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Flutter prediction as currently practised is almost always deterministic in nature, based
on a single structural model that is assumed to represent a fleet of aircraft. However, it
is also recognised that there can be significant variability, even for different flights of the
same aircraft. The safety factor used during flutter clearance is in part meant to account
for this variability. Simulation tools can however represent the consequences of structural
variability in the flutter predictions, providing extra information which could be useful
in planning physical tests and assessing risk. The main problem arising for this type of
calculation when using high fidelity tools based on Computational Fluid Dynamics (CFD)
is the computational cost. The current paper uses an eigenvalue based stability method
together with CFD level aerodynamics and different methods for propagating structural
variability to stability predictions. The propagation methods are Monte Carlo, perturba-
tion and interval analysis. The feasibility of this type of analysis is demonstrated. Results
are presented for the Goland wing and for a generic fighter configuration.

I. NOMENCLATURE

Symbols

A Jacobian matrix
b optimisation problem constraints
d optimisation search direction
E Young’s modulus of elasticity
g and G the first and second Jacobians of γi with respect to θ
G shear modulus
H optimisation objective function Hessian
I moment of inertia
L Lagrangian
mr

i the rth statistical moment of γi with respect to the θ
p eigenvector
q Lagrangian approximate quadratic approximate function
R Residual vector of the fluid and/or structural model
S Schur complement matrix
t thickness
w vector of fluid and/or structural unknowns
V ar Variance

Greek
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γi either the real or imaginary part of an aeroelastic eigenvalue
λ eigenvalue
µ Bifurcation parameter (altitude)
ϕ Lagrangian multiplier vector
θ m-dimensional vector containing the m uncertain structural parameters

Subscripts or superscripts

f fluid model
s structural model
0 equilibrium
xx, yy, zz axis for moment of inertia

θ the mean value of θ

II. Introduction

An important area of research is how to account for variability in aeroelastic1 and aero-
dynamic analysis.2 Uncertainty can be classified into two different categories.1 Aleatory un-
certainty includes randomness in parameters. Epistemic uncertainty includes limitations in
knowledge or lack of understanding, and uncertainty due to human error. Several method-
ologies have been developed to introduce the effects of uncertainty into design procedures
or engineering analysis. Two popular classes of methods have emerged:2 probabilistic
methods include Monte-Carlo, moment methods and polynomial chaos. Non-probabilistic
methods include interval analysis and error propagation with sensitivity derivatives. The
focus of this paper is to consider how uncertainty in structural parameters can be efficiently
propagated to aeroelastic stability predictions when expensive CFD level aerodynamics is
used.

Structural variability arises from a variety of sources, such as manufacturing tolerances,
material differences and wear. A study of the McDonnell Douglas F-4 Phantom II3 quan-
tified the weight and inertia variability for this aircraft, showing changes in mass and
stiffness properties of up to 15%. Quantifying uncertainty has been a subject of interest in
the structures community for several years and numerous methods have been used.4,5

In this work, the critical structural parameters from an aeroelastic stability viewpoint
are first identified, and then an estimate of the possible distribution or range of these pa-
rameters is made. This variability can then be propagated to a distribution in the flutter
speed through an analysis code. This approach was previously taken for the Goland wing6

with linear analysis used to compute the flutter speed. This is computationally efficient
since the aerodynamic matrices can be pre-computed and then used for all normal mode
sets arising from the varying structural parameters. The probability density functions for
the flutter speeds were computed, and some critical cases identified which were then recom-
puted using a time domain transonic small disturbance code. Wilcox and Peraire,7 applied
a two-dimensional time domain Euler CFD code to assess the variability in frequencies of
bladed disks and the effects in the tuning of cascades. Blade structural variability was
translated in a frequency probability density function (pdf) and the coupled aeroelastic
system was solved making use of reduced order model (ROM) methods. Verhoosel8 used
a monolithic fluid-structure interaction (FSI) code to model panel flutter under the pres-
ence of variability in the Young’s modulus. In this case, the fluid flow was described by
a two-dimensional unsteady linearised potential equation, and the structure was modelled
by the Euler-Bernoulli beam equation. The parameter variability was represented by a
Gaussian distribution obtained from a Karhunen - Loeve expansion and applied to pertur-
bation methods. Rao and Majunder9 applied interval analysis to a structural optimisation
problem under atmospheric uncertainty. Interval analysis finds the upper and lower ex-
tremes for possible response to parameteric variation. The parameters were allowed to
deviate ±0.5% from the nominal values. The structure was optimised for a gust response
with constraints on flutter Mach number, weight and energy. The authors concluded that
interval analysis provides comparable results to probabilistic methods and should be used
where probability distributions are difficult to obtain.

