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Abstract

A transformation methodology is developed for com-
plete aircraft aeroelastic computations. A Structural Dy-
namics Model based on a generic F16 aircraft has been
used to study the intergrid transformation between the
structural and fluid grids. A structural model with the fuse-
lage modelled as 1D beam and the wings and the fin mod-
elled as 2D shells is used to obtain the modal response.
The Constant Volume Tetrahedron (CVT) is the transfor-
mation scheme used for communicating the deformation
between the 2D structural components and the correspond-
ing fluid surface components. A modified version of the
CVT is used for the transformation between the 1D struc-
tural beam and the fuselage. A two level transformation
scheme is applied and a hierarchical based blending func-
tion is applied at the component interfaces by which the
fluid surface grid remains intact.

1 Introduction

The ability to treat realistic aircraft configurations needs to
be demonstrated for computational aeroelasticity to realise
its potential. One aspect which needs to be considered is
the transformation between the fluid and structural grids.
There are two aspects to this. First, there is a need to treat
aerodynamic and structural surfaces which are offset due
to simplifications in the structural model. Secondly, multi-
components need to be transformed without introducing
holes in the aerodynamic surface.

To illustrate the difficulty of simplified structural ge-
ometries, consider modelling a wing by a plate for struc-
tural purposes. Applying the well known IPS method [1]
the aerodynamic points are projected onto the plate. The
spline matrix is then used to transform the projected points
and finally the aerodynamic points are recovered by adding
the original out-of-plane displacement to the new positions
for the projected points. The problem with this approach
is with the out-plane treatment, as illustrated in Figure 1
from [3]. A distortion is introduced which increases with
the size of the rotation. It was this problem which moti-
vated the development of the BEM based method in [5].
This method copes very naturally with mismatching sur-
faces. An isoparametric mapping familiar from finite el-
ement analysis is not applicable when the surfaces do not
coincide.

A second issue identified as important, and also arising
from structural simplifications, is when the plate planform

1

does not match that of the wing. This arises when the load
bearing wing box is used to define the structural plate. It
was shown in [3] that extrapolation beyond the definition
of the plate should be linear and using the IPS introduces a
spurious camber into the wing which can seriously change
the dynamical and static response. The transformed mode
shapes used in [6] were constructed with this consideration
in mind.

The work presented in Farhat [7] used a detailed FEM
model for the F16 which conforms fully to the true geom-
etry used for the aerodynamic grid. This means that the
isoparametric mapping is a natural and successful method
for the transformation and the complex geometry does not
introduce any additional complication. The BEM method
in principal can also deal with a complex geometry without
complication.

Melville [6] applied predefined mode shapes to deal
specifically with a complete aircraft configuration. He
noted some errors in the reconstructed geometry, probably
arising from the reconstruction via mode shapes. However,
the strength and insight of the method is the definition of
a hierarchy of components and the use of this to match
transformed components, avoiding holes.

An important consideration is that complete aircraft
models will involve large CFD and CSD grids. The prac-
ticality of the method is therefore crucial. For the example
presented in this paper there are 13 thousand fluid points
on the aircraft (n, = 13000) and 1700 structural points
(ns = 1700).

For the IPS method a matrix defining the transformation
must be stored. The number of elements in this matrix is
9 X n, X ng, Which means around 200 million non-zeros
for the example in the next chapter. The BEM method re-
quires even more memory. The isoparametric and Melville
methods do not suffer from this overhead.

When the structural and aerodynamic surface grids are
defined on the same surface then the use of an isoparamet-
ric mapping is entirely satisfactory, as shown in the work
of Farhat [7]. However, when the structural model is built
from simplified components, as is the normal practice in
industry, then a completely satisfactory transformation for
large displacements is not available. First, IPS and BEM
based methods require large amounts of memory. It is also
not clear how to apply the IPS method over the differ-
ent components without introducing a mismatch between
components. The method of Melville copes well with the
complex geometry but the accuracy for each component
individually was called into question.
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There is therefore a need for a cheap and precise trans-
formation method for aircraft geometries. This is the sub-
ject of the current paper.

