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The prediction of flutter onset based on aerodynamic modelling using CFD can be made
using an augmented system of equations. Computational times similar to those required
for CFD steady state calculations have been reported for wing test cases. However, for
such methods to be fully useful, information about damping must be obtainable without
reverting to full order time domain simulation. This paper presents a method for computing
damping based on a reduced order modelling approach which systematically derives a two
degree of freedom model from the full discrete system of equations. The method is based
on a change of variables which employs the critical eigenvector of the aeroelastic system.
The ability of this model to predict the damping for a model problem and two wing test
cases is shown.

I. Introduction

Computational aeroelasticity has developed rapidly, with attention focussing on time
marching calculations using CFD, where the response of a system to an initial perturbation
is calculated to determine growth or decay, and from this to infer stability. Recent and
impressive example calculations have been made for complete aircraft configurations (see123

amongst others).
The time domain method is powerful because of its generality and ease of use. However,

basing an investigation of system dynamics in the time domain has one major drawback,
namely the computational cost. This has led to an intensive effort to extract the useful
information out of the full CFD model of the aerodynamics to provide a cheaper model
which still retains the essential physics of the problem. Examples include proper orthognal
decomposition4 which involves the extraction of modes using a limited set of time snapshots
of the flow evolution, a Volterra series which relates the aerodynamic response to some
input by a kernel4 and system identification where a linear model is calculated from a
limited time evolution of the aerodynamic response to some input. To date no single
method has proved its utility on general aeroelastic problems.

Recent work has built on the ideas first presented by Morton and Beran in reference5

to calculate the onset of flutter through a Hopf Bifurcation. This is achieved through the
solution of a modified system of equations at a cost comparable to a steady state CFD
solution, giving a considerable advantage compared with using unsteady calculations to
bracket the flutter speed. Successful application of the method was made for aerofoils in
reference9 and for wings in reference.10
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Whilst knowledge of the onset of instability is important, other pieces of information
are required in practice. For example, flight tests measure damping and compare this with
predictions to inform decisions about future test points. If the stability boundary is to be
crossed in flight then knowledge of the limit cycle oscillation amplitude is required. If this
requires recourse to time domain simulations then much of the advantage of the methods
of the previous paragraph is lost. A systematic approach to model reduction is therefore
required to supplement the rapid prediction of the flutter point.

The perturbation method of multiple scales can be applied to determine behaviour close
to a bifurcation. This approach was used in6 for a two dimensional aeroelastic problem and
was presented in7 for the Duffing oscillator and in8 for a three equation model problem.
The idea is use a perturbation parameter ǫ to separate out events at different time scales.
The terms of O(ǫ) provide a description of the linear dynamics of the system, and higher
order terms provide information about the effect of nonlinearities.

The centre manifold theory provides a route to reducing a large dimension model to
its essential dynamics. However, the practical obstacles to applying this approach to full
order systems of more than 10 degrees of freedom have proved formidable. The current
paper addresses this problem by using a change of coordinates for the system variables
which allows the reduced model to be derived whilst preserving most of the structure of
the original system, making manipulation of the reduction practical. Information from the
direct solution of the bifurcation point and its associated eigenvalue and eigenvectors910 is
used in this change of variables and the subsequent manipulation.

The current paper adopts this approach to calculating a reduced order model. Further
simplification of the approach is made for the prediction of damping and the method is
assessed for a model problem followed by application to two flexible wings. The full centre
manifold reduction is described in the appendix and is available for the model problem
because the second and third Jacobian matrices of the discrete operator, required for
the full centre manifold method but not for the simplified damping method, have been
calculated analytically. This task is much more difficult for the aeroelastic operator and
so only the damping model has been used for the wings. The paper continues with the
formulation of the reduced modelling, followed by a description of the full order systems.
Results are then presented and evaluated, followed by conclusions.

