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Abstract

This paper briefly discusses the aerodynamics of insect flight for the purposes of the design of insect-like
flapping-wing micro air vehicles (MAVs). The kinematics of insect wings are described together with the as-
sociated nonlinear and unsteady aerodynamic phenomena. On this basis, the development of an aerodynamic
modelling technique for insect-like flapping wings is discussed. This technique is analytical and results in exact
but open-form wake-integrals which have to be solved numerically. Experimental verification is provided by
suitable comparison with synthetic data generated using insect-like wing kinematics. The paucity of insect flight
data is highlighted and the need for further integration of computational and experimental techniques in the de-
velopment of models for insect-like flapping flight is identified. Some of the merits and challenges facing such a
strategy are also discussed.
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1 Introduction

Insects are by far the commonest animal species around. Yet, several aspects of their livelihood have remained
elusive over the ages, owing principally to their small size. One such aspect is their flight which has been described
to a satisfactory degree only recently [1–3]. Due to the absence of ‘roller bearings’ in nature, insects are unable
to resort to rotary mechanisms for flight and propulsion (cf. propellers and rotary wings). Instead, they rely on
flapping motion, whereby they move their wings in a more or less reciprocating manner to generate sufficient
forces (and moments) for flight. This is a concept they have perfected over time since they first began colonising
the Earth over 300 million years ago [4, p. 262] and have established themselves as very successful flyers. They
are also generally capable of hover, although most choose not to do so. It is this characteristic of insect flight from
which we draw our inspiration.

In particular, insects exhibit remarkable agility at low speeds, they can hover stably, and take-off and land ver-
tically, achieving all this in a very power-efficient manner. These characteristics make insect flight attractive for
indoor flight, especially in confined, cluttered spaces. Agile flight inside buildings, caves and tunnels is of signifi-
cant value in both military and civilian circles. Micro air vehicles (MAVs) with such characteristics show particular
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promise in so-called D3—dull, dirty and dangerous—environments. Current surveillance assets (e.g. satellites,
UAVs), however, possess virtually no capabilities of information-gathering inside buildings. The focus on indoor
flight leads to the requirement of a distinct flight envelope, including small size (ca 150 mm), hovering capabil-
ity, high manoeuvrability and small acoustic signature, amongst other things. Research at Cranfield University’s
Shrivenham campus has, therefore, been aimed at these insect-like flapping-wing MAVs (or FMAVs) [5–10].

2 Flapping-Wing Problem

2.1 Kinematics

Although insect flight kinematics have been observed as early as the advent of the film camera in the 19th century
[11], it is only since the relatively recent availability of high-speed photography that they have been described in
any sufficient detail [12–14]. Despite these recent advances, such data are still relatively scarce [15].

Insects have either one or two pairs of wings. We restrict ourselves to one pair of wings—so-called Diptera—
and the description that follows is for such an insect. Diptera make very efficient flyers and, in particular, can
hover stably. The overall flapping motion consists essentially of three component motions—sweeping (fore and
aft motion), heaving/plunging (up and down movement) and pitching (varying incidence)—much like the sculling
motion of the oars on a rowboat. Flapping frequency is typically in the range 5–200 Hz.

Downstroke
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Figure 1: Top view of insect flapping
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Figure 2: Side view of insect flapping

The wing motion can be divided broadly into two phases — translational and rotational. The translational phase
consists of the downstroke—the motion of the wing from its rearmost to its foremost position (relative to the
body)—and the upstroke, which describes the return cycle (see Figure 1). At either end of these halfstrokes,
the rotational phases—so-called stroke reversals—come into play, whereby the wings rotate rapidly and reverse
direction for the subsequent halfstroke. During this process, the morphological lower surface becomes the upper
surface so that the leading edge always leads (Figure 1). The path traced out by the wing tip (relative to the
body) during the wing stroke is not dissimilar to a figure-of-eight on a spherical surface (as the wing semi-span
is constant; see Figure 2). The wing flaps back and forth about a roughly constant plane called the stroke plane
(analogous to the tip-path-plane for rotorcraft).

During a halfstroke, the wing accelerates to a roughly constant speed around the middle of the halfstroke, before
slowing down to rest at the end of it. The velocity during the wingbeat cycle is, therefore, non-uniform and for
hover, in particular, the motion of the wing tip does not vary dramatically from a pure sinusoid [12]. Wing pitch
also changes during the halfstroke, increasing gradually as the halfstroke proceeds.
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2.2 Aerodynamics

Owing to the continually-varying nature of the kinematics in insect flapping flight, it comes as no surprise that the
associated fluid flow behaves markedly differently from that observed in conventional fixed- or rotary-wing flight.
Since each half-cycle starts from rest and comes to a stop, the velocity distribution during the flapping motion is
non-uniform making the resulting airflow complex. As a result, the aerodynamic force varies in amplitude and
direction during each wingbeat cycle. The variability of the force is compounded by the strong influence of the
viscosity of air (due to the small scale) and significant interaction of the wing with its own wake (especially in
hover). There is also the further aeroelastic complication resulting from significant fluid-structure interactions.

