ansion- and Least
Square- Based Lattice Boltzmann
Method

C. Shu

Department of Mechanical
Engineering
Faculty of Engineering
National University of Singapore



tice Boltzmann
Method (LBM)

e Current LBM Methods f
Problems

e Taylor Series Expansion- and L
Square-Based LBM (TLLBM)

e Some Numerical Examples

e Conclusions



Lattice Boltzmann
Method (LBM)

e Particle-based Method (streamjng & collision)

® O O
D20Q9
_._‘%4’ Model
I\
® O O

Streaming process Collision process



\

f,(x+e,dt, y+e,ot+a)=1,(xy,t)+

[T, (X, y,) - T (x,y,t)l/7
N

1».eq_ £+£ U €, sz U2
pz 6l 7

P=,0C2/2 02(278_1)C25t




e Features o ndard LBM

o Particle-based method

o Only one dependent variabl
Density distribution function f(x,y,

o Explicit updating; Algebraic
operation; Easy implementation

No solution of differential equations and
resultant algebraic equations is involved

o Natural for parallel computing



» Limitation----

Difficult for
complex geometry
and non-uniform

mesh

© Mesh points

o

&
@ Positions from streaming @




2. Current

Methods for

Complex P
e Interpolation-Supplementgd LBM

(ISLBM)

He et al. (1996), JCP e
Features of ISLBM P
<+ Large computational effort
<+ May not satisfy conservation ®

Laws at mesh points S
< Upwind interpolation is needed

for stability

@ Mesh points

@ Positions from streami



e Differential L
Taylor series expansio

O 1st order derivatives

of e of e of _ f Ay, 0)-1 (XYy,t)
ot “ox Yooy -0t
Features:

<+ Wave-like equation

<+ Solved by FD, FE and FV methods

< Artificial viscosity is too large at high Re

<+ Lose primary advantage of standard LBM
(solve PDE and resultant algebraic eguation




T

3. Development:

- Taylor series expansion

of (P t+ot) , of (P,t+4t)

f (A t+5t)=f_ (P,t+5t)+Ax,

AY

OX oy
%(AXA)Z 0° fa(aF;,Zt + Ot) +%(AyA)2 0° fa(aPy,Zt + Ot) .
AX pAY 4 o f"‘ézé;+ % 4 O[(AX,), (AY,)°]
P-----Green (objective point) Drawback: Evaluation

A----Red (neighboring point) of Derivatives




e Ildea of Run utta Method (RKM)

— = f(u,t), u=u,, when t=0

Need to evaluate high order derivatives

Runge-Kutta method.: —Q— —

N

Apply Taylor series expansion at O
Points to form an equation system



e Taylor series e nsion is applied at 6
neighbouring points.to form an algebraic
equation system

A matrix formulation obtained:

[SKV}=1{9}
{(V}={f, of lox,of loy,0°f, [ox*,0°f, 158%y,
{9}r=49 i}T g = fOt(Xi’yi’t)+“o?q(xi’yi1t)_ fo, (X3

[S] Is a 6x6 matrix and only depends on the geometric
coordinates (calculated in advance in programming)



e Least Squ Optimization

Equation system (*) may Ill-conditioned or
singular (e.g. Points coincide)
Square sum of errors

6
_Z si,jV :
]=1

M 5 M
E = > err =Z(gi—

=0 =0
1=01,2,....M(M >5 for 2D)

M is the number of neighbouring points used
Minimize error:

0E 0V, =0,k =1,2,.., 6



Least Square Method (continue)
The final matrix for

V3=(STS1) ST {o}=[A
[A] Is a 6x(M+1) matrix

The final explicit algebraic form:

M +1
f,(Xg, Yo, + 1) = kZ_1a1,k Jk-1

d; i are the elements of the first row of
the matrix [A] (pre-computed in program)



e Features o
o Keep all advantages of\standard LBM
o Mesh-free

o Applicable to any complex geom

o Easy application to different lattice
models



Flow Chart of (_:oan_utgtion

[Input o, U, Ree, } :
|

Calculating Geometric Parameter
and physical parameters
( d 1,k 1 (] NZO)

!

l

Calculating f;q

/g

<onvergence ?

IYES

[ OUTPUT }




Boundary Treatment

Bounce back from the wall
b,

Fluid Field

Stream from fluid field

Non-slip condition is exactly satisfied




4. Some Numerical Examples

Square Driven Cavity (Re=10,000, Non-
uniform mesh 145x145)
0.6

1

A Ghia's result
O 8 - 0.4
' Present Result
0.2
0.6 A Ghia's Vo
0Y4 result
: — Present 02 |
result
0.2 - 04 |
0 ’ , , -06 ! ' '
-05 -025 O U0.25 05 075 1 0 0.2 0.4 X 0.6 0.8 1

Fig.1 velocity profiles along vertical and horizontal central lines



Square Drive vity (Re=10,000,
Non-uniform h 145x145)

Fig.2 Streamlines (right) and Vorticity contour (left)



Lid-Drive lar Cavity Flow

Fig. 3 Sketch of polar cavity and mesh



Lid-Driven Polar Cavity Flow

—  Present 49x49
——— Present 65x65
Upg — — Present 81x81

®m  Num. (Fuchs
A exp. Tillmark)

0 0.2 0.4 0.6 0.8 I'-Iy

Fig.4 Radial and azimuthal velocity profile
along the line of 6=0° with Re=350



mlar Cavity Flow

Fig. 5 Streamlines in Polar Cavity for Re=35



mdrcular Cylinder

Fig.6 mesh distribution




mrculw Cylinder

5

B

Symbols-
Experimental

(Coutanceau et
al. 1982)

s-Present

4 8 t 12 16 20 24
Fig.7 Flow at Re = 20
(Time evolution of the wake length )




Wlw Cylinder

Fig.8 Flow at Re = 20 (streamlines)




Flow aroun Circular Cylinder

T=5
Re=3000

Fig. 9 Flow at Early stage at Re = 3000
(streamline)




mrcular Cylinder

Fig.10 Flow at Early stage at Re = 3000
(Vorticity)




Flow aroun Circular Cylinder

Symbols-
Experimental

15
1 15 X 2 25 3

Fig.11 Flow at Early stage at Re = 3000 (Radial Velocity
Distribution along Cut Line)



Flow aroun ircular Cylinder

t=3T/8

Fig. 12 Vortex Shedding (Re=100)




Natural Co ction in An Annulus
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Fig. 13 Mseh in Annulus
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Fig. 14 Temperature Pattern
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B. clusions

e Features of TLLBM
» Explicit form
»Mesh free
»Second Order of accuracy

> Removal of the limitation of the
standard LBM

e Great potential in practical
application

e Require large memory for 3D proble
Parallel computation
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