II. Formulation

A. Stability Calculation

Consider the nonlinear system of equations

ẋ = f(x, µ), x ∈ ℜn (1)

An equilibrium f(x0, µ) = 0 experiences a loss of stability through a Hopf bifurcation for
values of µ such that ∂f/∂x = A(x0, µ) has a pair of eigenvalues ±iω which cross the imaginary
axis. Denoting the corresponding eigenvector by q = q1 + iq2, the behaviour of the critical
eigenpair ω and q can be written as

Aq = iωq. (2)

This equation can be written in terms of real and imaginary parts as Aq1 + ωq2 = 0 and
Aq2 − ωq1 = 0. A unique eigenvector is chosen by scaling against a constant real vector qs

to produce a chosen complex value, taken to be 0 + 1i. This yields two additional scalar
equations qT

s q1 = 0 and qT
s q2 − 1 = 0.

A bifurcation point can be calculated directly by solving the augmented system of equa-
tions

fA(xA) = 0 (3)

where

fA =













f

Aq1 + ωq2

Aq2 − ωq1

qT
s q1

qT
s q2 − 1













(4)

and xA = [x, q1, q2, µ, ω]T .
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The bifurcation point can be calculated through a solution of equation 4 using Newton’s
method. This has been achieved for aerofoils free to move in pitch and plunge9 and for
flexible wings.10 Full details of the calculation method are given in those references.

B. Damping Calculation

The eigenvector which goes critical at a Hopf bifurcation will also be the least lightly
damped mode for parameter values in a region below the bifurcation value. In this region
the aymptotic damping value will be determined by this mode. It is possible to reduce the
full system by a change of variables to calculate the damping by only considering a low
dimension reduced model. For aeroelastic systems we are dealing with systems of large
dimension, and it is advantageous to use a change of variable which involves manipulating
the system in its original form as far as possible. A summary of the general formulation
based on the centre manifold theory is given in the appendix. In this section a simpler
version of the general theory is given to allow damping to be calculated.

The full system can be transformed by using only the vectors corresponding to the
critical eigenvalues of A and its transpose AT . These are calculated from equation 4. The
system is projected onto its critical eigenspace and complement. Suppose we have a Taylor
expansion of the residual function f about the equilibrium solution x0 and parameter at
the bifurcation point µ0, giving

˙̄x = Ax̄+ F (x̄, µ̄), x ∈ ℜn (5)

where F (x̄, µ̄) has at least quadratic terms and x̄ = x − x0, µ̄ = µ − µ0. The matrix A has
a pair of complex eigenvalues on the imaginary axis λ1,2 = iω, ω > 0. Let q be the right
eigenvector corresponding to λ1. Then q̄ is the right eigenvector corresponding to λ2 and

Aq = iωq, Aq̄ = −iωq̄

The left eigenvector p has the same property

AT p = −iωp, AT p̄ = iωp̄.

These can be normalised such that 〈p, q〉 = 1 where 〈p, q〉 =
∑n

i=1
p̄iqi. The eigenspace S

corresponding to ±iω is two dimensional and is spanned by {ℜq,ℑq}. The eigenspace T
corresponds to all the other eigenvalues of A and is n − 2 dimensional. Then y ∈ T if and
only if 〈p, y〉 = 0. Since y ∈ ℜn while p is complex then two real constraints on y exist and
hence it is possible to decompose any x̄ ∈ ℜn as

x̄ = zq + z̄q̄ + y

where z ∈ C1, zq + z̄q̄ ∈ S, and y ∈ T . The complex variable z is a coordinate of S so

{

z = 〈p, x̄〉
y = x̄− 〈p, x̄〉q − 〈p̄, x̄〉q̄

since 〈p, q̄〉 = 0. The equation (5) then has the form

{

ż = iωz + 〈p,F (zq + z̄q̄ + y, µ̄)〉
ẏ = Ay + F (zq + z̄q̄ + y, µ̄) − 〈p,F (zq + z̄q̄ + y, µ̄)〉q − 〈p, F (zq + z̄q̄ + y, µ̄)〉q̄