The flow associated with insect flapping flight (and scales pertaining to micro air vehicles) is incompressible,
laminar, unsteady and occurs at low Reynolds numbers. Despite their short stroke lengths and small Reynolds
numbers, insect wings generate forces much higher than their quasi-steady equivalents. Dudley & Ellington [16]
found that for bumblebees, the quasi-steady estimates of lift and power requirements fail at all flight speeds.
In a similar study by Wakeling & Ellington [17], the mean lift coefficient required for flight for the dragonfly
Sympetrum sanguineum and the damselfly Calopteryx splendens was ‘reverse-engineered’ and, in both cases,
was found to exceed the maximum possible under quasi-steady conditions. These observations strongly indicate
the presence of unsteady aerodynamic phenomena.

Insect flapping flow is now understood to comprise two components — attached and separated flow [15]. The
attached flow refers to the freestream flow on the aerofoil as well as that due to its unsteady motion (sweeping,
heaving and pitching). For insect-like flapping wings, flow-separation is usually observed at both leading and
trailing edges — the leading-edge vortex, which is bound to the wing for most of the duration of each halfstroke,
and the trailing-edge wake that leaves smoothly off the trailing edge. Flow is more or less attached in the remaining
regions of the wing.

The leading-edge vortex is now believed to be responsible for the augmented forces observed [18, 19]. It starts
close to the wing root and spirals towards the tip where it coalesces with the tip vortex and convects into the
trailing wake [18, 20]. The overall structure of the leading-edge vortex has been likened to that observed on low-
aspect-ratio delta wings [21,22]; it is produced and fed by a leading-edge separation. From the literature, it would
be appear that the spanwise spiralling nature of the leading-edge vortex is a more pronounced feature in larger
insects [18, 23] that operate at higher Reynolds numbers (Re ∼ 5000). In their experiments on a dynamically
scaled-up model of the much smaller fruit-fly Drosophila melanogaster (Re ∼ 200), Dickinson et al [24, 25] have
also observed a strong leading-edge vortex but with weak spanwise flow.

As flapping wings move through the air, they encounter apparent mass forces arising from the mass of surrounding
air also set in motion due to the wing movement, particularly due to the high accelerations and rapid stroke
reversals. Because of the repeated accelerations of the wing and the brevity of the halfstrokes, starting vortices
are created and remain in the vicinity of flapping wings, having a hindering effect on the growth of lift on the
wings — the so-called Wagner effect [26]. In hover and slow forward flight, flapping wings are also likely to
be affected by the returning wake from previous wingbeats [14, 27]. The importance of this ‘wake capture’ has
also been noted by Grodnitsky & Morozov [28] who suggested that insects and birds have special mechanisms
whereby they extract energy back from their near vortex wake. A similar view was expressed by Ennos [29] who
speculated that, in flies, the kinematics were helped by the aerodynamics.

3 Aerodynamic Model

Aerodynamic analysis of insect flapping-wing flight has received relatively little attention until recently [1–3].
Even then, most models come from the biological community and as such are predominantly simple quasi-steady
approaches [30–33]. Computational fluid dynamics (CFD) techniques are generally more detailed and can offer
higher accuracy [19,34,35] but come at the cost of high CPU power and time. There is also the additional difficulty
of generating dynamically-changing moving meshes. To model the flapping-wing problem more accurately than
quasi-steady methods and more rapidly than conventional CFD, an aerodynamic modelling approach that captures
the important features of the flight regime is required. A number of analytical approaches can be found in the

3



literature but they either tackle a somewhat different problem [36] or the models are lacking in some respects
[37, 38].

3.1 Modelling Methodology

As part of our study on flapping-wing micro air vehicles, a nonlinear, inviscid unsteady aerodynamic model was
developed [39, 40, for full details, see [41]]. The model was required to capture the most important physical
characteristics of the flow regime (identified above) and, in particular, the positions of flow-separation lines. The
main output was a tool capable of predicting, with reasonable accuracy, the forces and aerodynamic moments
experienced by an insect-like flapping wing. The circulation-based model is based [15] broadly on the seminal
work of von Kármán & Sears [42], with refinements along the lines of McCune et al [43] and McCune & Tavares
[44] introduced albeit with several significant extensions. The model itself is quasi-three-dimensional; strip theory
is used to divide the wing spanwise into chordwise sections that are each treated essentially as two-dimensional.
As also noted by [45], the low aspect ratio and high solidity1 of insect wings requires that radial chords be used
instead of normal (straight) chords (see Figure 3). This is necessary because each wing section would otherwise
see a curved (and significant) incidence velocity. As a result, each wing section resides in a radial cross-plane that
is then unwrapped flat and the flow is solved as a planar two-dimensional problem. The overall effect on the wing
is obtained by integrating along the span.