An extra difficulty is introduced when CFD level aerodynamics is used for the aeroelastic
analysis, namely the computational cost. Methods have been under development to reduce
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the cost of computing transonic flutter speeds using CFD methods for the aerodynamics.10

These methods provide a suitable framework for doing analysis for the effects of stuctural
variability since they operate on the aeroelastic modes. The modes of interest can be
identified and analysed for dependence on the uncertain structural parameters. There are
several ways in which this can be done including the Monte-Carlo method, perturbation
methods and interval analysis.

The purpose of this paper is to investigate the practicality of using CFD derived aerody-
namics for variability analysis of aeroelastic stability. The stability and variability propa-
gation methods are described and then results are presented for the Monte-Carlo method,
perturbation methods and interval analysis applied to the Goland wing and a generic
fighter. The emphasis is placed on demonstrating that eigenvalue based stability calcu-
lations (with CFD level aerodynamics) are computationally efficient enough to allow the
variability analysis.

III. Aeroelastic Stability Formulation

The semi-discrete form of the coupled CFD-FEM system is written as

dw

dt
= R(w, µ) (1)

where
w = [wf ,ws]

T (2)

is a vector containing the fluid unknowns (wf) and the structural unknowns (ws), and

R = [Rf ,Rs]
T (3)

is a vector containing the fluid residual (Rf ) and the structural residual (Rs). The residual
also depends on a parameter µ (in this paper µ is altitude) which is independent of w. An
equilibrium w0(µ) of this system satisfies R(w0, µ) = 0.

The stability of equilibria of equation 1 is determined by eigenvalues of the Jacobian
matrix A = ∂R/∂w. In the current work a linear stability analysis is done based on the
coupled system Jacobian matrix which includes the Jacobian of the CFD residual with
respect to the CFD and structural unknowns. The calculation of the Jacobian A is most
conveniently done by partitioning the matrix as

A =

2

4

∂Rf

∂wf

∂Rf

∂ws

∂Rs

∂wf

∂Rs

∂ws

3

5 =

"

Aff Afs

Asf Ass

#

. (4)

The details of the Jacobian calculation are given in references11 and.12

In the current work, and as is conventional in aircraft aeroelasticity, the structure is
modelled by a small number of modes, and so the number of the fluid unknowns is far
higher than the structural unknowns. This means that the Jacobian matrix has a large,
but sparse, block Aff surrounded by thin strips for Afs and Asf . As described in reference10

the stability calculation is formulated as an eigenvalue problem, focussing on eigenvalues
of the coupled system that originate from the uncoupled block Ass.

Write the coupled system eigenvalue problem as

"

Aff Afs

Asf Ass

#

p = λp (5)

where p and λ are the complex eigenvector and eigenvalue respectively. Partition the
eigenvector as

p = [pf ,ps].
T (6)

The eigenvalue λ (assuming it is not an eigenvalue of Aff) satisfies13 the nonlinear eigenvalue
problem

S(λ)ps = λps (7)

where S(λ) = Ass − Asf (Aff − λI)−1Afs.
The nonlinear equation 7 is solved using Newton’s method. Each iteration requires the

formation of the residual, S(λ)ps − λps and its Jacobian matrix. The calculation of the
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correction matrix, Asf (Aff − λI)−1Afs, is required to form the Jacobian matrix. This can
be achieved through 2n solutions of a linear system against Aff −λI, one for each column of
Afs. These solutions are then multiplied against Asf . Now, for each value of the bifurcation
parameter, there are n solutions of the nonlinear system in equation 7, and so the cost of
forming the correction matrix at each Newton step, for each solution and for a range of
parameters becomes too high. To overcome this the expansion

(Aff − λI)−1 = A−1
ff + λA−1

ff A−1
ff + λ2A−1

ff A−1
ff A−1

ff + ..... (8)

is used where λ must be small for the series to converge. Note that this restriction can be
overcome by assuming that the eigenvalue we are calculating is a small change from the
eigenvalue λ0 of Ass. Then λ0 can be used as a shift to the full system eigenvalue problem
by replacing Aff by Aff − λ0I and Ass by Ass − λ0. This modifies the nonlinear eigenvalue
problem in equation 7 by redefining S(λ) = (Ass −λ0I)−Asf (Aff −λ0I −λI)−1Afs. The series
approximation then becomes

(Aff − λ0I − λI)−1 = (Aff − λ0I)−1 + λ(Aff − λ0I)−2 + λ2(Aff − λ0I)−3 + ..... (9)

where λ is a small change to λ0. When the nonlinear eigenvalue problem is solved for λ,
the eigenvalue of the original system is then λ0 + λ.