This system is (n+ 2) dimensional but we have two constraints on y.
Now, in general at this stage a centre manifold reduction should be used to obtain a

relationship between y and z which allows the critical dynamics to be calculated from the
z equation only. This treatment allows nonlinear features such as Limit Cycle Oscillations
to be calculated from the reduced model. A description of the method to perform this
reduction is given in appendix A, and is referred to in the results section as the centre

manifold reduced model. Here we are interested in calculating damping for parameter
values below the bifurcation point. In this case the influence of the component y from the
non-critical space is damped faster than the critical component z. We therefore neglect
the influence of y altogether which removes the need for the centre manifold reduction.
Further justification for this approximation will be given from results for a test problem
below.
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The damping is therefore determined by solving the equation

ż = iωz + 〈p, F (zq + z̄q̄, µ̄)〉 .

This system is two dimensional. Finally, we need to calculate the form of F . Expanding
the function f in a Taylor series about the equilibrium solution x0 and parameter µ0 gives

f(x̄, µ̄) = f(x0, µ0) +
∂f

∂x
x̄+

1

2

∂2f

∂x2
x̄x̄+

1

6

∂3f

∂x3
x̄x̄x̄+

∂f

∂µ
µ̄+

1

2

∂2f

∂µ2
µ̄2 +

1

6

∂3f

∂µ3
µ̄3 +

∂2f

∂µ∂x
µ̄x̄+

1

2

∂3f

∂µ2∂x
µ̄2x̄+

1

2

∂3f

∂µ∂x2
µ̄x̄x̄+ .....

where all derivatives are evaluated at (x0, µ0). We can simplify this by noting that f(x0, µ0) =
0 and neglecting terms which are quadratic and higher in x̄ and µ̄. This leaves

f(x̄, µ̄) ≈ Ax̄+
∂f

∂µ
µ̄+

∂A

∂µ
µ̄x̄

which means that
F (x̄, µ̄) = fµµ̄+ Aµµ̄x̄ (6)

and hence
〈p,F (zq + z̄q̄, µ̄)〉 = 〈p, fµµ̄〉 + 〈p,Aµµ̄x̄〉.

Using the change of coordinates and pulling the values of z and z̄ through the inner product
we obtain

〈p, µ̄Aµx̄〉 = z〈p, µ̄Aµq〉 + z̄〈p, µ̄Aµq̄〉.
This allows the reduced model to be written as a constant coefficient two degree of freedom
system.

This model is referred to in the results section as the damping reduced model. If the
term F is neglected altogether then we only retain linear terms, and this is referred to as
the linear reduced model. Further simplification of the damping reduced model is possible
for the aeroelastic system and will be discussed below.

To summarise, the damping calculation proceeds in the following steps:

1. using the direct solver, calculate the Hopf bifurcation point and the critical eigenvalue
and eigenvalue and the corresponding eigenvector of AT

2. calculate the projected two degree of freedom model using

ż = iωz + z〈p, µ̄Aµq〉 + z̄〈p, µ̄Aµq̄〉

3. use the two degree of freedom model to compute the response of z to an initial dis-
turbance for values of µ < µ0. This solution can be transformed back to the original
variables using

x̄ = zq + z̄q̄

C. 2D non-adiabatic tubular reactor with axial mixing

To test the solution methodology for the augmented system, a model problem is consid-
ered which describes the unsteady behaviour of a non-adiabatic tubular reactor with axial
mixing,1112

∂y

∂t
=

1

Pem

∂2y

∂x2
− ∂y

∂x
− µy exp

(

Γ − Γ

Θ

)

∂Θ

∂t
=

1

Peh

∂2Θ

∂x2
− ∂Θ

∂x
− β(Θ − Θ̄) + µαy exp

(

Γ − Γ

Θ

)

(7)

where Pem, Peh, β, α, Γ, and Θ̄ are fixed constants and µ is the bifurcation parameter. The
boundary conditions (t > 0) are given by

∂y

∂x
= Pem(y − 1)

∂Θ

∂x
= Pem(Θ − 1) (x = 0)

4 of 19

American Institute of Aeronautics and Astronautics



∂y

∂x
=
∂Θ

∂x
= 0 (x = 1)

For the results presented here the constants are set to Pem = 5, Peh = 5, β = 2.5, α = 0.5,
Γ = 25, and Θ̄ = 1.0.

