Flight-Regime Dependent Reduced Order Models of CFD/FE aeroelastic systems in transonic flow

Grigorios Dimitriadis, Gareth A. Vio, Jonathan E. Cooper[‡]

University of Manchester, PO Box 88, Manchester M60 1QD, UK

and Ken J. Badcock[§]

University of Liverpool, Brownlow Hill, Liverpool L69 3GH, UK

This paper is part of a study investigating the prediction of the aeroelastic behavior of aircraft subjected to transonic aerodynamic forces. The main objective of the work is the creation of Reduced Order Models from coupled Computational Fluid Dynamic and Finite Element calculations. The novelty of the approach lies in the identification of different types of Reduced Order Model in different flight regimes. Linear modal models are used in the Mach range range where the full CFD/FE system is linear and nonlinear modal models in the transonic flight regime where the CFD/FE system undergoes Limit Cycle Oscillations. Static solutions of the CFD/FE system are used in order to determine the extent of the nonlinear Mach number range. The model treated in this work is a three-dimensional wing in a transonic flowfield.

I. Introduction

The influence of nonlinearities on modern aircraft and the requirement for more accurate tools for the prediction of their effects are becoming increasingly important. These nonlinearities occur due to structural (freeplay, hysteresis, cubic stiffness), aerodynamic (transonic effects) or control system (control laws, control surface deflection and rate limits) phenomena. Of particular interest is the prediction of Limit Cycle Oscillations (LCO) which cannot be performed if a linear structural and/or aerodynamic model is used for analysis purposes.

Although not destructive in the same sense as flutter, LCO can lead to fatigue and pilot control problems. A further difficulty is the case of an unpredicted LCO occurring during the flight flutter test programme, as the question then arises as to whether the vibration is flutter or LCO.¹ A significant amount of expensive testing is currently required to resolve this type of problem.

There has been much work determining the effects of structural non-linearities on low order simulated aeroelastic systems 2,3 and also experimental studies.⁴ Recent studies have investigated the use of mathematical techniques to predict the amplitude of the LCO without recourse to numerical integration e.g. using Normal Form,⁵ Higher Order Harmonic Balance^{6,7} and other methods.^{8,9}

A substantial amount of research has been directed recently towards modelling the effect of non-linear aerodynamics on aeroelastic systems in the transonic regime. Such coupled CFD/FE calculations are expensive and therefore there is a need to produce Reduced Order Models (ROM)¹⁰ of aeroelastic systems that can be used to determine and characterise the dynamic behaviour and stability boundaries. The CFD/FE can then be directed towards the most critical flight regions of interest.

One means of obtaining Reduced Order Models is to curve-fit the data obtained from coupled CFD/FE models. Recent work in this area has included the use of higher order spectral methods¹¹ and Volterra Series.^{12–14} Another means of obtaining ROMs is directly from the CFD/FE system using Proper Orthogonal Decomposition.^{15, 16} In fact, ROM creation is currently a very active area of research in Aeroelasticity.

^{*}Lecturer, MAIAA, School of Mechanical Aerospace and Civil Engineering

 $^{^{\}dagger}\mbox{Researcher},$ MAIAA, School of Mechanical Aerospace and Civil Engineering

 $^{^{\}ddagger}\mathrm{Professor},$ FAIAA, School of Mechanical Aerospace and Civil Engineering

[§]Professor, FAIAA, Department of Engineering

One aspect of the analysis of aeroelastic systems containing structural non-linearities is that these nonlinearities are always present and are related to a certain point of the structure. However, aerodynamic nonlinearities only occur during transonic flight speeds and are not related to specific parts of the lifting surfaces as the shocks move about on the structure. Vio et al¹⁷ showed that aeroelastic systems are intermittently nonlinear, being completely linear in most of the flight envelope and nonlinear in a narrow range of Mach numbers.

In this paper, the dependence of nonlinear aerodynamics on flight condition is exploited in order to derive two different types of Reduced Order Models. A simple linear modal model is used at flight conditions where the full aeroelastic system is linear and a nonlinear modal model is used in order to characterize the LCO behaviour in the nonlinear Mach number range. The nonlinear dynamics of the Goland Wing CFD/FE model at different flight speeds are analysed in order to determine their complexity. Static aerodynamic solutions of the Goland Wing are used to predict the Mach range in which nonlinear phenomena are important.