This method is referred to as the Schur method. Two forms are available. In both cases
the series approximation is used for approximating the Jacobian matrix of the residual
from equation 7. For the residual the evaluation of S(λ)ps − λps can be made based on
an exact evaluation (referred to as full in this paper) which requires the solution of one
linear system against Afsps, or can use the series approximation (referred to as series) at
virtually no additional cost after the series matrices are formed.

IV. Variability Formulation

A. Eigenvalue Calculations

In this paper we assume that the values of some structural parameters θ are uncertain,
defined either through a probability density function or by an interval of equally possible
values. In either case we can define a mean or midpoint value. The building block for
the propagation of the uncertainty in the structural parameters to the uncertainty in the
aeroelastic eigenvalues is the ability to evaluate the eigenvalue at low cost for any desired
value of the parameter vector θ. This is done in the following way. The matrices for the
series approximation in equation 8 are first evaluated at the mean or midpoint value for θ.
This series approximation is then used to drive the Newton convergence to the aeroelastic
eigenvalues for any mode set derived from the required value of θ. The residual S(λ)ps−λps

must be evaluated using the full evaluation since the series approximation is only valid for
the mean or midpoint structural parameters. In this way the aeroelastic eigenvalue for a
modified mode set can be obtained in a small number of additional linear solves once the
mean parameter series approximation to S is calculated. This approach is at the heart of
the propagation methods now described.

B. Monte Carlo Simulation

In a Monte Carlo process a large number of samples of the uncertain structural parameters
θ are generated according to the assumed parameter probability density function. In the
current work this leads to different normal mode shapes and frequencies which are then
used for the aeroelastic calculations. The respective response values, the real and imag-
inary parts of the aeroelastic eigenvalues, γi (which denotes either the real or imaginary
part of the ith eigenvalue) are evaluated using the Schur method as described in the pre-
vious section. The mean values and standard deviation of the eigenvalues can be directly
evaluated from the scatter of the computed values. The continuous probability density
function cannot be calculated directly from discrete response samples. Considering the
Kernel density function14 leads to an estimate of the probability density function from a
discrete set of samples. The Kernel density estimation can be calculated as a weighted sum
of Gaussian pdfs centred around these samples.
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C. Statistical moments using theory of quadratic forms

The real and imaginary parts of eigenvalues obtained by the Schur method at a fixed
altitude can be expanded about the mean value of the uncertain structural parameters as

γi = γi(θ) + g(θ − θ) + G(θ − θ)2 + ...... (10)

where g = [∂γi/∂θ] is the first Jacobian, and G = [∂2γi/∂θi∂θk] is the second Jacobian, given
by

G(θ − θ)2 = Σm
i=1Σ

m
j=1

∂2γi

∂θj∂θk

(θj − θj)(θk − θk) (11)

In eq.11 the partial derivatives are evaluated at the mean structural parameters.
According to quadratic theory,15 the statistical moments of γi can be obtained as

m1
i = γj(θ) +

1

2
Trace(Gγi

(θ)Cov(θ, θ)) (12)

and, if r ≥ 2,

mr
i =

r!

2
gγi

(θ)T [Gγi
(θ)Cov(θ, θ)]r−2Cov(θ, θ)gγi

(θ) +
(r − 1)!

2
Trace(Gγi

(θ)Cov(θ, θ))r. (13)

The mean γ̂j can be obtained for r = 1 (i.e. from equation 12) and the variance V ar(γj) for
r = 2 as

V ar(γj) = gγi
(θ)T Cov(θ, θ)gγi

(θ) +
1

2
Trace(Gγi

(θ)Cov(θ, θ))2. (14)

If only first order terms are retained then γ̂j = γj(θ) and V ar(γj) = gγi
(θ)T Cov(θ, θ)gγi

(θ).
If the statistical moments are known then the probability density function can be derived

by the maximum entropy method16, 17 as

P (γi) =
1

q

2πm
(2)
i

exp

"