The system is discretised using a cell centred finite difference scheme so that the first
and second differences are approximated by

∂2y

∂x2

∣

∣

∣

∣

i

=
yi+1 − 2yi + yi−1

h2

∂y

∂x

∣

∣

∣

i

=
yi+1 − yi−1

2h
.

Here a uniform mesh of spacing h is used with the i-th point at xi = ih for (i = 0, . . . , n).
The boundary conditions for x = 1 are applied by setting halo cell values to be identical to
the values in the adjacent interior cell.

The solution for an equilibrium and also of the augmented system is by the full Newton
method with the use of the exact Jacobian on the left hand side. For the augmented
system, and the various types of reduced model, the first and second order Jacobian terms
have been calculated analytically and were checked using finite differences. To check the
reduced results, unsteady time stepping is also considered. An explicit method is used
which results in a large number of time steps (∆t = 1/500 is required for stability). The
bifurcation point is bracketed between a steady solution at one parameter value and an
unsteady solution at a second value. Each new calculation halves the length of the region
bracketing the bifurcation value.

D. 3D Aeroelastic System Based on the Euler Equations

The three-dimensional Euler equations can be written in conservative form and Cartesian
coordinates as

∂wf

∂t
+
∂Fi

∂x
+
∂Gi

∂y
+
∂Hi

∂z
= 0 (8)

where wf = (ρ, ρu, ρv, ρw, ρE)T denotes the vector of conserved variables. The flux vectors
Fi, Gi and Hi are,

Fi =













ρU∗

ρuU∗ + p

ρvU∗

ρwU∗

U∗(ρE + p) + ẋ













, (9)

Gi =













ρV ∗

ρuV ∗

ρvV ∗ + p

ρwV ∗

V ∗(ρE + p) + ẏ













Hi =













ρW ∗

ρuW ∗

ρvW ∗ + p

ρwW ∗ + p

W ∗(ρE + p) + ż













. (10)

In the above ρ, u, v, w p and E denote the density, the three Cartesian components of the
velocity, the pressure and the specific total energy respectively, and U∗, V ∗, W ∗ the three
Cartesian components of the velocity relative to the moving coordinate system which has
local velocity components ẋ, ẏ and ż, i.e.

U∗ = u− ẋ (11)

V ∗ = v − ẏ (12)

W ∗ = w − ż (13)

The wing deflections δxs are defined at a set of points xs by

δxs = Σαiφi (14)

where φi are the mode shapes calculated from a full finite element model of the structure
and αi are the generalised coordinates. By projecting the finite element equations onto the
mode shapes the scalar equations

d2αi

dt2
+ ω2

i αi = µφT
i fs (15)
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are obtained where fs is the vector of aerodynamic forces at the structural grid points, and
µ = c5ρ∞U

2
∞. These equations are rewritten as a system in the form

dws

dt
= Rs (16)

where ws = (......, αi, α̇i, ....)
T and Rs = (......, α̇i, µφ

T
i fs − ω2

i αi, ....)
T .

The aerodynamic forces are calculated at face centres on the aerodynamic surface grid
and these must be transfered to the structural grid.. This problem was considered in
references13 and,14 where a method was developed, called the constant volume tetrahedron
(CVT) transformation. Denoting the fluid grid locations and aerodynamic forces as xa and
fa, then

δxa = S(xa,xs, δxs)

where S denotes the relationship defined by CVT. In practice this equation is linearised to
give

δxa = S(xa,xs)δxs

and then by the principle of virtual work, fs = ST fa.
The grid speeds on the wing surface are also needed and these are approximated directly

from the linearised transformation as

δẋa = S(xa,xs)δẋs

where the structural grid speeds are given by

δẋs = Σα̇iφi. (17)