II. Aerodynamic and Structural Modelling

A. Aerodynamics

The three-dimensional Euler equations can be written in conservative form and Cartesian coordinates as

$$\frac{\partial \mathbf{w}_f}{\partial t} + \frac{\partial \mathbf{F}^i}{\partial x} + \frac{\partial \mathbf{G}^i}{\partial y} + \frac{\partial \mathbf{H}^i}{\partial z} = 0 \tag{1}$$

where $\mathbf{w}_f = (\rho; \rho u; \rho v; \rho w; \rho E)^T$ denotes the vector of conserved variables. The flux vectors \mathbf{F}^i , \mathbf{G}^i and \mathbf{H}^i are

$$\mathbf{F}^{i} = \begin{pmatrix} \rho U^{*} \\ \rho u U^{*} + p \\ \rho v U^{*} \\ \rho w U^{*} \\ U^{*}(\rho E + p) + \dot{x} \end{pmatrix}$$

$$\mathbf{G}^{i} = \begin{pmatrix} \rho V^{*} \\ \rho u V^{*} \\ \rho v V^{*} + p \\ \rho w V^{*} \\ V^{*}(\rho E + p) + \dot{y} \end{pmatrix} \mathbf{H}^{i} = \begin{pmatrix} \rho W^{*} \\ \rho u W^{*} \\ \rho v W^{*} + p \\ \rho w W^{*} + p \\ W^{*}(\rho E + p) + \dot{z} \end{pmatrix}$$
(2)

where ρ , u, v, w, p and E denote the density, the three Cartesian components of the velocity, the pressure and the specific total energy respectively, and U^* , V^* , W^* the three Cartesian components of the velocity relative to the moving coordinate system which has local velocity components \dot{x} , \dot{y} and \dot{z} i.e.

$$U^* = u - \dot{x} \tag{3}$$

$$V^* = v - \dot{y} \tag{4}$$

$$W^* = w - \dot{z} \tag{5}$$

The flow solution in the current work is obtained using the PMB (parallel multi-block) code, and a summary of some applications examined using the code can be found in reference.¹⁸

A fully implicit steady solution of the Euler equations is obtained by advancing the solution forward in time by solving the discrete nonlinear system of equations

$$\frac{\mathbf{w}_{f}^{n+1} - \mathbf{w}_{f}^{n}}{\Delta t} = \mathbf{R}_{f} \left(\mathbf{w}_{f}^{n+1} \right)$$
(6)

The term on the right hand side, called the residual, is the discretization of the convective terms, given here by Osher's approximate Riemann solver,¹⁹ MUSCL interpolation²⁰ and Van Albada's limiter. The sign of the definition of the residual is opposite to convention in CFD but this is to provide a set of ordinary differential

2 of **14**

equations which follows the convention of dynamical systems theory, as will be discussed in the next section. Equation 6 is a nonlinear system of algebraic equations. These are solved by an implicit method,²¹ the main features of which are an approximate linearization to reduce the size and condition number of the linear system, and the use of a preconditioned Krylov subspace method to calculate the updates. The steady state solver is applied to unsteady problems within a pseudo time stepping iteration.²²

B. Structural Dynamics, Inter-grid Transformation and Mesh Movement

The wing deflections δx_s are defined at a set of points x_s by

$$\delta \mathbf{x}_s = \sum \alpha_i \phi_i \tag{7}$$

where ϕ_i are the mode shapes calculated from a full finite element model of the structure and α_i are the generalised coordinates. By projecting the finite element equations onto the mode shapes, the scalar equations

$$\frac{d^2 \alpha_i}{dt^2} + \omega_i^2 \alpha_i = \mu \phi_i^T \mathbf{f}_s \tag{8}$$

are obtained where \mathbf{f}_s is the vector of aerodynamic forces at the structural grid points and μ is a coefficient related to the fluid free stream dynamic pressure which redimensionalises the aerodynamic forces. These equations are rewritten as a system in the form

$$\frac{d\mathbf{w}_s}{dt} = \mathbf{R}_s \tag{9}$$

with $\mathbf{w}_s = (\dots, \alpha_i, \dot{\alpha}_i, \dots)^T$ and $\mathbf{R}_s = (\dots, \dot{\alpha}_i, \mu \phi_i^T \mathbf{f}_s - \omega^2 \alpha_i, \dots)^T$

The aerodynamic forces are calculated at cell centres on the aerodynamic surface grid. The problem of communicating these forces to the structural grid is complicated in the common situation where these grids not only do not match, but also are not defined on the same surface. This problem, and the influence it can have on the aeroelastic response, was considered in,²³ where a method was developed called the constant volume tetrahedron (CVT) transformation. This method uses a combination of projection of fluid points onto the structural grid, transformation of the projected point and recovery of the out-of-plane component to obtain a cheap, but effective, relation between deformations on the structural grid and those on the fluid grid.