−
γi − m

(1)
i

2πm
(2)
i

#

(15)

where σj is the standard deviation derived from the variance.
The first and second Jacobian matrices need to be evaluated at the mean structural

parameters to calculate the statistical moments. This is done in two stages. First, normal
mode shapes and frequencies are calculated at perturbed values of the structural model
parameters. Then, the Schur method is used to evaluate the aeroelastic eigenvalues at
the perturbed parameter values. This is done using the Schur matrix already computed
at the mean parameter values to drive the convergence of the quasi-Newton iterations for
the perturbed mode shapes and frequencies (i.e. the residual function is evaluated for the
perturbed mode shapes). For the first Jacobian one nonlinear system needs to be solved
for each structural parameter to obtain the Jacobian matrices for the real and imaginary
parts of each aeroelastic eigenvalue. For the second Jacobian m(m − 1) nonlinear systems
must be solved if there are m structural parameters.

D. Interval Analysis

An interval analysis defines a range for the uncertain structural parameters, and then
computes the possible range for the aeroelastic eigenvalues. The interval flutter problem
is expressed as

8

>

>

<

>

>

:

[λ(θ)i, λ(θ)i] = [min(Re(λi)), max(Re(λi))]

S(λi)ps − λips = 0, ∀i

θ ≤ θ ≤ θ

(16)

The index i indicates the critical mode, and the under and over bars indicate the lower and
upper bounds of the variable. A range for each of the important structural parameters is
chosen, and then an optimisation problem must be solved to find the range on the critical
eigenvalue. In the current work a minimisation function in Matlab (fmincon), that solves a
constrained non-linear multivariate problem, is used. This method requires the parameter
constraints (i.e. intervals) and a scalar objective function. The computations are performed
by a Sequential Quadratic Programming (SQP) method18–20 to update the estimate of the
Hessian of the Lagrangian. The parameter space is explored by a line search.
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First order optimality is based on the Karush-Kuhn-Tucker (KKT) conditions. These
conditions not only require for gradient to be zero at a minimum, but also consider the
problem constraints. The KKT are formulated via an approximate function of the La-
grangian, given by

L (θ, ϕ) = λ(θ) + Σϕjbj(θ) (17)

where λ(θ) is the objective function, b(θ), represents the inequality and equality constraints
shown in eq.16 and ϕj is the Langrangian multiplier vector which has dimension equal to
the number of constraints. The optimality measure associated with the KKT conditions is

‖∇θL (θ, ϕ) ‖ = ‖∇λ(θ) + Σϕj∇bj(θ)‖ (18)

At each major iteration, an approximation is made to the Hessian of the Lagrangian func-
tion using a quasi-Newton updating method. This is then used to generate a quadratic
programming subproblem whose solution is used to form a search direction. The Hessian
is updated at each major iteration of the SQP algorithm, using the Broyden, Fletcher,
Goldfarb, and Shanno (BFGS) update method. The major computational cost is incurred
in calculating the Jacobian of the eigenvalue with respect to the structural parameters,
which entails a Schur eigenvalue calculation for each uncertain structural parameter.

V. Results

A. Goland Wing

The Goland wing, shown in figure 1, has a chord of 6 feet and a span of 20 feet. It is
a rectangular cantilevered wing with a 4% thick parabolic section. The structural model
follows the description given in reference,21 and is shown in figure 1. The CFD grid is block
structured and uses an O-O topology. This allows points to be focussed in the tip region
which is most critical for the aerodynamic contribution to the aeroelastic response. The
fine grid has 236 thousand points and a coarse level was extracted from this grid, which has
35 thousand points. Views of the fine grid are shown in figure 1. Four mode shapes were
retained for the aeroelastic simulation. The Schur eigenvalue formulation was evaluated
for the Goland wing test case in reference.10

The different structural components of the wing are shown in figure 2. It is composed
of upper and lower skins, three spars with caps, eleven ribs with caps and 33 posts. There
are two versions of the wing which are considered, namely with and without a tip store.
The wing without a tip store is referred to as clean. The tip store is added to the clean
wing by including a point mass at some streamwise location at the wing tip. The baseline
tip mass configuration has the mass located 0.25 ft from the leading edge. In both cases
the parameters which define the geometry of the structural model are the thicknesses of
the skins, the areas of the spar and rib caps, the thicknesses of the spars and ribs and the
areas of the posts. The mean values of these parameters follow those given in reference.6

It should be noted that the density of the structural elements was taken to be negligible
and the inertial properties are modelled as lumped mass elements shown in figure 2(a). As
a consequence the mass and stiffness properties of the wing are decoupled.