We have to deal with the deforming geometry. This is achieved using Transfinite Inter-
polation of Displacements (TFI) within the blocks containing the wing. The wing surface
deflections are interpolated to the volume grid points xijk as

δxijk = ψ0
j δxa,ik (18)

where ψ0
j are values of a blending function15 which varies between one at the wing surface

(here j=1) and zero at the block face opposite. The surface deflections xa,ik are obtained
from the transformation of the deflections on the structural grid and so ultimately depend
on the values of αi. The grid speeds can be obtained by differentiating equation (18) to
obtain their explicit dependence on the values of α̇i.

We will consider the bifurcation parameter as µ. For symmetric wings at zero incidence
any equilibrium solution has the wing undeflected. This means that fs = 0 at the equilibrium
solution. The fluid equations do not depend explicitly on µ. Therefore fµ = 0 in equation
4 for an equilibrium solution. Also, the linear dependence of the structural equations on
µ means that Aµ is constant and only has non zero terms in the small number of rows
corresponding to the structural equations.

III. Results

A. Tubular Reactor

The rich solution space for this model problem is shown in figure 1. This includes stable
and unstable equilibria, limit points and Hopf bifurcation points. There is also a hysteresis
loop for increasing and decreasing µ. The solution is characterised by the maximum value
of Θ within the domain. The equilibrium solutions for varying µ are shown in figure 1.
For µ < 0.165 and µ > 0.180 this equilibrium is stable and the solution to equation (7)
is steady. For 0.165 < µ < 0.180 the equilibrium is unstable and a limit cycle oscillation is
formed. Depending on whether the parameter µ is increased (solid line) or decreased (solid
switching to dashed lines with increasing µ) a different equilibrium is obtained, indicating
hysteresis. The equilibria were mapped out using a continuation method with Newton’s
method for the corrector stage. In addition, time marching calculations were done to map
out the stability of these equilibria.

Next, the augmented system (equation 3) was solved to find the bifurcation points.
If the initial guess is poor then the solution diverges. For the current calculations the
following initial guess was used: µ = 0.16, x2i = 1.0, x2i+1 = 0.0, P1i

=
√
n1, P22i

=
√
n1,
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Figure 1. The equilibrium solution as mapped out by a continuation method varing the bifurcation parameter
µ

P22i+1
= −

√
n1, q = P2 and the eigenvalue i. By changing the initial conditions the Newton

iterations can be made to converge to the second Hopf point at µ = 0.180. Starting from this
guess the iterations had to be under-relaxed by a factor 0.5 until the domain of quadratic
convergence was reached (the criteria used was based on the initial residual being reduced
by half). A sequence of grids was used to show mesh independence and a second method
of initialisation was used by taking the final solution from the previous grid in the sequence
as the starting solution on the next grid. No relaxation was required using this technique.

Damping calculations were made using the reduced model. Various results are compared
to gain some insight into the behaviour of the different options. The benchmark is the time
domain solution of the full system, which is indicated by the dots on the time response
curves. Secondly, the full centre manifold reduction is based on the Taylor expansion of
the residual including third order terms, and using the reduction methodology described
in the appendix. Finally, the key results are obtained using the simpler damping reduction
using the Tayor expansion of equation 6.

We consider results about the bifurcation point µ0 = 0.16508 and for values of µ̄ of -
0.00005, -0.0001 and -0.0002. Although it is beyond the scope of this paper, results are
also shown in figure 2 for µ̄ = 0.00007 which results in a limit cycle. The centre manifold
reduction predicts the LCO response perfectly.

The damped responses for µ̄ = −0.00005, µ̄ = −0.0001 and µ̄ = −0.0002 are shown in figure
3. The centre manifold results, which arise from solving a two degrees of freedom system,
agree perfectly with the full order (here 512 degrees of freedom) system results for all
three cases. Finally, the damping reduced model predicts the response very well. Given
the relative simplicity of calculating the damping reduced model, these results suggest a
strong preference for this approach.