Denoting the fluid grid locations and aerodynamic forces as x_a and \mathbf{f}_a , then

$$\delta \mathbf{x}_a = \mathbf{S}(\mathbf{x}_a, \mathbf{x}_s, \delta \mathbf{x}_s) \tag{10}$$

where \mathbf{S} denotes the relationship defined by CVT. In practice this equation is linearised to give

$$\delta \mathbf{x}_a = S(\mathbf{x}_a, \mathbf{x}_s) \delta \mathbf{x}_s \tag{11}$$

and then by the principle of virtual work $\mathbf{f}_s = S^T \mathbf{f}_a$

The grid speeds on the wing surface are also needed and these are approximated directly from the linearised transformation as

$$\delta \dot{\mathbf{x}}_a = S(\mathbf{x}_a, \mathbf{x}_s) \delta \dot{\mathbf{x}}_s \tag{12}$$

where the structural grid speeds are given by

$$\delta \dot{\mathbf{x}}_s = \sum \dot{\alpha}_i \phi_i \tag{13}$$

The geometries of interest deform during the motion. This means, unlike the rigid aerofoil problem, that the aerodynamic mesh must be deformed rather than rigidly translated and rotated. This is achieved using transfinite interpolation of displacements (TFI) as described in reference.²⁴ The grid speeds are also interpolated from known boundary speeds. In this way the grid locations depend on α_i and the speeds on $\dot{\alpha}_i$.

3 of 14

C. Time Domain Solver

For coupled CFD/FE calculations the aerodynamic and structural solutions must be sequenced. For steady solutions, taking one step of the CFD solver followed by one step of the structural solver will result in the correct equilibrium. However, for time accurate calculations more care must be taken to avoid introducing additional errors. The exact formulation used to avoid this is discussed by Goura et al.²⁵

Figure 1: Goland wing finite element model

III. Aeroelastic Results

In this study the Goland wing aeroelastic model^{26,27} was used. It is a straight rectangular wing with a symmetric wing section. The finite element model is presented in figure 1. This was built using CQUAD4 and CROD elements. A tip store rigidly attached to the wing is also included. The tip store does not participate in the aerodynamics. The wind off natural frequencies are presented in table 1. Figure 2 depicts the mode shapes of the first four modes. Mode 1 is pure bending, mode 2 pure torsion and modes 3 and 4 are combinations of bending and torsion.

Mode	1	2	3	4
Freq(Hz)	1.71	3.05	9.18	11.39

Table 1: Goland wing normal mode frequencies

Two types of tests were performed: static and dynamic. The static tests concerned the solution of the steady flowfield for an immobile wing at different Mach numbers and angles of attack. The dynamic results concerned the calculation of the impulse response of the Goland wing given initial velocity excitation at different Mach numbers.

A. Static Results

The object of the static results was to study the shape of the lift curve for the Goland wing at different Mach numbers and to identify Mach numbers at which shock waves can lie on the wing's surface. Static solutions were obtained for angles of attack of -10° to 10° at Mach numbers from 0.8 to 0.995. The resulting lift curves are plotted in the form of surface graphs in figure 3a. The gaps in the data occurred because the solution failed to converge at those particular conditions.

Figure 2: Goland wing mode shapes

Figure 3a shows that the shape of the lift curve is very nonlinear at Mach numbers from 0.8 to 0.95 and becomes approximately linear as the Mach number approaches 1. The maximum nonlinearity occurs at around M = 0.85.

Figure 3b shows just five of the lift curves, calculated at M = 0.8, 0.85, 0.9, 0.945, 0.995. The main nonlinear feature is a sudden change in slope, occurring at $\pm 5^{\circ}$ at M = 0.8 and which moves to lower angles of attack as the Mach number increases. This change in slope is most abrupt at M = 0.85. At M = 0.995the lift curve appears completely linear. Figure 4 shows the values of the lift curve slope at different angles of attack and Mach numbers. It can be seen that there is a clear wedge-shaped area where there is a big discontinuity in lift curve slope, starting at $\pm 5^{\circ}$ at low Mach numbers and reaching its apex at M = 0.95. Up to M = 0.87 the increase in slope as the angle of attack decreases is preceded by a big decrease in slope. This phenomenon disappears at M = 0.88. The biggest change in slope occurs at M = 0.85.