The sensitivity of the flutter speed for the clean wing to each of the structural param-
eters was previously calculated using a linear method.22 This was done to indicate which
structural parameters should be considered for the nonlinear analysis. The sensitivity of
the aerodynamic damping at Mach 0.5 and sea level with respect to each parameter is
shown in figure 3. This shows that there are 7 parameters which are key to determin-
ing the flutter speed, namely the thicknesses of the leading and trailing edge spars, the
thicknesses of the upper and lower skins, and the areas of the leading edge, trailing edge
and centre spar caps. Note that the sensitivities here are with respect to the parameters
normalised by their mean value.

B. Clean Wing Results

The clean wing flutter response was calculated at the mean structural parameters. This was
done at Mach 0.5 for matched conditions. At Mach 0.5, an interaction between the wing
first bending and torsion modes gives flutter between ground level and 10000 ft. Although
no transonic effects are present at this Mach number the CFD based Schur method was
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Summary of Geometry

surface CFD grid slice from volume CFD grid

Figure 1. Views of geometry and CFD Grids for the Goland Wing.10
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FE Model Skins

Spars Ribs

Spar Caps Rib Caps

Posts

Figure 2. Views of the structural model for the clean Goland wing.
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Figure 3. Sensitivity with respect to the structural parameters of the clean wing Aeroelastic Damping at
Mach 0.5 and sea level computed using linear analysis22 for the clean Goland Wing.
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used to allow the feasibility (from a computational cost viewpoint) of the evaluation of the
sensitivity of the flutter speed to structural parameters to be made.

The seven identified structural parameters were randomised by taking a coefficient of
variation of 0.05 about the mean value, and a set of 1000 normal modes was generated.
The Schur matrix was calculated at the mean parameter values, at a cost of 64 linear
solves, and this matrix was then used to drive convergence of the quasi-Newton method
for all the other random parameter combinations. The four aeroelastic eigenvalues were
then computed for the 1000 samples. In each case the eigenvalues converged in 3-4 quasi-
Newton steps, meaning that the computational cost at each altitude was 3-4 linear solves.

The linear perturbation method requires the calculation of the Jacobian of the aeroe-
lastic eigenvalue with respect to each of the seven uncertain structural parameters at each
altitude of interest, requiring 3-4 linear solves per parameter per altitude.

Finally, for the interval method the first step is to calculate the mean parameter aeroe-
lastic eigenvalues. The eigenvalues which are close to becoming undamped and the range
of critical altitude for these eigenvalues are selected. The interval analysis optimisation is
then run at these altitudes and for these eigenvalues. The Schur matrix is re-evaluated at
the mean value for each altitude chosen to drive rapid convergence for each function evalu-
ation during the optimisation. It was found that in the worst case around 12 optimisation
steps was required to achieve convergence to the maximum or minimum eigenvalue real
part, needing 96 eigenvalue calculations. In total this took around 4 hours of CPU time
in the worst case to define both ends of the range. For the maximum possible value for
the real part of the eigenvalue the structural parameters converge to one or other end of
the parameter interval, as indicated in table 1 where the uncertain parameters have been
scaled onto the interval [-1,1]. For the minimum possible value (which is of less interest),
some parameter values converge to internal values.

Parameter Upper
wing skin

Lower
wing skin

LE Spar TE Spar LE Spar
Cap

Centre
Spar Cap

TE Spar
Cap

10000ft -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0

9000ft -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0

2000ft -1.0 -1.0 -1.0 -1.0 1.0 1.0 1.0

Table 1. Converged structural parameter values for the maximum real part at different altitudes. Note that
the optimum is for the parameter scaled onto an interval [-1,1]. The results are for the Goland Wing Clean
Case.

