based on 250 samples are shown in Fig 7(b) and (c) for the Young’s
modulus and density variations respectively. These results are consistent with the sensi-
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Figure 6. Mode tracking - MDO Wing, M=0.85, α = 1◦
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tivity results. For Young’s modulus the standard deviation is similar in all three cases. For
the density variation the level 1 histogram has the largest spread, with the route 3 case
having very little variation at all about the mean value.

To interpet this behaviour the normal mode variation with the parameters was again
characterised using the change from mean parameter values for the frequency, tip leading
edge bending and tip section torsion. These are shown in Fig 8. For increasing density the
normal mode frequencies of the participating modes move together, leading to an increasing
real part for mode 1. In contrast, for increasing Young’s modulus the frequencies move
apart, leading to a more negative real part. The tip bending decreases and the tip section
torsion increases for increasing density. The increasing torsion appears to promote a more
unstable situation. The tip bending of modes 1 and 2 decreases with increasing Young’s
modulus, and the tip section torsion decreases for all three modes. The influence of these
variations is to reduce the real part of the mode 1 aeroelastic eigenvalue, i.e. to make the
wing more stable.

Finally, the route 3 influence is strongest for the density. In this case increasing the
density will reduce the aerostatic deflection. At the altitude used for this analysis the
wing tip is already twisted to a nose down location (shown in Fig. 9), meaning that a
reduced static deflection results in a less negative effective angle of attack. This leads to
more damping with increased density at this altitude, and this is in agreement with the
perturbation result which has a less positive value from route 3 compared with route 2.
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Figure 7. Mode tracking - MDO Wing, M=0.85, α = 1◦
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Figure 8. Variation due to structural parameter variability - MDO Wing, M=0.85, α = 1◦ - 250 samples
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C. Generic Fighter

Finally a realistically sized aircraft model is considered. The open source fighter was built
on data publically available for the F-16 aircrafta. The approach was to establish a test
case with aeroelastic behaviour representative of an aircraft. Available data for the wing
geometry (dimensions and aerofoil section), together with published data from Ground
Vibration Tests (GVT) and wind-tunnel data was used.

The geometry is summarised in Fig. 10 and was described in reference.5 The aerofoil
section consists of a NACA 64A204 profile, with a wing root angle of −1◦ and a wing tip
angle of −2.4◦. The twist was chosen by comparing with published surface pressures for
the F-16. A coarse grid was generated with 1.06 million points and 344 blocks for the
full configuration. This was extracted from a fine grid with 8.5 million points for the full
configuration which was used in reference5 to demonstrate grid convergence on the coarse
grid.

Figure 10. Open Source Fighter geometry.

The finite-element (FE) model of the wing was built in NASTRAN based on the model
proposed by Cattarius.16 The structural model consists of four parts: fuselage, wing, pylon
and stores. The fuselage, pylon and stores are considered to be effectively rigid. The mass
properties of the pylon and stores are represented by lumped masses. The pylon is rigidly
connected to the wing. The store is connected to the pylon by six spring elements (three
translational and three rotational). The wing is also modelled using shell elements and is
divided into three regions: root, pylon, and tip. In order to match the natural frequencies
of the FE model to those found in the Ground Vibration Test,17 the Young’s modulus and
density of each region of the wing are considered as updating parameters. Fig. 11 shows
the mode shapes of the full model which participate in the aeroelastic mechanism. The

aFiles defining the model are available at www.cfd4aircraft.com
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modal frequencies are compared with tests in reference5 and show good agreement with
the available data (which is for the symmetric modes). The mapping between the CFD
and FEM grids was done using the transformation method described in reference.19 The
two wings are connected by a plate in the structural model, and this plate is used to drive
the aerodynamic grid on the fuselage.

(a) Mode 2 - 4.48Hz (b) Mode 3 - 5.03Hz (c) Mode 4 - 5.92Hz

Figure 11. Selected Mapped Structural Normal Modes for the Open Source Fighter.