The reason for the occurrence of this slope change is, of course, the creation of a shock wave. At low Mach numbers a shock wave appears at high values of the angle attack, changing the behaviour of the flowfield and, consequently, the lift curve slope. At higher Mach numbers, the curvature of the airfoil is enough to accelerate the flow beyond Mach 1 locally so the shock wave appears at zero angle of attack.

Figure 5 plots the supersonic flow areas over the upper surface of the wing at 0° angle of attack and four different Mach numbers. The blue dots denote grid points at which the flow is calculated while the red circles denote areas where the flow is supersonic. It can be seen that the supersonic flow area appears as a very small area just behind the mid-chord point (which, for this airfoil, also happens to be the point of maximum thickness) and grows until at M = 0.95 it extends to the trailing edge. This means that the shock wave initially lies near the wing's centerline but at higher Mach numbers reaches the trailing edge.

Figure 6 is similar to figure 5 but displays the supersonic region for an angle of attack of 3° . The supersonic region now begins at the leading edge. At higher Mach numbers the flow is supersonic over the entire wing surface.

In order to better understand the source of nonlinearity, the position of the shock wave was calculated for each free stream Mach number and angle of attack. Figure 7a shows the furthest aft position of the shock wave over the entire wing for each flight case. It can be seen that the shock wave can lie at the leading edge for low but non-zero angles of attack and Mach numbers. The figure suggests that a wing oscillating between -10° and 10° angle of attack in a quasi-steady fashion at Mach numbers from 0.8 to 0.85 will see a shock wave whose position will be oscillating between the leading edge and the trailing edge. At M = 0.86

5 of **14**

Figure 3: Lift curve variation with Mach number

Figure 4: Lift curve slope at different angles of attack and Mach numbers

the shock oscillates between x/c = 0.6 and the trailing edge.

The strongest nonlinearity occurs at M = 0.85 because it is the last Mach value at which the shock can lie at the leading edge and at the same time the shock strength is higher than at lower Mach numbers. Figure 7b shows the value of the maximum local Mach number for all free stream Mach numbers and angles of attack. There is a clear increasing tendency for all the local Mach numbers as the free stream Mach value is increased. The major conclusion to be drawn from the static results is that the nonlinearity depends on

- The distance that the shock wave can travel over the wing's surface
- The strength of the shock

The dynamic results to be presented in the next section were obtained for the case where the wing is fixed at zero angle of attack and is free to oscillate in bending and torsion. For this particular angle of attack figure 7a shows that shock waves can only exist on the wing surface between Mach numbers of 0.885 and 0.955. At $M \ge 0.955$, the shock wave lies on the trailing edge.

Figure 5: Areas of supersonic flow over Goland wing at 0° angle of attack

B. Dynamic Results

Full dynamic solutions of the Goland wing model were obtained using time marching for various Mach numbers and various initial conditions. The speed of sound was set at an arbitrary value of 647 ft/s. It was found that the Goland wing' response is decaying at most Mach numbers but there is a narrow Mach number range at which the response becomes a Limit Cycle Oscillation (LCO). Figure 8a shows the LCO amplitude for each mode, in the form of a bifurcation plot. Up to a Mach number of 0.91 the LCO amplitude is zero, i.e. the response is decaying. At M = 0.915 however, the wing begins to undergo LCOs, as evidenced by the non-zero LCO amplitude in all modes. The LCO amplitude initially grows quickly, but then drops back towards zero as the Mach number is increased; the system reverts to a stable decaying behaviour after M=0.95. This type of bifurcation that causes LCOs to first appear and then disappear as a parameter is increased is usually called an 'atypical bifurcation' in aeroelasticity circles. Figure 8a shows that modes 1 and 2 are the main contributors to the LCO motion, with modes 3 and 4 having very low amplitudes. Therefore, the LCO observed here is an apparent bending-torsion phenomenon.

Figure 8b shows the variation of the response frequency of modes 1 and 2 with Mach number. For clarity, only the first two modes are shown. The frequency varies smoothly until the LCO Mach range is reached, at which point it jumps abruptly to a higher value. It stays at this increased value throughout the LCO region; it jumps back down to its pre-critical neighborhood at M = 0.95. Notice that the frequency of mode 2 jumps up at M = 0.91 i.e. earlier than that of mode 1; it also jumps down at M = 0.955, i.e. later than that of mode 1. This discrepancy suggests that nonlinear phenomena also occur outside the LCO region but their effect is not very dramatic.