The mode tracking, together with the influence of structural variability, is shown in
figure 4. In this figure the lines indicate the eigenvalues predicted using the series approx-
imation to the residual of equation 7 whereas the points are from a full evaluation at that
altitude. The two sets of results are in perfect agreement for this case, suggesting that the
series approximation is good. On parts (a) and (b) of this figure the mean parameter mode
tracking is shown. The interaction of the first wing bending and torsion modes is clear in
figure 4(b) with the convergence of frequencies below 10000 ft. The bending mode becomes
undamped, as shown in figure 4(a). The influence of structural variability is shown at three
altitudes in figure 4(c). This figure includes the Monte-Carlo simulation results (with each
sample indicated by one point on the graph), the perturbation results (with the 2σ results
indicated by circles) and the interval maximum and minimum indicated by the lines. The
first observation is that the scatter of the results on the real part of the eigenvalue is very
small before the modes start to interact strongly. After this interaction starts the spread of
results grows dramatically. The interval results capture the Monte-Carlo samples, as they
should. The probability distribution functions (pdf) from the Monte-Carlo and perturba-
tion methods are shown in figure 5. There is a kink in the distribution on the stable side
of the real part of the eigenvalue at 9000 ft where the interaction is starting. The most
significant discrepancy compared with the perturbation generated distribution is in the tail
on the unstable side. On the more unstable side at 2000 ft the perturbation distribution
is almosts identical with that derived from the Monte Carlo distribution.

Interval calculations at a number of altitudes allow lower and upper interval bounds to
be traced as a function of altitude. These curves are shown in figure 6 which shows that
the altitude range for flutter onset is from 14000 ft down to 5000 ft.
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Figure 4. Goland Wing Clean Configuration Mode tracking, including the influence of structural variability.
MC refers to Monte Carlo and the circles on the figure are the 2σ values from the perturbation pdf.
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Figure 5. Probability Density Functions - Goland Wing Clean Case
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Figure 6. Range of flutter speed from Interval Analysis for Goland Wing Clean Case.
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The costs of the different approaches is shown in table 2. These costs are shown both in
terms of the number of eigenvalue calculations and also the CPU time on a Pentium 3GHz
processor (i.e. a desktop computer). The linear perturbation method has a small cost, but
cannot capture skewness in the pdf if this is present. The interval method requires up to
4 hours to define the worst case interval. Finally, even the Monte-Carlo simulation only
requires 50 hours for 1000 samples.

Given that the amount of variability in the structural parameters is likely to be based
on the intuition of an analyst rather than on hard statistical data, the essential information
in the results of these analyses is in the spread of the results rather than in the pdf. If
this is accepted then the interval results have a good balance between capturing the spread
(including any skewness) and the computational cost, and it will be used for the remaining
cases in this paper.

Method Number of eigenvalue evaluations Wall Clock Time

Monte Carlo 1000 50h

Perturbation 7 21min

Interval 60 - 190 2.5 - 8h

Single Flutter Point 1 3min

Table 2. Comparison of methods to calculate the eigenvalue real part variability for the critical mode at one
altitude

.

C. Tip Store Results

The case with a tip store is interesting because there is a Mach number range above 0.92
which features a rapid reduction in stability, and the appearance of limit cycle oscillations.
An important contribution to this behaviour comes from the development of a strong shock
wave. The flutter boundary in terms of the critical altitude as a function of Mach number is
shown in figure 7. The rapid loss of stability is indicated by the boundary heading vertically
up on the figure at Mach 0.92. The critical mode switches around this Mach number from
the first (mode 1) to the second (mode 3) bending, as annotated on the figure. The same
structural variation is applied as for the clean wing. The intervals on the flutter altitude
are included in figure 7. Also include on the figure is the mean parameter prediction from
the linear analysis NASTRAN. The main difference with the CFD based results comes
around values of Mach number of 0.92 where the shock is destabilising, an effect not seen
by the linear predictions. Also, the uncertain interval for the linear results is included at
Mach 0.7 and is very similar in extent to the CFD based interval at this Mach number.
The modal interaction results at Mach 0.9 are shown in figure 8. Throughout the Mach
number range the first mode is lightly damped, and the structural variability creates a
significant variation on the flutter altitude, as illustrated in figures 8(c) and 8(d). It is
however interesting to note that the variation in the flutter altitude does not increase as
the Mach number approaches the critical value (0.92) where the stability is rapidly lost
due to aerodynamic effects.

D. Generic Fighter Model

Having demonstrated the approach to evaluating sensitivity on a model wing, a second case
is computed to show feasibility on a realistically sized aircraft model. The intention here is
to show that the method can scale to models of the size required for the analysis of aircraft.
The generic fighter was built on data publically available for the F-16 aircraft, since this
has been the subject of much interest from an aeroelastic viewpoint. The approach was
to establish a test case which is recognisable as an aircraft, but which obviously cannot
replicate the actual behaviour of the F-16. In order to study store induced effects,23 a model
with similar aerodynamic and structural characteristics to the F-16 was built. Available
data of the wing geometry (dimensions and aerofoil section), together with published data
from Ground Vibration Tests (GVT) and wind-tunnel data was exploited.
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The geometry is summarised in figure 9 and is an extension of that described in ref-
erence.10 The basic shape of this model started from an artistic CAD model of the F-16.
The model has several inaccuracies with respect to the fuselage geometry, however it is
thought that a reasonable first generic test case for store induced aeroelastic behaviour
can be obtained without the exact fuselage and tail aerodynamics initially. Hence, in the
first version of the model the tail plane has been removed. The aerofoil section consists
of a NACA 64A204 profile, with a wing root angle of −-1◦ and a wing tip angle of −2.4◦.
The wing twist was chosen by comparing surface pressures against results given in ref.,24