2 Constant Volume Tetrahedron

2.1 Origina 2D CVT

The CVT scheme is a transformation technique proposed
in [3]. A surface element consisting of the three nearest
structural grid points x, ;(t), x5,;(t) and x, x(¢) to a given
fluid grid point x,;(t) is identified (refer Figure (2)). Once
the structural grid points are identified and associated with
the fluid grid point the position of x, ; is given by the ex-
pression

c=ca+fb+d 1)

where a = X, ; — X;,5,b = X5 — X,,4,andd = a x b.
From the above the constants «, Sand -y are calculated as
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The position of the fluid grid point x,; is denoted by
the sum of the in-plane component aa + b and out of
plane component vd which is normal to the plane of the
structural points. The volume of the tetrahedron is given
by

(a.b4x ) 5)

As the volume of the tetrahedron remains constant the fluid
grid position is given by

V=

Xa1 = Xs,i(t) + ca(t) + fb(t) + y(t)d(t)  (6)
with o and g fixed at their initial values and ~ calculated
as
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Equation (7) means that the projection of the fluid grid
point on the structural element moves linearly with the
structural element where the out of plane component is
chosen to conserve the volume of the tetrahedron. If the
fluid and the structural points are planar then the expres-
sion reduces to linear interpolation for the position of the
fluid point. Equation (6) can be expressed in a linearised
form as follows

v(t) =

7(0). )
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To maintain the accuracy of the linearised CVT the lin-
earisation is updated at the latest fluid and surface grid po-
sitions i.e. after each update of the structural position dur-
ing aeroelastic calculations. Hence the values of a, b, and
c are calculated at the latest grid positions.

It was found in [3] that the linearisation error introduced
can significantly effect the static and dynamic responses
computed. Therefore, the matrices A, B and C are up-
dated every time the surface is moved so that the linearisa-
tion can be considered as being about the latest fluid and
structural positions. The values of the transformed deflec-
tions have to be interpreted accordingly. This method is
found to give geometrically identical results to using the
full nonlinear method. The cost of computing the matrices
is very small compared to the flow solution itself.

This method has previously been tested for the aeroelas-
tic response of isolated wings. The extension to complete
aircraft configurations is considered in the following sec-
tions.

2.2 1D Version of the CVT

For structural components modelled as 1 dimensional
beams (eg. the fuselage in this work) the CVT transfor-
mation does not work without some modification. In the
original CVT, to form a tetrahedron 3 structural points
forming a triangle are required. For an undeformed 1D
beam element this is not possible as the structural points
do not form a plane. One possible solution would be to
create a structural triangle by adding in a fictitious point
close to one of the structural nodes so that the two nodes
of the beam element along with the fictitious point forms
a triangular element. When the structure deforms the dis-
placement of this fictitious point is calculated as equal to
the displacement of the real structural point closest to it
i.e. it undergoes only translation without adjusting the rel-
ative position to the bending of the fuselage. In the cur-
rent work the method described above has been used for
transformation of the fuselage for Structural Model 3. A
fictitious third point for the structural grid was introduced
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for each 1D beam element. This point had the same z and
z coordinates as one of the two points forming the 1D el-
ement. The y coordinate of the fictitious point has a unit
more than that of the original point. Figure (3) shows the
1D structural element formed by the points x;, ;, x, ; and
the fictitious structural point x; .

Xs,k = Xs,4 +J (13)
where J is a unit vector in the direction of the y-axis. The
triangular element formed is then used in the conventional
CVT technique as described in section 2. This technique
gives pure translation to the fluid points . No rotation is
introduced, consistent with the motion of the points on the
beam (refer Figure (4)). Consider the deformation of the
node x, ; which can be written as

<l =0

8, 8,0 + 6XS,’i (14)
where the superscript 1 and 0 represent the deformed and
undeformed states of the structural nodes. The deformed
fictitious node can then be calculated as

1
Xs,k

= xg,k + 0x5,; (15)

3 Complete Aircraft Test Case

31 TheCAD Model

Transformation is tested on the Structural Dynamics
Model (SDM) obtained from the Institute of Aerospace
Studies-Canada [4]. The SDM model was originally con-
structed for experimental studies on fin buffet, and the
dimensions are similar to a scaled down version of the
F16 aircraft. The computational model constructed was
scaled up again to realistic aircraft dimensions. The SDM
CAD model was supplied in the form of 2D AUTOCAD
drawings. A number of stages was involved before a fi-
nal CAD model was obtained from these 2D drawings.
Also geometrical approximations were made by ignoring
the engine inlet, the two vertical fin like projections below
the back end of the fuselage and the exact shape of the
canopy. When carrying out these approximations we have
tried to make a demonstration case which is representative
of a fighter aircraft to test the transformation methods but
which avoids complications during CFD mesh generation.