With respect to the static results, the LCOs occur at the Mach number range at which the highest lift curve slopes are obtained at a zero angle of attack. This is clearly shown in figure 9, which is a repeat of figure 4 but with the LCO region marked out by two dashed lines. Therefore, LCOs in the unsteady case are obtained at Mach numbers where the steady lift curve is most nonlinear.

As mentioned in the previous section, the Mach number range at which shock waves can lie on the wing's surface at zero angle of attack is 0.885 - 0.955. The Mach range over which LCOs can be obtained in the steady case is smaller at 0.915 - 0.945. This fact signifies that nonlinearity does not always cause Limit Cycle Oscillations.

Figure 6: Areas of supersonic flow over Goland wing at 3° angle of attack

C. Extent of nonlinear Mach number range

In this section, the extent of the Mach range during which the aeroelastic system behaves as a nonlinear dynamic system will be quantified by means of linear system identification. It is stipulated that if the dynamic responses of the system can be used to identify a linear mathematical model with very small errors, then the original responses were obtained from a linear system.

The modal responses, $\mathbf{q}(t)$, of the system to initial condition excitation are used to identify a mathematical model of the form

$$\begin{pmatrix} \ddot{\mathbf{q}} \\ \dot{\mathbf{q}} \end{pmatrix} = \mathbf{A} \begin{pmatrix} \dot{\mathbf{q}} \\ \mathbf{q} \end{pmatrix} + \mathbf{b}$$
(14)

where \mathbf{A} is an unknown matrix and \mathbf{b} is an unknown vector, both of which depend on the flight condition. The modal displacements and velocities are obtained directly from the time marching solution of the CFD/FE system. The modal accelerations are obtained by numerical differentiation of the modal velocities. A different \mathbf{A} matrix is obtained at each test Mach number.

The modal responses are obtained as discrete realisations at N time instances, denoted by \mathbf{q}_k for $k = 1, \ldots, N$. Equation 14 is written as

$$\begin{pmatrix} \ddot{\mathbf{q}}_{1}^{T} & \dot{\mathbf{q}}_{1}^{T} \\ \vdots & \vdots \\ \ddot{\mathbf{q}}_{N}^{T} & \dot{\mathbf{q}}_{N}^{T} \end{pmatrix} = \begin{pmatrix} \dot{\mathbf{q}}_{1}^{T} & \mathbf{q}_{1}^{T} \\ \vdots & \vdots \\ \dot{\mathbf{q}}_{N}^{T} & \mathbf{q}_{N}^{T} \end{pmatrix} \mathbf{A}^{T} + \begin{pmatrix} \mathbf{b}^{T} \\ \vdots \\ \mathbf{b}^{T} \end{pmatrix}$$
(15)

where the superscript T denotes the matrix or vector transpose, and is solved in a least squares sense for **A** and **b**. This system identification procedure gives rise to a mathematical model of the CFD/FE system of the form

$$\begin{pmatrix} \ddot{\mathbf{x}} \\ \dot{\mathbf{x}} \end{pmatrix} = \mathbf{A} \begin{pmatrix} \dot{\mathbf{x}} \\ \mathbf{x} \end{pmatrix} + \mathbf{b}$$
(16)

 $8 \ {\rm of} \ {\bf 14}$

Figure 7: Shock position and maximum local Mach number at various free stream Mach numbers and angles of attack

where $\mathbf{x}(t)$ are the displacements of the identified model. Equations 16 can be integrated numerically in time using a Runge-Kutta scheme or can be solved analytically. The latter approach is used here; the solution, x(t), is obtained from

$$\mathbf{z} = \bar{\mathbf{K}}^{-1}\mathbf{b} + \sum_{i=1}^{L} a_i \mathbf{v}_i \exp \lambda_i t$$
(17)

where L is the number of modes (in this case L = 4), $\mathbf{z} = [\dot{\mathbf{x}}^T \ \mathbf{x}^T]^T$, \mathbf{v}_i is the *i*th eigenvector of matrix \mathbf{A} , λ_i is the *i*th eigenvalue of matrix \mathbf{A} and a_i is the *i*th element of vector

$$\mathbf{a} = \mathbf{V}^{-1} \left(\mathbf{z}(0) + \left(\begin{array}{c} \mathbf{0} \\ \bar{\mathbf{K}}^{-1} \mathbf{b} \end{array} \right) \right)$$

matrix V being the matrix whose columns are the eigenvectors \mathbf{v}_i . The matrix $\mathbf{\bar{K}}$ is obtained by splitting matrix A into

$$\mathbf{A} = \left(\begin{array}{cc} \bar{\mathbf{C}} & \bar{\mathbf{K}} \\ \mathbf{I} & \mathbf{0} \end{array} \right)$$