which include CFD studies based on the real geometry of the F-16 and wind-tunnel mea-
surements; this test case corresponds to a free stream Mach number of 0.85 at an angle
of attack of 2.12◦. The un-twisted wing developed a shock wave at the wing tip junction
with the tip rail. To mitigate these effects, the effective angle of attack was reduced by
adding negative twist at the wing tip. The upper and lower surfaces were then generated
by sweeping the tip aerofoil up to the wing root. A few iterations were necessary to obtain
the final configuration.

From the definition of the geometry, a H-Type block structured grid was used around
the wing and a C-Type block topology was applied around the fuselage. The grid has 1.06
million points and 344 blocks for the full configuration. The surface grid is shown in figure
9 and shows that the points are concentrated on the wing which contributes most to the
aeroelastic response in this test case. Figure 10 shows the comparison with wind tunnel
measurements of the surface pressures at two locations along the span. The untwisted wing
solution is included for comparison.

The finite-element (FE) model of the wing was built based on the model proposed by
Cattarius25 and is shown in figure 11. The structural model consists of four parts: fuselage,
wing, pylon and stores. The fuselage was modelled by using QUAD4 elements with the
properties indicated in table 3. The fuselage is modelled to behave as a rigid body. The
pylon and stores were also modelled by using QUAD4 elements and properties are given
in table 3. Lump mass elements were used to model the mass properties of both pylon and
stores. The triangular elements, shown in figure 11, indicate a lump mass element. Table 4
shows mass properties of the pylon and store. The pylon is rigidly connected to the wing.
The store is connected to the pylon by six spring elements (three translational and three
rotational). The wing is also modelled using shell elements (QUAD4) and is divided into
three regions: root, pylon, and tip.

In order to match the natural frequencies of the FE model to those found in the Ground
Vibration Test,26 the Young’s modulus and density of each region of the wing are considered
as updating parameters. Table 6 shows the first five symmetric natural frequencies of the
updated FE model and GVT data. Updated properties of the wing are given in table 5.
Figure 12 shows the first eight mode shapes of full model of wing including both symmetric
and anti-symmetric modes.

Property

E [GPa] 115

G [GPa] 46

ρ [kg/m3] 1

ν 0.25

t [m] 0.001

Table 3. Fuselage, pylon and stores rigid shell element properties for Generic Fighter.

A linear sensitivity analysis for the flutter speed against the structural parameters was
again carried out using NASTRAN.22 This identified that the most important structural
parameters were the rotational spring coefficient for the store attachment, the Young’s
modulus of the wing root section and the pylon, and the densities for the wing root and
tip regions and the pylon. An interval of was defined for each of these parameters as plus
and minus 30% for the rotational spring coefficient and 10% for the other parameters.

The Schur flutter analysis for the mean and varying structural paranmeters is shown
in figure 13. On parts (a) and (b) the real and imaginary parts at the mean structural
parameters are shown respectively for all modes. The asymmetric second and third modes
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Summary of Geometry

CFD surface grid

Figure 9. Generic fighter geometry and surface CFD and FEM grids.
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Figure 11. Structural Finite Element Model for the Generic Fighter.

18 of 23

American Institute of Aeronautics and Astronautics



X

Y

Z
X

Y

Z
X

Y

Z

3.74Hz 4.48Hz 5.03Hz

X

Y

Z
X

Y

Z
X

Y

Z

5.92Hz 7.99Hz 8.12Hz

X

Y

Z
X

Y

Z

11.00Hz 11.39Hz

Figure 12. Mapped Structural Normal Modes for the Generic Fighter.

