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1. Standard Lattice Boltzmann 1. Standard Lattice Boltzmann 
Method (LBM)Method (LBM)

Particle-based Method (streaming & collision)

Streaming process Collision process

D2Q9
Model
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Features of Standard LBM

o Particle-based method
o Only one dependent variable

Density distribution function f(x,y,t)
o Explicit updating; Algebraic 

operation; Easy implementation
No solution of differential equations and 
resultant algebraic equations is involved

o Natural for parallel computing



Limitation----
Difficult for 
complex geometry 
and non-uniform 
mesh

Mesh points

Positions from streaming



2. Current LBM Methods for 2. Current LBM Methods for 
Complex ProblemsComplex Problems

Interpolation-Supplemented LBM 
(ISLBM)

He et al. (1996), JCP
Features of ISLBM

Large computational effort
May not satisfy conservation 
Laws at mesh points  
Upwind interpolation is needed 
for stability

Mesh points

Positions from streaming



Differential LBM
Taylor series expansion to 1st order derivatives

Features:
Wave-like equation
Solved by FD, FE and FV methods
Artificial viscosity is too large at high Re
Lose primary advantage of standard LBM 
(solve PDE and resultant algebraic equations)
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3. Development of TLLBM3. Development of TLLBM

• Taylor series expansion

P-----Green (objective point) Drawback: Evaluation 
A----Red (neighboring point) of Derivatives
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Idea of Runge-Kutta Method (RKM)

Taylor series method:

Runge-Kutta method:
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Need to evaluate high order derivatives

Apply Taylor series expansion at
Points to form an equation system 



Taylor series expansion is applied at 6 
neighbouring   points to form an algebraic 
equation system

A matrix formulation obtained:

[S] is a 6x6 matrix and only depends  on the geometric
coordinates (calculated in advance in programming)
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Least Square Optimization
Equation system (*) may be ill-conditioned or 
singular (e.g. Points coincide)

Square sum of errors

M is the number of neighbouring points used
Minimize error:
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Least Square Method (continue)
The final matrix form:

[A] is a 6×(M+1) matrix

The final explicit algebraic form:
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ka ,1 are the elements of the first row of 
the matrix [A] (pre-computed in program)



Features of TLLBM

o Keep all advantages of standard LBM

o Mesh-free

o Applicable to any complex geometry

o Easy application to different lattice 
models



Flow Chart of ComputationFlow Chart of Computation
Input

Calculating Geometric Parameter
and physical parameters
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Boundary TreatmentBoundary Treatment

F lu id  F ie ld

S tr e a m  fr o m  f lu id  f ie ld

B o u n c e  b a c k  f r o m  th e  w a ll

α

β

αβ = ff

Non-slip condition is exactly satisfied



4. Some Numerical Examples 4. Some Numerical Examples 
Square Driven Cavity (Re=10,000, Non-

uniform mesh 145x145)
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Fig.1 velocity profiles along vertical and horizontal central lines



Square Driven Cavity (Re=10,000, 
Non-uniform mesh 145x145)

Fig.2  Streamlines (right) and Vorticity contour (left)



LidLid--Driven Polar Cavity FlowDriven Polar Cavity Flow

θ

Fig. 3 Sketch of polar cavity and mesh
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Fig.4 Radial and azimuthal velocity profile 
along the line of  θ=00 with Re=350
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LidLid--Driven Polar Cavity FlowDriven Polar Cavity Flow

Fig. 5 Streamlines in Polar Cavity for Re=350



Fig.6 mesh distribution

Flow around A Circular CylinderFlow around A Circular Cylinder



Fig.7 Flow at Re = 20 
(Time evolution of the wake length )
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Fig.8 Flow at Re = 20 (streamlines)

Flow around A Circular CylinderFlow around A Circular Cylinder



Fig. 9 Flow at Early stage at Re = 3000 
(streamline)
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Fig.10 Flow at Early stage at Re = 3000 
(Vorticity)
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Fig.11 Flow at Early stage at Re = 3000 (Radial Velocity 
Distribution along Cut Line)
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Fig. 12 Vortex Shedding (Re=100)
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Natural Convection in An Annulus

Fig. 13 Mseh in Annulus



Natural Convection in An Annulus

Fig. 14 Temperature Pattern



5. Conclusions5. Conclusions
Features of TLLBM

Explicit form
Mesh free
Second Order of accuracy
Removal of the limitation of the 
standard LBM

Great potential in practical 
application
Require large memory for 3D problem

Parallel computation
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