A model error measure, ε can be defined as

$$\varepsilon = 100 \frac{\text{trace}[(\mathbf{X} - \mathbf{Q})(\mathbf{X} - \mathbf{Q})^T]}{\text{trace}[\mathbf{X}\mathbf{X}^T]}$$
(18)

where \mathbf{Q} is the matrix whose columns are the modal displacements \mathbf{q}_k for all N time instances and \mathbf{X} is the matrix whose columns are the identified model displacements at the same time instances, \mathbf{x}_k . The function trace denotes the sum of the diagonal elements of a square matrix. A different value of ε is obtained at each Mach number.

The responses of the CFD/FE system were calculated using time marching at Mach numbers from 0.4 to 0.995 and curve-fitted by the linear model of equation 14. The resulting error is plotted in figure 10. It can be seen that for Mach numbers up to 0.88 the error is of the order of 0.1%. However, in the region M = 0.88 and M = 0.95 the error is of much higher order, initially 1% and during the subsequent LCOs up to 100%. At Mach numbers higher than 0.95 the error drops to below 0.1% again.

It should be noted that the model error is never zero because the modal accelerations were obtained using numerical differentiation of the modal velocities, not directly from the CFD/FE solution. Nevertheless,

9 of **14**

Figure 8: Bifurcation behaviour of Goland wing

Figure 9: Lift curve slope at different angles of attack and Mach numbers compared to LCO Mach range

figure 10 clearly shows that the Goland wing is essentially a linear system outside a specific region Mach range of 0.88-0.95. This region also happens to be the region in which static solutions of the Goland wing predict that shock waves can exist on the surface of the wing at zero angle of attack. It can be extrapolated that the existence of these shock waves is the principal source of nonlinearity in the system.

D. LCO characterization

Figure 11a shows the shape of the LCO in the phase plane of all 4 modes at M = 0.925. The phase plane plots for modes 1 and 2 are period-1 LCOs with elliptical shape. Modes 3 and 4 have more complex period-3 LCO shapes. Furthermore, modes 2-4 are centred around 0 modal displacement but mode 1 is not. Finally, it can be seen that the LCOs are not completely repeatable which may mean that the simulation's duration was not long enough for the oscillations to stabilise on the limit cycle or that the LCOs are more complex, containing low frequency components.

A characterization of the LCO, i.e. an estimation of the system's nonlinearity during the LCO motion, can be obtained by reducing the complexity of the limit cycle. This is achieved by selecting a number of periods of the LCO and then averaging them. Figure 11b shows the resulting phase portrait of the averaged LCO, which is clearly simplified with respect to the true phase portrait of picture 11a.

Figure 10: Linear model error for a range of Mach numbers

Figure 11: Phase plane plots of LCO at M = 0.925

The modal displacements over this single averaged LCO period can be curve-fitted using a Fourier series to obtain an estimate of the position and order of the nonlinearity. The coefficients of the Fourier series can be obtained directly from the Fast Fourier Transform of the modal displacements. Figure 12 shows the amplitude of the calculated Fourier Series terms for the modal displacements and velocities for all orders from 0 to 9. It can be seen that the only orders with significant presence are 0, 1 and 3. Additionally, the 3rd order term is more significant for modes 3 and 4, as is also suggested from the phase plane plots. It can be concluded that the nonlinearity is odd and that, at the amplitude of this LCO, it includes only 3rd order terms.

On the basis of the results presented in figure 12 a nonlinear system identification procedure was performed on the modal displacements and velocities from one period of the LCO. According to the static analysis presented earlier, the nonlinearity of the system is not affected by bending motion but clearly depends on torsional motion. Therefore, the nonlinear functions in the system cannot depend on mode 1 and should depend mostly on mode 2. Modes 3 and 4 also feature a certain amount of torsion so they may also affect the nonlinearity.

For the purposes of the present system identification procedure, nonlinear coupling between modes was ignored and only cubic polynomial basis functions were used. The terms considered were z_2^3 , z_3^3 , z_4^3 , z_6^3 , z_7^3

<u>11 of 14</u> American Institute of Aeronautics and Astronautics

Figure 12: Fourier Series curve fit of a single period of the LCO at M = 0.925

and z_8^3 . The importance of these terms was estimated using a backwards elimination scheme. The final nonlinear model was of the form

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{C} \left(\begin{array}{c} z_3\\ z_6 \end{array}\right)^3 \tag{19}$$

where \mathbf{A} and \mathbf{C} are unknown coefficients.