3.2 The Structural Model

Computational aeroelastic analysis involves two grids i.e.
the fluid grid and the structural grid. The fluid grid is con-
structed over the actual profile of the model whereas the
structural grid can be a simplified version of the actual ge-
ometry. The structural grid is usually simplified because a
reasonably good structural representation can be obtained
using 2D shells and beams which are much easier to as-
semble and computationally cheaper for aeroelastic analy-
sis. The current study is aimed at testing the transformation
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scheme on a basic aircraft configuration devoid of exter-
nal stores, control surfaces etc. To test the transformation
techniques the structural model has the fuselage modelled
as a 1D beam. An FEM grid was constructed for the struc-
tural models using PATRAN. The 1D beam was discretized
into two node elements and the 2D surfaces into triangu-
lar elements. It is important that the 2D surfaces have tri-
angular elements as the CVT scheme uses a triangle on
the structural grid and a node on the fluid surface grid to
form a tetrahedron for transformation. The FEM grid was
preprocessed in PATRAN and analyzed in the FEM solver
ABAQUS for the modal frequencies. It is usually the case
that the higher vibrational modes are not important for the
prediction of the onset of flutter. Usually the third anti-
symmetric mode is the most significant mode. The first
4 modes of vibration were retained here to demonstrate
the transformation scheme. These modes include the first
and second fuselage bending modes and the first symmet-
ric and anti-symmetric bending modes for the wings. It
should be stressed that the current work is not based on
prediction of onset of flutter or simulation of flutter but on
developing an effective technique for the transformation
between the structural and fluid grids to enable such a sim-
ulation to be carried out in future. The material properties
used here for the structural response are arbitrary and ful-
fill the need of providing realistic mode shapes although
these are not exact frequencies as reported by Melville [6].
The values used for the structural model are given in Ta-
ble (1) . Figure (5) shows the modal deformation of the
structural model on which the transformation was carried
out.

3.3 TheCFD Grid

The grid generation software ICEM-HEXA was used to
generate a multiblock structured grid for the flow simu-
lation. An O-grid blocking strategy is applied around the
aircraft with the fuselage as the core and the blockings over
the wings and tail plane formed by collapsing radial lines
around the component. The proposed transformation tech-
nique was tested on a fluid surface grid of 12200 points
extracted from a coarse volume grid of 650000 points.

4 Transformation for Complete Aircraft

Aversion of the CVT is required which can do the transfor-
mation for a complete aircraft with the minimum of man-
ual intervention and which preserves the surface mesh, par-
ticularly at junctions between components. The insight for
the method is provided by the paper of Melville [6] which
treats the aircraft components in a hierarchy.

The first stage of the method is to partition the fluid and
structural points into levels associated with components.
The primary component is the fuselage since all the other
parts of the aircraft are connected to it. The fluid and
structural grid points on the fuselage are therefore desig-
nated as being of level 1. Next, the wings, tail planes and
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fin are connected to the fuselage and the fluid and struc-
tural grid points on these components and the fuselage are
designated level 2. The idea of the hierarchy is that level
2 points have a primary motion due to the fact that they
are connected to the fuselage and a secondary motion due
to their own elasticity. Extra components attached to the
wing, such as fuel tanks and stores would be designated
level 3, with their primary motion being due to the fact
that they are attached to the wing.

At this stage a number of subsets of points has been de-
fined for the fluid and structural grids, with one subset for
each level. Denote the set of aerodynamic points in level
m as A™ and the structural points as S™. The lowest level
(2 in this case) contains all of the points in the respective
grids and level m — 1 is a subset of level m.

The first stage for the CVT as described above is to as-
sociate each fluid point with three structural points. This
is done in practice by defining a triangularisation of the
structural grid and then searching for the nearest centroid
to each aerodynamic point. This mapping can be done
over the structural points in each level as well, defining
level one and two mappings. In the current case the level
one mapping has all points in the fluid grid driven only by
points on the fuselage. The level two mapping is equiva-
lent to the original CVT method applied to all grid points
without restriction. The transformation of a wing bending
mode is shown in Figure (6) using successively the first
and second level mappings. The first level mapping leads
to the fluid grid motion following the fuselage, with the
wings being moved in a rigid fashion. The second level
mapping introduces the wing bending as well, with the mo-
tion of the fuselage being identical to that arising from the
first level mapping.

A problem with the level two mapping arises at junc-
tions between components. This is illustrated in Figure (7).
A second problem arises where the fin is attached to the
fuselage, as shown in Figure (8). For the level two map-
ping the nodes off the fuselage are being driven by a dif-
ferent transformation from those actually on the junction,
which are driven by the fuselage. This leads to a small but
disastrous distortion of the grid in the junction regions. Us-
ing the level one mapping treats all points in a consistent
way and maintains the grid quality in the junction regions
as a result. However, the level one mapping misses all ef-
fects introduced by the elasticity of the non-fuselage com-
ponents, since these structural components are not used to
drive the fluid surface grid. A new method is therefore
needed to correctly transform the complete deformation
while avoiding the problems at junctions.

