Taylor Series Expansion- and Least

 Square- Based Lattice Boltzmann

 Method

C. Shu

Department of Mechanical Engineering Faculty of Engineering National University of Singapore

Standard Lattice Boltzmann Method (LBM)

 Current LBM Methods for Complex Problems

 Taylor Series Expansion- and Least Square-Based LBM (TLLBM)

Some Numerical Examples

Conclusions

1. Standard Lattice Boltzmann Method (LBM)

• Particle-based Method (streaming & collision)

Streaming process

Collision process

$$f_{\alpha}(x + e_{\alpha x} \delta t, y + e_{\alpha y} \delta t, t + \delta t) = f_{\alpha}(x, y, t) + [f_{\alpha}^{eq}(x, y, t) - f_{\alpha}(x, y, t)]/\tau$$
$$f_{\alpha}^{eq} = \rho \left[\frac{1}{2} + \frac{1}{6} \left(2 \frac{\mathbf{e}_{\alpha} \cdot \mathbf{U}}{c^{2}} + 4 \left(\frac{\mathbf{e}_{\alpha} \cdot \mathbf{U}}{c^{2}} \right)^{2} - \frac{\mathbf{U}^{2}}{c^{2}} \right) \right]$$
$$\rho = \sum_{\alpha=0}^{N} f_{\alpha} \qquad \rho \mathbf{U} = \sum_{\alpha=0}^{N} f_{\alpha} \mathbf{e}_{\alpha}$$
$$\mathbf{P} = \rho \mathbf{c}^{2}/2 \qquad \upsilon = \frac{(2\tau - 1)}{8} \mathbf{c}^{2} \delta t$$

Features of Standard LBM

o Particle-based method o Only one dependent variable Density distribution function f(x,y,t) • Explicit updating; Algebraic operation; Easy implementation No solution of differential equations and resultant algebraic equations is involved Natural for parallel computing

2. Current LBM Methods for Complex Problems

- Interpolation-Supplemented LBM (ISLBM)
 - He et al. (1996), JCP

Features of ISLBM

- Large computational effort
- May not satisfy conservation
 Laws at mesh points
- Upwind interpolation is needed for stability

Positions from streaming

Differential LBM

Taylor series expansion to 1st order derivatives

$$\frac{\partial f_{\alpha}}{\partial t} + e_{\alpha x} \frac{\partial f_{\alpha}}{\partial x} + e_{\alpha y} \frac{\partial f_{\alpha}}{\partial y} = \frac{f_{\alpha}^{eq}(x, y, t) - f_{\alpha}(x, y, t)}{\tau \cdot \delta t}$$

Features:

- Wave-like equation
- Solved by FD, FE and FV methods
- Artificial viscosity is too large at high Re
- Lose primary advantage of standard LBM
 (solve PDE and resultant algebraic equations)

3. Development of TLLBM

Taylor series expansion

$$\begin{split} f_{\alpha}(A,t+\delta t) &= f_{\alpha}(P,t+\delta t) + \Delta x_{A} \frac{\partial f_{\alpha}(P,t+\delta t)}{\partial x} + \Delta y_{A} \frac{\partial f_{\alpha}(P,t+\delta t)}{\partial y} + \\ \frac{1}{2}(\Delta x_{A})^{2} \frac{\partial^{2} f_{\alpha}(P,t+\delta t)}{\partial x^{2}} + \frac{1}{2}(\Delta y_{A})^{2} \frac{\partial^{2} f_{\alpha}(P,t+\delta t)}{\partial y^{2}} + \\ \Delta x_{A} \Delta y_{A} \frac{\partial^{2} f_{\alpha}(P,t+\delta t)}{\partial x \partial y} + O[(\Delta x_{A})^{3},(\Delta y_{A})^{3}] \end{split}$$

P-----Green (objective point) A----Red (neighboring point) Drawback: Evaluation of Derivatives

Taylor series expansion is applied at 6 neighbouring points to form an algebraic equation system

A matrix formulation obtained:

$$[S]{V} = {g}$$

 $\{V\} = \{f_{\alpha}, \partial f_{\alpha} / \partial x, \partial f_{\alpha} / \partial y, \partial^{2} f_{\alpha} / \partial x^{2}, \partial^{2} f_{\alpha} / \partial^{2} y, \partial^{2} f_{\alpha} / \partial x \partial y\}^{T}$ $\{g\} = \{g_{i}\}^{T} g_{i} = f_{\alpha}(x_{i}, y_{i}, t) + \left[f_{\alpha}^{eq}(x_{i}, y_{i}, t) - f_{\alpha}(x_{i}, y_{i}, t)\right] / \tau$ [S] is a 6x6 matrix and only depends on the geometric coordinates (calculated in advance in programming)

(*)

Least Square Optimization

Equation system (*) may be ill-conditioned or singular (e.g. Points coincide)

Square sum of errors

$$E = \sum_{i=0}^{M} err_{i}^{2} = \sum_{i=0}^{M} \left(g_{i} - \sum_{j=1}^{6} s_{i,j} \right)$$
$$i = 0, 1, 2, ..., M (M > 5 for 2D)$$

M is the number of neighbouring points used Minimize error:

$$\partial \boldsymbol{E} / \partial \boldsymbol{V}_{k} = 0, \boldsymbol{k} = 1, 2, \dots, 6$$

Least Square Method (continue) The final matrix form:

 $\{V\} = ([S]^T [S])^{-1} [S]^T \{g\} = [A]\{g\}$

[A] is a $6 \times (M+1)$ matrix

The final explicit algebraic form:

$$f_{\alpha}(x_{0}, y_{0}, t + \delta t) = \sum_{k=1}^{M+1} a_{1,k} g_{k-1}$$

*a*_{1,k} are the elements of the first row of the matrix [*A*] (pre-computed in program) Features of TLLBM

o Keep all advantages of standard LBM

o Mesh-free

Applicable to any complex geometry

 Easy application to different lattice models

Boundary Treatment

Bounce back from the wall

Fluid Field

 $f_{\beta} = f_{\alpha}^{\alpha}$

Non-slip condition is exactly satisfied

4. Some Numerical Examples Square Driven Cavity (Re=10,000, Nonuniform mesh 145x145)

Fig.1 velocity profiles along vertical and horizontal central lines

Square Driven Cavity (Re=10,000, Non-uniform mesh 145x145)

Fig.2 Streamlines (right) and Vorticity contour (left)

Lid-Driven Polar Cavity Flow

Fig. 3 Sketch of polar cavity and mesh

Lid-Driven Polar Cavity Flow

Fig.4 Radial and azimuthal velocity profile along the line of θ =0° with Re=350

Fig. 5 Streamlines in Polar Cavity for Re=350

Fig.6 mesh distribution

Fig.7 Flow at Re = 20 (Time evolution of the wake length)

Fig.8 Flow at *Re* = 20 (streamlines)

Fig. 9 Flow at Early stage at *Re* = 3000 (streamline)

Fig.10 Flow at Early stage at *Re* = 3000 (Vorticity)

Fig.11 Flow at Early stage at *Re* = 3000 (Radial Velocity Distribution along Cut Line)

t = 3T/8

t = 7T/8

Fig. 12 Vortex Shedding (Re=100)

Natural Convection in An Annulus

Fig. 13 Mseh in Annulus

Natural Convection in An Annulus

Fig. 14 Temperature Pattern

5. Conclusions

Features of TLLBM

- Explicit form
- Mesh free
- Second Order of accuracy
- Removal of the limitation of the standard LBM
- Great potential in practical application
- Require large memory for 3D problem
 Parallel computation