+

centre of
rotation

motion
sweeping

Figure 3: Radial chord representation of a fruit-fly wing
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Figure 4: Data flow in the aerodynamic model

A number of simplifying assumptions are made. Potential-flow (inviscid) methods are used and flow-separation
from both leading and trailing edges is modelled by enforcing the Kutta-Joukowksi condition at the points of
wake-inception. Further, the flow is assumed to be irrotational (except at solid boundaries and discontinuities in
the wake). Although viscosity is generally ignored, its effects are included indirectly in the form of the Kutta-
Joukowksi condition and in the formation and shedding of vortices. The wing is taken to be a thin, rigid, flat plate
and three-dimensional effects, due to tip vortices or interactions between adjacent wing sections, are ignored.
Finally, the attached and separated flows are assumed to be linearly superposable (on the basis of the linearity of
the underlying Laplace’s equation).

As a result, the problem is divided into two distinct components: a wake-free (quasi-steady) element and a wake-
induced (unsteady) one. By satisfying the zero-through-flow (impermeability) condition at the wing surface and
observing Kelvin’s law that the total circulation in a control volume must remain constant, two coupled, nonlinear
integral equations are arrived at. These novel equations are exact and describe the entire flow within a cross-plane
(within the limits of the assumptions made). They are, however, nonlinear and as such do not have a closed form.
Solutions are, therefore, found numerically.

3.2 Computational Implementation

The solution is implemented using the discrete point vortex method. A time-marching algorithm is used and
implemented in Fortran (see [41] for full details). The aerofoil in each 2-D section is represented by a distribution
of bound vortices and the zero-through-flow condition is enforced on its surface. The two wakes shed from the
leading and trailing edges are also distributions of vorticity but these are free to move with the fluid flow. At each
time-step, the quasi-steady bound circulation is computed for smooth flow at the trailing edge. Two new vortices
are then released, one each from the leading and trailing edges, and placed such that they follow the trace left by

1Solidity refers to the ratio of wing planform area to area swept by the wing.
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the previous vortex. The nonlinear equations referred to above are then solved simultaneously for the circulation
strengths of the two new vortices.

At the end of the time-step, the solution is marched forward in time by convecting the shed vortices in the wake
using a forward Euler scheme. During the more acute phases of the flapping cycle (e.g. stroke reversals), the
time-steps are subdivided into finer sub-time-steps to give better resolution but at the cost of increased CPU time.
A spin-off of this method is that flow-visualisation is automatically generated (see Figure 4).

Forces are computed by Kelvin’s method of impulses [42, 46, 47]. The bound and shed vortices constitute vortex
pairs that impart impulses between them. The combined time-rate-of-change of impulse of all vortex pairs is a
measure of the force on the wing (since only the bound vortices sustain Kutta-Joukowski forces). Moment is
computed similarly from the moment of impulse.

3.3 Experimental Validation

The validity of the theoretical model described above can only be established by comparing with experimental
data. As a result of the formulation of the model, both force (and moment) data as well as flow-visualisation could
be generated for comparison (Figure 4). As also noted by [15], experimental data in this field are rather scarce,
owing principally to the size of insects and the difficulty of ‘integrating’ them into experimental setups. Most
data in the field, therefore, have been generated from synthetic experiments [18,20–22,48–51]. We used two such
datasets to make flow-visualisation [50] and force [52] comparisons (full details in [40, 41]).

3.3.1 Comparison with Dickinson and Götz [50]

Dickinson and Götz conducted their experiment in a glass aquarium filled with a 54% sucrose solution [50]. A
rectangular wing (with 5 cm chord and 15 cm span) was traversed in a straight line at a constant angle of attack
between a pair of baffles to limit any 3-D flow. The wing was impulsively started and then dragged at constant
speed before being brought to an abrupt stop about 7.5 chord lengths later. The experiment was run at Reynolds
number of 192, based on chord. The conditions for the experiment were reproduced and the flow solved for using
the potential-flow model described above. A comparison with Dickinson’s and Götz’s experiment with the wing
at 45◦ angle of attack was made and the results are described now (see Figure 5).

As the figure shows, there is remarkable agreement between the real, viscous experiment and the inviscid theoret-
ical prediction, despite the very low Reynolds number. There exist a large number of fluid flows that are affected
by viscosity to the first order and yet their motions do not show signs of restrictive amounts of viscous dissipation.
Such flows may be treated as special cases of potential or irrotational flows, allowing them to be solved by well-
known analytical methods (e.g. Hele-Shaw flows). The flow-visualisation photographs were for fixed instances at
1 through 4 chord lengths of travel since impulsive start. The theoretical prediction even captures the triangular
structure on the right-hand side of the rolled-up end of the distorted leading-edge vortex after 4 chord lengths of
travel (see Figure 5(d)), hence showing particular promise for the approach.