The basis for the method is derived from the observa-
tion that the level one and two transformed mode shapes
on level two components in regions close to the fuselage
are almost identical. This follows from the observation of
Melville [6] that the fuselage drives the wing motions and
this effect is dominant close to the wing root as opposed
to any wing alone elastic effects. The method therefore
blends the level one and two transformed fluid points, giv-
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ing priority to the level one transformation as we approach
the fuselage (in general the level m transformation is given
priority as the level m component is approached). This
means that in the junction region the fluid grid is trans-
formed from the fuselage structural model rather than the
wing.

Denote the transformed deflection for a fluid point x,
using the mth level mapping as dx;",. The blending used
to give the final transformed displacement is given as

0Xg, = Xy — 1 Wm 10X, (16)
The weights for the blending w,, ; must add to one. To
define the values of the weights for level m we need to
consider the distance from the components associated with
that level. Define the nearest distance of the point x, ; to
all of the points in level m by d,, ;. It is a simple matter
to calculate d,,, ; by searching over the fluid points defined
in level m for the nearest point. If x,; actually belongs
to level m then d,,; = 0. Then, the weights for blending
the two levels of transformation in the current test case are
computed from

—10dm 1 (17)

w1 =¢€

and

way =1—wyy. (18)

For points on the fuselage the entire weight will be put
on the fuselage driven transformation, for points close to
the fuselage most weight will be given to the fuselage
driven transformation and otherwise most weight is given
to the level two component driven transformation. The ex-
ponential function was found to be suitable for the current
test case but some experimentation with functions for other
cases may be required. The comparison between the trans-
formed fourth mode using the blended transformation and
the level two transformation is shown in Figure (9) indicat-
ing that there is little difference between the two. However,
looking to the junction region, the blended transformation
has avoided the folded grid as required. Also, the fin now
remains cleanly attached to the fuselage as opposed to the
level two transformation. Since the cost of computing the
original CVT transformation is small, the cost of applying
the new multi-level scheme is also small. On cost grounds
there is an objection to using the exponential function in
the weighting but the weights are calculated as part of a
preprocessing step so this is insignificant.

5 Results

The two level transformation was applied on the the Struc-
tural Models described in the previous section and the
transformed mode shapes were checked for any irregulari-
ties in the surface grid smoothness that may cause prob-
lems during the time marching aeroelastic calculations.
There was no undesirable roughness in the transformed
aircraft surface grid found. The two level transformation
results for the first four modes are shown in Figure (10).
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6 Conclusion

A successful transformation methodology for a complete
aircraft configuration was developed and applied. A two
level weighting methodology was developed and success-
fully applied with the CVT transformation technique to
give transformed fluid surface grids without any damage
to the grids at component interfaces. A number of cases
were studied (fuselage modelled as a 2D plate for exam-
ple), the results for which are not presented in this publica-
tion, for the effect of fuselage twist on the transformation
and the ability of the weighting scheme to handle this. The
transformation method worked satisfactorily for all the test
cases.
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Member Dimension | Thickness Material Elasticity

or Radius (m) | Density(kg/m?®) | Modulus(Pa)
Wing 2D Plate 0.1 700 5 x 1010
Vertical Fin | 2D Plate 0.1 700 5 x 1010
Tail Plane | 2D Plate 0.1 700 5 x 1010
Fuselage 1D Beam | 0.3 250 2 x 10!

Table 1: Material and Dimensional Properties of the Components

(@) Initial (b) 0.17

Figure 1: Rigidly rotated circle. Solid lines are the recovered fluid points by IPS [3]

Figure 2: The Constant Volume Tetrahedron (from [3])
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X s,k

- Fictitious structural point

S,J S,i

2-D triangular element constructed with the fictitious point Original 1-D structural element

Figure 3: The 1D CVT fictitious point

K N .
S Purely translated fictitious point

Fictitious structural point
1
aFa

Deformed 1-D element

2-D triangular element constructed with the fictitious point Original 1-D structural element

Figure 4: Translation of the 1D CVT element
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(8) Fuselage Lateral Bending (b) Wing Antisymmetric
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(c) Wing Symmetric (d) Fuselage Vertical Bending

Figure 5: Natural mode shapes of the structural model
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(a) Level 1transformation

(b) Oneleve transformation

(b) Level 2 blended transformation

Figure 6: Transformation for the 4th mode

(c) Two level blended transformation

Figure 7: Fuselage wing interface close-ups
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(b) Level 2 transformation with blending at the inter-

face

(a) Level 2 transformation without blending at the in-
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Figure 9: Blended and unblended level 2 transformations

for the 4th mode

(a) Circle indicates area of interest
(b) Onelevel transformation
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(c) Two level blended transformation
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(a) Wing Symmetric (b) Wing Antisymmetric

(c) Fuselage Lateral Bending (d) Fuselage Vertical Bending

Figure 10: Transformed mode shapes of the structural model
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