B. AGARD 445.6 Wing

The behaviour of the method is next investigated for the aeroelastic response of the
AGARD 445.6 wing. Time domain and bifurcation results are given in.10 The grid has
17900 points and is optimised to have a large number of points in the tip region which is
critical for predicting flutter onset. The four important modes from the structural model,
which is of the plate variety, were retained. The flutter boundary is shown in figure 4, with
below the curve being the stable region.

Second and Third Jacobians of the full CFD operator proved unreliable from finite
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Figure 2. Comparison of results from the full model, centre manifold reduced model and linear reduced model
for an LCO response at µ̄ = 0.00007
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Figure 3. Comparison of results from the full model, centre manifold reduced model, damping reduced model
and linear reduced model for damped responses at µ̄ = −0.00005, µ̄ = −0.0001 and µ̄ = −0.0002.
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difference calculations and remedies to this were left to future work. Therefore the centre
manifold reduced model was unavailable for the aeroelastic cases.

The reduced damping model predictions were calculated for values of dynamic pressure
which are 5%,10%,20% and 40% below the bifurcation value for Mach numbers of 0.67, 0.90,
0.96 and 1.07. The reduced model (two degrees of freedom) responses are compared with
the full order system (89508 degrees of freedom) in figures 5 - 8. A number of comments
can be made. First, as the dynamic pressure tends to the flutter value, the reduced model
predictions converge to those of the full model as expected. The more heavily damped
results at M=0.67 show more discrepancy than the other three cases, which show good
agreement, even at 60 % of the flutter value. It is possible that the addition of higher
order terms from the centre manifold reduction may allow improved prediction for the
heavily damped cases and this will be investigated in future work. The typical CPU time
for a full order time domain calculation is 142 times a steady state calculation. The reduced
model takes a negligible time to run, and is formed (once only for each Mach number) at
a cost comparable to 3.2 steady state calculations. Once formed the responses can be
approximated almost free for any value of the dynamic pressure below the critical value.

Mach

D
yn

am
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P
re

ss
ur

e

0.7 0.8 0.9 1 1.1

2000

2500

3000

3500

4000

4500

5000

5500
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6500

Figure 4. Flutter boundary for AGARD wing traced out using the bifurcation solver.

C. Hawk Wing

Finally, we present results representing the wing of the Hawk trainer which is manufactured
by BAE SYSTEMS. A previous study of the flutter characteristics of this aircraft was
reported in reference3 using the time domain approach. Predictions for several models of
the Hawk were compared, including a linear method, a CFD based model of the wing-
body-tailplane, and the wing alone.

In the current calculations an aerodynamic grid with 16644 points was generated which
was found to give reliable results in the previous paper through a grid refinement study.
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Figure 5. Comparison of results from the full model and damping reduced model at M=0.67 for values of
dynamic pressure below the flutter boundary.
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Figure 6. Comparison of results from the full model and damping reduced model at M=0.90 for values of
dynamic pressure below the flutter boundary.
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Figure 7. Comparison of results from the full model and damping reduced model at M=0.96 for values of
dynamic pressure below the flutter boundary.
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Figure 8. Comparison of results from the full model and damping reduced model at M=1.07 for values of
dynamic pressure below the flutter boundary.
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The structural dynamics is represented by a beam model, supplied by BAE SYSTEMS.
A full description of how the transformation is done from this structural model is given
in reference.3 The four lowest frequency symmetric non-tailplane modes in the structural
model are retained for the flutter calculations. These have frequencies 12.42Hz (1st wing
bending), 14.43Hz (the influence of the 1st fuselage bending mode on the wing), 32.46Hz
(the influence of the 2nd fuselage bending mode on the wing) and 37.87Hz (the first wing
torsion mode). In the linear aeroelastic predictions made with the same four modes, the
first wing bending and torsion modes couple, the other two modes having only a small
influence on the flutter mechanism. This structural model provided an ideal test case for
the CFD based methods. The full aero-structural model has 16652 degrees of freedom.