3.3.2 Comparison with Dickinson [52]

The force comparison is based on data provided by Dickinson [52] from the setup that was used in experiments
by Dickinson et al [20, 24]. A scaled-up model of the wing of the fruit fly Drosophila dubbed the Robofly was
used in which the wing executed an insect-like flapping motion at a frequency of about 0.17 Hz with the wing
tip tracing out a flat figure-of-eight. The wing swept a semicircular (180◦) arc, this being possible because only
one wing was used (no mechanical interference from the ‘other’ wing). The experiment was conducted in a tank
of mineral oil (density 880 kg/m3) so Reynolds number was 160 based on mean chord and mean tip speed. Data
were provided for 4 complete cycles (or 8 halfstrokes) starting from rest. The wing sweeping velocity is constant
for most of the halfstroke but reverses direction at each stroke reversal. Similarly, angle of attack also remains
more or less constant at 45◦ for most of the halfstroke but goes through a 90◦-rotation at stroke reversal.
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(a)

(b)

(c)

(d)

Figure 5: Comparison of flow-visualisation results from the current inviscid theoretical model (left) with the [50] experiment at Re = 192
(right). The numbers 1 through 4 refer to the number of chord lengths travelled since impulsive start
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Figure 6: Comparison of force data for Robofly data from [52] with results from the current theoretical simulation
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Results from this force-comparison are shown in Figure 6. The forces on the flapping wing used for comparison
were the vertical force opposing gravity (denoted lift) and the orthogonal force always in the direction of travel
(denoted thrust). The similarity between the experimental data and the results of the simulation is immediately
apparent. The pair of opposite spikes at stroke reversals are particularly well-captured by the theoretical model,
occurring at the same points in time without any significant lag for both lift and thrust, thus accounting very
well for unsteadiness in the flow. Moreover, the negative spikes for lift (and positive spikes for thrust) are nearly
perfectly predicted in magnitude as well. The opposite spikes, however, are overestimated.

3.4 Extension of the Model

Despite the promising results produced by the unsteady, potential-flow model described above, it remains inviscid
and is, therefore, subject to the associated limitations. The model is also quasi-3-D as ‘three-dimensionality’ is
achieved simply by enforcing a limited span. In addition, any spanwise and tip-vortex effects are not handled in
the current formulation. Extending the model to a higher order is, therefore, highly desirable.

With the rise in computing power, RANS-type Navier-Stokes calculations have become very competitive. Rela-
tively quick 2-D DNS computations should also be possible which would offer further verification of our model.
Dynamic meshing (collapsing and extending computational domain) in the vicinity of the flapping wing, espe-
cially in 3-D, still remains a challenge [53] but is likely to be overcome in due course (using, for example, overset
grids [54]). Conventional CFD models are also well-poised to give novel insight into hitherto unexplored flow
visualisation and aeroelastic phenomena.

As mentioned earlier, experimental data in this relatively novel field are still scarce and this, in part, has been
responsible for hindering the development of suitable theoretical models for insect flight. There is a dire need for
such experimental data. However, until such time, computational techniques are likely only to give predictions
for ‘insect-like’ flapping flight. As more data become available, their integration with theoretical models will
become increasingly important, especially as the modelling techniques improve. This will impact both analytical
modelling techniques as well as grid-based CFD methods.

4 Conclusion

The development of a nonlinear, unsteady inviscid model for insect-like flapping wings has been described. The
flapping-wing problem is introduced by means of its kinematics and pertinent aerodynamics. With this premise, a
blade-element-type modelling methodology is described, incorporating the concept of ‘radial chords’ for extension
to 3-D. The mathematical formulation of the problem eventually results in two coupled, nonlinear wake-integral
equations which are then solved numerically using a forward Euler algorithm.

The main outputs from the theoretical model are forces (and moments) and flow-visualisation. These are used for
experimental validation of the model and good agreement is found both in terms of force-prediction and flowfield
representation. Improvements for the model are then considered and these are compared with the competitiveness
of conventional CFD methods. The paucity of experimental data in the field is identified and its importance in
further improving the computational approaches to flapping-wing modelling is discussed.

In conclusion, it is apparent from the discussion above that further integration of experimental and computational
methods is essential for the development of accurate tools for the prediction of the aerodynamics of insect-like
flapping wings. This will pave the way for more advanced studies in the subject, such as the aeroelasticity of
flapping wings. They will also offer better capability for parametric studies of flapping-wing parameters for MAV-
design.
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