19 of 23

American Institute of Aeronautics and Astronautics



Altitude [m]

R
ea

l

-5000 0 5000 10000 15000 20000

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
Mode 8
Mode 9
Mode 10

Nastran Flutter Point
Mode 1

Altitude [m]

Im
ag

-5000 0 5000 10000 15000
0.2

0.4

0.6

0.8

1

1.2

(a) Mean Eigenvalues - Real Part (b) Mean Eigenvalues - Imaginary Part














Altitude [m]

R
ea

l

0 2000 4000 6000

-0.002

0

0.002

0.004

0.006

0.008
Mode 3 - Full
Mode 3 - Series
Interval - Full
Interval - Series

Parameter

R
ea

l

0.7 0.8 0.9 1 1.1 1.2 1.3

-0.005

0

0.005

0.01

(c) Variability on Mode 3 Eigenvalue - Real Part (d) Mode 3 Real Part with rotational spring coefficient

Figure 13. Eigenvalue variation with altitude at Mach 0.85 - Mock Fighter Case

20 of 23

American Institute of Aeronautics and Astronautics



Property Pylon Store

Mass [kg] 161 1027.5

Ixx [kg · m2] – 27.5

Iyy [kg · m2] – 1000

Izz [kg · m2] – 1000

Table 4. Mass properties of pylon and stores for Generic Fighter.

Property Root Pylon Tip

E [GPa] 157.3 96.7 95.6

G [GPa] 62.9 38.7 38.2

ρ [kg/m3] 5680 3780 3780

ν 0.25 0.25 0.25

t [m] 0.075 0.03 0.03

Table 5. Wing rigid shell element properties for Generic Fighter.

interact, with the third mode going undamped at about 2000m. The series and full pre-
dictions are in good agreement.

The intervals for mode 3 at 6750 and 2500m are shown in part (c) of the figure. Similar
behaviour to the Goland wing is observed i.e. the interval grows significantly after the
modal interaction becomes strong. Again the mean parameter matrices were used to
drive convergence of the Schur calculations during the optimisation. This was done on 44
processors of a PC cluster and took around 7 hours at the higher altitude. The structural
variation chosen was high in this case and the mean matrices were not sufficient to drive
convergence for some parameter values at the lower altitude. If Newton convergence is
not observed then the iterations are stopped, the Schur matrices regenerated and the
iterations restarted. All of the parameters except the rotational spring coefficient of the
spring attachment converged to one end of their range with a few optimisation steps.
However, the spring coefficient parameter exhibited slow covergence. The values of the
other parameters were fixed at the extreme which they settled to during the optimisation,
and the real eigenvalue was traced as a function of the spring parameter and this is shown in
figure 13(d). Note that the parameter value has been normalised onto an interval [0.7:1.3]
which indicates the scaling of the original spring parameter. The maximum real part was
attained at a value of 1.2 and the flat distribution at the top end of the interval is noted,
perhaps explaining the slow convergence of the optimiser.

VI. Conclusions

The feasibility of using three methods to propagate structural model variability to aeroe-
lastic stability prediction has been investigated. The methods considered were Monte-Carlo
simulation, perturbation analysis and interval analysis. The feasibility in terms of computa-
tional cost was demonstrated, when using CFD, by exploiting an eigenvalue based method
which can be configured for the purpose of computing stability for many similar structural
models. A rapid increase in the sensitivity of the real part of the critical eigenvalue to the
structural variability was observed after the modal interaction starts. Two test cases were
considered, the first based on the Goland wing and the second on a generic fighter. The
most important structural parameters for flutter were determined through a linear sensi-
tivity analysis, and in this way O(10) parameters were chosen for the variability analysis.
For the Goland wing, 1000 structural samples were computed in two days on a desktop
PC, and the interval results in around 3 hours.

An interesting question is how to use these methods for applications. The generation of
probability distributions by Monte Carlo analysis and perturbation analysis is attractive
for certification applications, but this attraction may be deceptive. These distributions
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Updated FE model 3.74 h1 5.91 α + θ 8.12 γ 11.0 h2 + α 11.51 θα, T

GVT26 4.07 h1 5.35 α + θ 8.12 γ 12.25 h2

hi - ith bending; α - pitch; θ - torsion; γ - yaw; θα, T - tip torsion+pitch

Table 6. Symmetric mode frequencies for Generic Fighter.

must be interpreted in the light of the definition of the structural variation distributions.
These are likely to be based on the best guess of the analyst since hard data is unlikely
to be available. In these circumstances the important information is in the spread of the
eigenvalue real parts. The interval method captures this spread, and also skewness about
the mean, in a reasonable computational cost. This method is therefore favoured based on
this consideration.
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