Figure 13: Comparison of true and identified modal displacements

The complete identified model was then integrated using a first order finite difference scheme to obtain the identified model's responses to initial condition excitation on the LCO. The comparison between the true and identified modal displacements can be seen in figure 13. Figure 13a shows the response of the identified model over 48 periods. It can be seen that the shape of the limit cycle is preserved but its centrepoint changes, moving towards zero. This effect is due to the fact that the model chosen for the identification did not contain a constant term. Figure 13b shows the identified LCO over the last period of the simulation, compared to the true LCO re-centred around 0. It can be seen that the two lines are very similar.

The identification presented here should not be seen as a complete nonlinear system identification. It should be viewed more as a means of characterising the LCO. There exists only a narrow range of initial

12 of **14**

conditions that will allow the identified model to converge on the true LCO. Outside this range the model fails. However, the analysis demonstrates that the nonlinear responses of the full CFD/FE system can be described by a relatively low order model which is valid in the neighbourhood of the limit cycle oscillations.

IV. Conclusions

This paper attempts to describe and characterize the nonlinearity of a coupled CFD/FE solution of a simple rectangular wing with store, known as the Goland wing. Static aerodynamic solutions are used to demonstrate that the nonlinearity only occurs in a narrow range of Mach numbers at which shock waves can exist on the surface of the wing. Dynamic solutions of the wing showed that nonlinear effects can be observed in exactly the Mach range predicted by the static results. The nonlinearity affects primarily torsional vibrations.

Within the nonlinear Mach range there exists a smaller range where Limit Cycle Oscillations can occur. The LCOs were investigated by means of phase portraits, Fourier analysis and nonlinear system identification. It is shown that the wing undergoing LCO motion can be approximated by a very small order model using four modes and polynomial nonlinearity. While this model is not a complete description of the true system, it serves to demonstrate that the important dynamics of the full coupled CFD/FE model can be described by simple, low order models.

The nonlinearity of the full CFD/FE aeroelastic system depends on flight condition and there are two main flight condition, one of which causes the system to be linear and one to be nonlinear. Therefore, it is shown that two different types of Reduced Order Model can be used to describe the system, a linear modal model in the linear Mach number range and a nonlinear model in the Mach range where LCOs can occur.

V. Acknowledgments

The authors would like to thank the Engineering and Physical Sciences Research Council of the United Kingdom.

References

¹Dunn, S., Farrell, P., Budd, P., Arms, P., Hardie, C., and Rendo, C., "F/A-18A Flight flutter testing-limit cycle oscillation or flutter?" *International Forum on Aeroelasticity and Structural Dynamics*, Madrid, Spain, June 2001.

²Price, S., Alighambari, H., and Lee, B., "The aeroelastic response of a two-dimensional airfoil with bilinear and cubic structural nonlinearities," *Journal of Fluids and Structures*, Vol. 9, 1995, pp. 175–193.

³Lee, B., Price, S., and Wong, Y., "Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos," *Progress in Aerospace Sciences*, Vol. 35, 1999, pp. 205–334.

⁴Conner, M., Tang, D., Dowell, E., and Virgin, L., "Nonlinear behavior of a typical airfoil section with control surface freeplay: a numerical and experimental study," *Journal of Fluids and Structures*, Vol. 11, 1997, pp. 89–109.

⁵Vio, G. and Cooper, J., "Limit cycle oscillation prediction for aeroelastic systems with discrete bilinear stiffness," *International Journal of Applied Mathematics and Mechanics*, Vol. 3, 2005, pp. 100–119.

⁶Liu, L. and Dowell, E., "Harmonic Balance Approach for an Airfoil with a Freeplay Control Surface," *AIAA Journal*, Vol. 43, No. 4, 2005, pp. 802–815.

⁷G. Dimitriadis, G. A. V. and Cooper, J. E., "Application of Higher-Order Harmonic Balance to Non-Linear Aeroelastic Systems," *Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference*, Newport, Rhode Island, May 2006.

⁸Vio, G. A., Dimitriadis, G., and Cooper, J. E., "Bifurcation analysis and limit cycle oscillation amplitude prediction methods applied to the aeroelastic galloping problem," *To appear in the Journal of Fluids and Structures*, 2007.