Previous work using linear analysis18 and the Euler equations5 identified by perturba-
tion analysis the critical structural parameters for determining the flutter point. These
were found to be the rotational spring coefficient for the store attachment (mean value
2000kNm/rad), the Young’s modulus of the wing root section (1.573 × 1011N/m2) and the
pylon (9.67×1010N/m2), and the densities for the wing root (5680kg/m3) and tip (3780kg/m3)
regions, and the pylon (3780kg/m3). A coefficient of variation of 1.5% was used for all vari-
ables. The conditions used for analysis in these papers was a Mach number of 0.85 and
zero degrees incidence, and these are used again in this paper. Mean values used were The
mean parameter aeroelastic mode tracking at these conditions is shown in Fig. 12. The
antisymmetric modes 2 (torsion) and 3 (bending) interact, with the third mode becoming
undamped at 1969 m.
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Figure 12. Mode tracking - Generic Fighter, M0.85, α = 0◦

The variability results are shown in Fig 13. At mean parameter values it is mode three
(antisymmetric bending) that goes undamped, and the sensitivity of the real part of this
mode is shown in Fig 13(a) for the six most important structural parameters. The mid-
wing Young’s modulus, wing root density and the store attachment rotational stiffness are
the most important values, and it is seen that the signs of the derivatives for the first two
of these are the same between the route 1 and 2 cases, but for the spring attachment there
is a big discrepancy in the two cases.

Next, the histograms from a Monte-Carlo simulation for routes 1 and 2 are shown in Fig
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13(b) and (c), with all 6 parameters varying in the first case, and only the wing root density
in the second case. It is seen in both cases that the route 2 results show a larger spread.
The six parameter results also show a larger spread than the density only results. These
results are consistent with the perturbation results in that the most significant derivatives
for route 2 are all larger in magnitude than for route 1, and the Young’s modulus derivatives
are the largest of all once normalised. The correlation between the route 1 and 2 real parts
is plotted in Fig 13(d) and (e), and shows that they correspond reasonably well. In this
case the route 1 results are a reasonably good guide to the variability in the eigenvalue.

Characterising the impact of the wing root density on the normal modes, the frequency
and mode shape variations are shown in Fig. 14. As the root density increases the modal
frequencies increase in order for the interacting modes, with higher frequencies increasing
more. This leads to the damping of these modes increasing, and in particular the real
part of the aeroelastic eigenvalue of mode 3 decreases, as predicted by the perturbation
analysis. The bending at the leading edge wing tip decreases for modes 2 and 4 with
increasing root density, but increases for the antisymmetric bending mode 3. Finally, the
tip torsion increases for mode 2 (antisymmetric torsion) and decreases for the other two
modes. It is difficult to interpret why this leads to the more stable aeroelastic interaction
which is indicated by the perturbation results.

V. Conclusions

An aeroelastic stability calculation method based on aerodynamics from the Euler equa-
tions and an eigenvalue calculation was used to investigate the ways that structural parame-
ter variation can influence stability. A systematic approach was afforded by the formulation,
to allow the three possibles routes of influence to be isolated. Three test cases were used
to evaluate the influences.

Considering the first route only, which is the influence of the variation on the normal
mode frequencies, allows for the aerodynamic effects to be computed for mean parameter
modes shapes only. This dramatically enhances the efficiency of the non-deterministic
calculations. For the Goland wing case this assumption predicted the wrong trend, for
the MDO case the variation with density was significantly overpredicted and for the Open
Source Fighter the variation was overpredicted. It was therefore seen that it is not generally
the case that this approach is adequate.

The second route includes the influence of structural parameter variability on the modes
shapes as well. This provides the exact answer for the Goland wing case. For the MDO case
the third route was also considered, namely the influence of the variation on the aerostatic
solution. This was found to signifiantly reduce the variation in stability with respect to the
material density.

It is therefore concluded that all three routes should be considered for a variability anal-
ysis, and that this means that aerodynamic reduced models must be capable of describing
the influence of all three routes. This has unfortunate computational cost implications.
Perturbation analysis can however give good information about what when the more ex-
pensive analyses are needed.
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