The bifurcation solver was first used to trace out the flutter boundary which is shown in
figure 9. The prediction of damping was then evaluated for the Mach number which results
in the lowest point on the transonic flutter dip. Values of dynamic pressure at 98%, 95%
and 92% of the critical value were chosen. Even at 98% of the critical value the damping
is heavy, in contrast with the AGARD wing for the Mach number in the flutter dip.

The comparison between the damping reduced model and the full order model is shown
in figure 10. The agreement at 98 % of the critical value is close and in terms of damping
the reduced model predictions are not too disimilar at 95% and 92% either. However, close
inspection of the comparisons shows that the frequencies of the responses at the lower two
values are significantly in disagreement. Calculation of the eigenspectrum by the inverse
power method shows that the closest mode to the imaginary axis is the critical mode only
after the bifurcation parameter is 96% of the critical value. Below this a lower frequency
mode dominates the response.

The time domain calculation of the full order system in this cases took in excess of 10
hours on a Pentium 4 processor. The reduced model took less than 20 seconds to compute
the same case.

IV. Conclusions

Previous work has shown that the flutter onset speed can be computed for CFD-CSD
coupled models using fast methods based on the behaviour of the critical eigenvalue. Flutter
speeds can be computed in roughly the cost of a steady state calculation, avoiding the large
costs associated with time domain analysis.

In the current paper a method which uses information available about the critical eigen-
vector of the system has been presented which forms a two-degree-of-freedom model to
compute the damped response at values of the dynamic pressure below the critical value.
This information has the potential to allow rapid evaluation of damping characteristics
prior to flight testing.

Results were shown for a Tubular Reactor model problem and then for the aeroelastic
behaviour of the AGARD and Hawk wings. Close to the critical parameter value the full
order system response is reproduced well by the two degree of freedom model. As the
response becomes more heavily damped the agreement becomes less good, but these cases
are also less critical in the real situation.

Results using a centre manifold correction were presented for the Tubular Reactor
model problem and excellent agreement was obtained with the full order system, even for
heavily damped conditions. Further work is underway to accurately evaluate the second
and third Jacobians of the aeroelastic operator to allow this correction to be applied for
the aeroelastic cases. In addition, and most interestingly, this will allow post-bifurcation
behaviour (i.e. LCO’s) to be computed also.
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Figure 9. Flutter boundary for Hawk wing traced out using the bifurcation solver. The values of dynamic
pressure at which the damping model is compared with full order results are indicated by the dots.
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(a) 92% (b) 95%

(c) 98%

Figure 10. Comparison of results from the full model and damping reduced model for the Hawk wing in the
transonic dip and for values of dynamic pressure below the flutter boundary.
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A. Classical Model Reduction

Consider the nonlinear system of equations

ẋ = f(x), x ∈ ℜn (19)

where f is sufficiently smooth. We assume that we are at a Hopf bifurcation and hence
the Jacobian matrix ∂f/∂x has 2 and only 2 critical eigenvalues with zero real part and the
remaining m = n − 2 eigenvalues have negative real parts. Then the system (19) can be
transformed to

{

u̇ = Bu+ g(u, v)

v̇ = Cv + h(u, v)
(20)

where u ∈ ℜ2 and v ∈ ℜm. B is a 2× 2 matrix with its eigenvalues on the imaginary axis and
C is a m×m matrix with no eigenvalues on the imaginary axis. The functions g and h have
at least quadratic terms. The centre manifold W c of system (20) can be locally represented
as a graph of a smooth function,

W c = {(u, v) : v = V (u)} (21)

V : ℜ2 → ℜm and due to the tangent property of W c, V (u) = O(||u||2).
The Reduction Principle says system (20) is locally topologically equivalent near the

origin to
{

u̇ = Bu+ g(u, V (u))

v̇ = Cv
(22)