⁹Vio, G., Dimitriadis, G., and Cooper, J., "On The Solution of the Aeroelastic Galloping Problem," *International Con*ference on Noise and Vibration Engineering, ISMA 2004, Leuven, Belgium, Sept. 2004.

¹⁰Dowell, E. H., Hall, K. C., Thomas, J. P., Florea, R., Epureanu, B. I., and Heeg, J., "Reduced Order Models in Unsteady Aerodynamics," *Engineering Mechanics*, Vol. 6, No. 4-5, 1999, pp. 229–252.

¹¹Silva, W., Strganac, T., and Hajj, M., "Higher-order spectral analysis of a nonlinear pitch and plunge apparatus," *Structures, Structural Dynamics and Materials Conference*, Austin, Texas, USA, April 2005.

¹²Gaitonde, A. and Jones, D., "Reduced order state-space models from the pulse responses of a linearized CFD scheme," International Journal for Numerical Methods in Fluids, Vol. 42, No. 6, 2004, pp. 581–606.

¹³Silva, W., "Identification of Nonlinear Aeroelastic Systems Based on the Volterra Theory: Progress and Opportunities," *Nonlinear Dynamics*, Vol. 39, No. 1-2, 2005, pp. 25–62.

¹⁴Lucia, D. J., Beran, P. S., and Silva, W. A., "Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory," *Journal of Aircraft*, Vol. 42, No. 5, 2005, pp. 509–518.

¹⁵Willcox, K. and Peraire, J., "Balanced Model Reduction via the Proper Orthogonal Decomposition," *AIAA Journal*, Vol. 40, No. 11, 2002, pp. 2323–2330.

¹⁶Mortara, S. A., Slater, J., and Beran, P., "Analysis of Nonlinear Aeroelastic Panel Response Using Proper Orthogonal Decomposition," *Journal of Vibration and Acoustics*, Vol. 126, No. 3, 2004, pp. 416–421.

¹⁷Vio, G. A., Dimitriadis, G., Cooper, J. E., Badcock, K. J., Woodgate, M., and Rampurawala, A. M., "Aeroelastic system identification using transonic CFD data for a wing/store configuration," *Aerospace Science and Technology*, Vol. 11, No. 2-3, 2007, pp. 146–154.

¹⁸Badcock, K. J., Richards, B., and Woodgate, M., "Elements of Computational Fluid Dynamics on Block Structured Grids using Implicit Solvers," *Progress in Aerospace Sciences*, Vol. 36, 2000, pp. 351–392.

¹⁹Osher, S. and Chakravarthy, S., "Upwind Schemes and Boundary Conditions with Applications to Euler Equations in General Geometries," *Journal of Computational Physics*, Vol. 50, 1983, pp. 447–481.

²⁰Leer, B. V., "Towards the Ultimate Conservative Conservative Difference Scheme II: Monotonicity and Conservation Combined in a Second Order Scheme," *Journal Computational Physics*, Vol. 14, 1974, pp. 361–374.

²¹Cantaritti, F., Dubuc, L., Gribben, B., Woodgate, M., Badcock, K., and Richards, B., "Approximate Jacobian for the solution of the Euler and Navier-Stokes equations," Aerospace engineering report, University of Glasgow, 1997.

²²Jameson, A., "Time dependant calculations using multigrid, with applications to unsteady flows past airfoils and wings," Tech. Rep. 91-1596, AIAA, 1991.

²³Goura, G., Badcock, K., Woodgate, M., and Richards, B., "Extrapolation effects on coupled CFD-CSD simulations," AIAA Journal, Vol. 41, No. 2, 2003, pp. 312–314.

²⁴Gordon, W. and Hall, C., "Construction of curvilinear coordinate systems and applications to mesh generation," International Journal of Numerical Methods in Engineering, Vol. 7, 1973, pp. 461–477.

²⁵Goura, G., Badcock, K., Woodgate, M., and Richards, B., "Implicit method for the time marching analysis of flutter," *Aeronautical Journal*, Vol. 105, No. 1046, 2001, pp. 119–214.

²⁶Goland, M., "The Flutter of a Uniform Cantilever Wing," Journal of Applied Mechanics, Vol. 12, No. 4, 1945, pp. 197–208.

²⁷Beran, P., Khot, N., Eastep, F., Snyder, R., and Zweber, J., "Numerical analysis of store-induced limit-cycle oscillation," *Journal of Aircraft*, Vol. 41, No. 6, 2004, pp. 1315–1326.