The important thing to notice is that the equations for u and v are decoupled in equa-
tion (22). The first equation is the restriction of equation (20) to its centre manifold. The
dynamics of the structurally unstable system (20) are essentially determined by this restric-
tion, since the second equation in (22) is linear. For a Hopf bifurcation with (λ1,2 = ±iω)
then the system looks like







(

u̇1

u̇2

)

=

(

0 −ω
ω 0

)(

u1

u2

)

+

(

G1(u1, u2, v)

G2(u1, u2, v)

)

v̇ = Cv +H1(u1, u2, v)

(23)
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It is possible to rewrite this in complex form by use of the variable z = u1 + iu2 to obtain
{

ż = iωz +G(z, z̄, v)

v̇ = Cv +H(z, z̄, v)
(24)

where G and H are smooth complex-valued functions of z, z̄ ∈ C1 of at least quadratic order.
The centre manifold W c can be locally represented as a graph of a smooth function

W c = {(z, v) : v = V (z)}
V maps ℜ2 → ℜn−2 and due to the tangent property of W c, V (z) = O||u||2. The Centre
manifold W c therefore has the representation

v = V (z, z̄) =
1

2
w20z

2 +w11zz̄ +
1

2
w02z̄

2 +O(|z|3), (25)

with the coefficients wij ∈ C2. Since v must be real, w11 is real and w20 = w̄02. Using Taylor
expansions in z, z̄, and v the system (24) can be rewritten as







ż = iωz + 1

2
G20z

2 +G11zz̄ + 1

2
G02z̄

2

+ 1

2
G21z

2z̄ + 〈G10, v〉z + 〈G01, v〉z̄ + . . .

v̇ = Cv + 1

2
H20z

2 +H11zz̄ + 1

2
H02z̄

2 + . . .

(26)

where G20, G11, G02, G21 ∈ C1 and G01, G10, Hij ∈ Cn−2. Since v is real H11 is real, and
H20 = H̄02.

Gjk =
∂j+k

∂zj∂z̄k
G(z, z̄, 0)

∣

∣

∣

∣

z=0

, j + k ≥ 2, (27)

Ḡ10,j =
∂2

∂vj∂z
G(z, z̄, v)

∣

∣

∣

∣

z=0,v=0

, j = 1, 2, . . . , n− 2, (28)

Ḡ01,j =
∂2

∂vj∂z̄
G(z, z̄, v)

∣

∣

∣

∣

z=0,v=0

, j = 1, 2, . . . , n− 2, (29)

Hjk =
∂j+k

∂zj∂z̄k
H(z, z̄, 0)

∣

∣

∣

∣

z=0

, j + k = 2, (30)

On substituting the representation of the centre manifold in (26) and equating coeffients,

w20 = (2iωI − C)−1H20

w11 = −C−1H11

w02 = (−2iωI −C)−1H20

(31)

Where I is the identity matrix and the matrices (2iωI−C), C and (−2iωI−C) are invertible
since 0 and ±2iω are not eigenvalues of C.

For reduction to be worthwhile the bifurcation parameter must also be added to the
system and included in the calculated centre manifolds. This allows the reduced model to be
applied for parameter values away from the bifurcation value. Consider the parameterized
equation

ẋ = F (x,α)

where x ∈ ℜn and α ∈ ℜm. Suppose that at α = 0 the system has a non-hyperbolic equilib-
rium x = 0 which undergoes a Hopf bifurcation. This means we have a system equivalent
to

{

u̇ = Bu+ g(u, v, α)

v̇ = Cv + h(u, v, α)
(32)

and since α does not depend on time we can append the equation α̇ = 0 to the expanded
system







u̇ = Bu+ g(u, v, α)

v̇ = Cv + h(u, v, α)

α̇ = 0

(33)

The Centre Manifold theorem asserts the existence of a centre manifold for the origin that
is local given by points (u, v, α) satisfying an equation of the form

v = k(u, α).

This is used in the reduction step.

19 of 19

American Institute of Aeronautics and Astronautics


